
ABELIAN VARIETIES OVER FINITE FIELDS:

PROBLEM SET 1

SANTIAGO ARANGO-PIÑEROS, SEOKHYUN CHOI, ALICE LIN, YUXIN LIN, AND MINGJIA ZHANG

Instructions: The goal of this problem set is to get some experience working with abelian varieties, with
an emphasis on elliptic curves over finite fields. Problems marked (⋆), (⋆⋆), and (⋆ ⋆ ⋆) denote beginner,
intermediate, and advanced problems, respectively. For the computational problems (Ï) you may use
CoCalc or MAGMA’s online calculators.

Elliptic curves. In the lecture notes, we discussed Weierstrass models for elliptic curves defined over a field
k of characteristic different from 2. When char(k) = 2, elliptic curves still admit a long Weierstrass model

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

To recall the invariants of an elliptic curve given in this form, you can fire up SageMath and type:

1 var("a1,a2 ,a3,a4,a6")

2 E = EllipticCurve ([a1,a2 ,a3,a4,a6])

3 E.discriminant ()

4 E.j_invariant ()

Other useful commands for elliptic curves can be found here.

Problem 1 (⋆)
Go to https://www.lmfdb.org/Variety/Abelian/Fq/ and familiarize yourself with the database. Most
of the words are probably unfamiliar right now, but by the end of PAWS you should have a pretty good
idea of what most of them mean. Here are some questions to make this interesting:

(1) How many isogeny classes of elliptic curves defined over finite fields does the LMFDB currently contain?
(2) What percentage of these classes of curves are supersingular?a

(3) How many isogeny classes of elliptic curves defined over finite fields in the LMFDB have exactly 1
rational point?

(4) (Ïb) Write down all elliptic curves defined over F2.
(a) How many of these are supersingular?
(b) How many rational points do they have?
(c) One of these curves should have exactly one rational point. What is the characteristic polynomial

of its Frobenius endomorphism?
(d) Compare it to the L-polynomial of the isogeny class found in item 3.

aSee [Sil09, Chapter 5] for the definition of ordinary/supersingular elliptic curves.
bYou can do this problem by hand, but you might want to use your favorite computer algebra system.

The Mordell-Weil theorem states that if A is an abelian variety defined over a number field K, then A(K)
is a finitely generated abelian group.

Problem 2 (⋆)
Let E be the elliptic curve over Q defined by the Weierstrass equation y2z = x3 + 17z3. Note that the
following points are on E(Q):

P = [−2 : 3 : 1], Q = [4 : 9 : 1].

(1) Find at least five points on E(Q) that are integer linear combinationsa of P and Q.
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(2) (Ï) If you did item 1 by hand, check your calculations using your favorite computer algebra system.b

(3) Look up this curve in the LMFDB .

aIn fact, we can obtain every point in E(Q) in this way!
bFor the relevant commands in SageMath , see this link.

Abelian varieties over finite fields often arise as the “reduction modulo primes” of abelian varieties defined
over a number field. For elliptic curves, this process is very concrete.

Problem 3 (⋆)
Let E be the elliptic curve over Q defined by

y2z = x3 − xz2.

(1) Using the group law defined in the lecture notes, compute the set of 2-torsion points E[2](Q).
(2) Compute the 3-torsion points E[3](Q).a

(3) Verify that this is a minimal Weierstrass equation over Q, in the sense of [Sil09, Chapter VII]. Show
that in characteristic 2, the same equation above defines a singular curve. In particular, conclude
that E has bad reduction at 2.

(4) Verify that the same equation defines an elliptic curve Ē over F3. Compute the set of 3-torsion points
Ē[3](F3), and determine whether Ē is ordinary or supersingular.

(5) (⋆⋆⋆) Show that (x, y) 7→ (−x, iy) defines an endomorphism of ĒF32
. Here i is a root of x2+1 ∈ F3[x].

Can you use this to determine the endomorphism ring of ĒF32
?b

aHint: 3P = 0 implies that 2P = −P .
bHint: consider the p-Frobenius, c.f. below.

In this question, we are going to study a distinguished element in the endomorphism ring of an elliptic
curve over finite field: the famous Frobenius endomorphism.

Problem 4 (⋆)
Let q = pr be a power of p, and assume p > 3. Let E/Fq be an elliptic curve with Weierstrass equation

E : y2z = x3 + Axz2 + Bz3, with A,B ∈ Fq. Define the p-Frobenius twist E(p) of E to be the curve

defined by the Weierstrass equation E(p) : y2z = x3+Apxz2+Bpz3. We define the p-Frobenius morphism
ϕp : E → E(p) to be the morphism given by ϕp : [x0 : y0 : z0] 7→ [xp

0 : yp0 : zp0 ] on Fq-points.

(1) Show that ∆(E(p)) = ∆(E)p and j(E(p)) = j(E)p. Conclude that E(p) is an elliptic curve.a

(2) Verify that ϕp is an isogeny. That is, verify that it is a morphism of abelian varieties which is surjective
on F̄q-points and has finite kernel.

Now, define the q-Frobenius endomorphism by ϕq := ϕr
p. Note that ϕq([x0 : y0 : z0]) = [xq

0 : yq0 : zq0 ].

