
ABELIAN VARIETIES OVER FINITE FIELDS:

PROBLEM SET 0

SANTIAGO ARANGO-PIÑEROS, SEOKHYUN CHOI, ALICE LIN, YUXIN LIN, AND MINGJIA ZHANG

Instructions: The goal of this problem set is to get familiar with the theory of finite fields. Problems
marked (⋆), (⋆⋆), and (⋆ ⋆ ⋆) denote beginner, intermediate, and advanced problems, respectively. For the
computational problems (Ï) you may use CoCalc or MAGMA’s online calculators.

Not all finite rings are finite fields.

Problem 1 (⋆)

(1) Consider the ring Z/12Z of integers modulo 12 (the hours in the clock). Describe the group of unitsa

(Z/12Z)×. What do you notice about the non-invertible elements?
(2) Define the Euler totient function φ : Z>0 → Z>0 by

φ(n) := # {1 ≤ m ≤ n : gcd(m,n) = 1} .
Show that φ(n) = #(Z/nZ)×.

(3) Show that φ is multiplicative, i.e., that φ(mn) = φ(m)φ(n) whenever gcd(m,n) = 1.
(4) Show that Z/nZ is a field if and only if n is a prime number. In this case, we denote the field Z/pZ

by Fp.

aThe group of units R× of a ring R is the set of x ∈ R such that there exists some y ∈ R satisfying xy = 1.

In the next problem we are going to establish some standard facts about finite fields.

Problem 2 (⋆)

(1) Let F be a finite field; that is, a ring with finitely many elements such that F× = F −{0}. Show that
the subring of F generated by the multiplicative identity is isomorphic to Fp, for some prime p. This
prime is the characteristic of F .

(2) Suppose F has characteristic p. Show that #F = pn for some positive integer n.a

(3) Consider F× = F − {0}, the group of units in F . Suppose #F = pn, show that the elements in F×

are exactly the roots of the polynomial xp
n−1 − 1 in F . Conclude that the elements in F× sum up to

zero.
(4) By the fundamental theorem of finitely generated abelian groups, we can write F× ∼= Z/d1Z×Z/d2Z×

· · · × Z/drZ, where d1 | d2 | · · · | dr. Therefore, every element in F× also satisfies the polynomial
xdr − 1. Conclude from this that r = 1 and F× is cyclic.

(5) Let α be a generator of the multiplicative group F×. Let Fp[α] denote the subring in F generated by
Fp and α. Show that F = Fp[α]. Use this to show that any two finite fields with the same cardinality

are isomorphic.b

(6) Now we investigate the Galois group of the field extension Fpn/Fp. Show that the map Frobp : β 7→ βp

is a ring isomorphism from Fpn to itself, fixing Fp. The automorphism Frobp is called the p-Frobenius
automorphism. What is the order of Frobp?

(7) Now, let f(x) be the minimal polynomial of α over Fp. Show that Fp[α] ∼= Fp[x]/(f). Conclude that
f must have degree n. What does this tell us about the size of Gal(Fpn/Fp)?

(8) Show that Gal(Fpn/Fp) is a cyclic group generated by the p-Frobenius automorphism.
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aHint: there are several ways to solve this. One way is to use the fundamental theorem of finitely generated abelian groups.

Alternatively, you can use that F is a vector space over Fp.
bRemark: Up to isomorphism, there is a unique finite field of size pn. We use Fpn to denote the finite field of size pn.

As we just learned, we can understand finite fields concretely by looking at the minimal polynomials
defining the field extensions over their prime fields. For instance, the following problem gives two different
ways of thinking about F8.

Problem 3 (⋆)
Show that the polynomials f(x) = x3 + x2 + 1 and g(y) = y3 + y + 1 are irreducible over the field F2.
Describe explicitly an isomorphism between the fields F := F2[x]/(f) and G := F2[y]/(g). These two
polynomials give an explicit description of F8.

The next problem characterizes inclusion relations between finite fields.

Problem 4 (⋆)
Let m,n be positive integers. Show that Fpm ⊆ Fpn if and only if m | n. If this is the case, evaluate the
Galois group Gal(Fpn/Fpm).

The observation in the next problem is the starting point of Artin-Schreier theory.

Problem 5 (⋆⋆)
Let F be a field of characteristic p. Show that f(x) = xp − x− a ∈ F [x] is irreducible unless a = bp − b,
for some b ∈ F . Show also that if it is irreducible, then F [x]/(f) is a Galois extension of F and the Galois
group is cyclic of order p. Conversely, any Galois extension of F of order p is the splitting