(1) Show that ϕq is an endomorphism of E that commutes with any other endomorphism of E.

(2) Show that the Fq-rational points of E are exactly the Fq-points of E fixed by ϕq. More generally, we

have E(Fqn) is the set of fixed points of ϕqn : E(Fq) → E(Fq).

aThis is to show that E(p) is a nonsingular plane cubic with a rational point O. You can use the fact that a plane cubic is

nonsingular if and only if its discriminant is non-zero. For formulas of ∆(E) and j(E), see [Sil09, Section III.1].

Problem 5 (⋆⋆)
Let n be a square-free positive integer and let E be the elliptic curve y2 = x3 − n2x. Let q be a power of
a prime p, such that p does not divide 2n, and q ≡ 3 mod 4. Show that

#E(Fq) = q + 1.
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Generalities on abelian varieties. As a first (underwhelming) example of a higher-dimensional abelian
variety, you can take the product of two elliptic curves!

Problem 6 (⋆ [EVdGM12, Exercise 1.1 in pg. 15])
Let X1 and X2 be varieties over a field k.

(1) If X1 and X2 are given the structure of a group variety, show that their product X1 ×X2 naturally
inherits the structure of a group variety.

(2) Suppose Y := X1 ×X2 carries the structure of an abelian variety. Show that X1 and X2 each have a
unique structure of an abelian variety such that Y = X1 ×X2 as abelian varieties.

Morphisms between products of abelian varieties decompose.

Problem 7 (⋆⋆ [EVdGM12, Exercise 1.4 in pg. 15])
Let A1, A2, B1, B2 be abelian varieties over a field k. Show that

Hom(A1 ×A2, B1 ×B2) ∼= Hom(A1, B1)×Hom(A1, B2)×Hom(A2, B1)×Hom(A2, B2).

In the lecture notes, we defined group varieties as group objects in the category of k-varieties. What
about ring varieties?

Problem 8 (⋆⋆ [EVdGM12, Exercise 1.3 in pg. 15])
A ring variety over a field k is a commutative group variety (X,+, 0) over k, together with a ring multi-
plication morphism X ×X → X written as (x, y) 7→ x · y, and a k-rational point 1 ∈ X(k), such that the
ring multiplication is associative, distributive with respect to addition, and 1 is a 2-sided identity element.
Show that the only connected complete ring variety is a point.

The following problems require some background in Algebraic Geometry. By definition, irreducible topo-
logical spaces are connected. The converse is true for group varieties.

Problem 9 (⋆ ⋆ ⋆)
Let G be a group variety over a field k.

(1) Show that there exists a unique irreducible component N containing the identity element e.
(2) Show that N is a normal subgroup of finite index in G.
(3) Show that irreducible components of G are exactly connected components of G. Conclude that if G

is connected, then G is irreducible.
(4) Show that each open subgroup of G contains N .
(5) Show that each closed subgroup of finite index in G contains N .
(6) Conclude that if G is connected, then G is the only open subgroup and is the only closed subgroup

of finite index.

Problem 10 (⋆ ⋆ ⋆ [EVdGM12, Exercise 1.2 in pg. 15])
Let X be a variety over a field k. Write k[ϵ] := k[t]/(t2) for the ring of dual numbers over k, and let
S := Spec (k[ϵ]). Write Aut1(XS/S) for the group of automorphisms of XS over S which reduce to the
identity on the special fiber X ↪→ XS .

(1) Let x be a k-valued point of X. Show that the tangent space (TX)x := (mx/m
2
x)

∨ is in natural
bijection with the space of k[ϵ]-valued points of X which reduce to x modulo ϵ. (cf. [Har77, Chapter
II, Exercise 2.8].)

(2) Suppose X = Spec (A) is affine. Then we have:

H0(X, TX/k) ∼= Hom(Ω1
A/k, A)

∼= Derk(A,A)
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Show that H0(X, TX/k) ∼= Aut1(XS/S). We denote this isomorphism as h : H0(X, TX/k) →
Aut1(XS/S). Then for a group variety X that is not affine, we can take an affine cover of X and get
the isomorphism h : H0(X, TX/k) → Aut1(XS/S).

(3) Suppose X is a group variety over k. Let τ : S → X be a tangent vector at e, the identity section.
Let tτ be the right translation by τ morphism, so it is an element in Aut1(XS/S). Show that the
associated global vector field ζ := h−1(tτ ) is invariant under the right-translation map. That is,
t∗yζ = ζ for all y ∈ X(k). Here, ty(x) = m(x, y) is the right translation by y morphism. a

aYou can check [EVdGM12][Proposition 15, pg. 8] for a more explicit description of the associated vector field ζ. It turns

out that the vector field is not preserved under the left translation. Can you see why?

The previous problem might be useful to solve the next two.

Problem 11 (⋆ ⋆ ⋆)
Show that every morphism from the projective line to an abelian variety is constant.a

aHint: The canonical bundle of an abelian variety is trivial.

Problem 12 (⋆ ⋆ ⋆)
Show that 1-dimensional abelian varieties have genus one. In particular, we can define an elliptic curve
to be a 1-dimensional abelian variety.
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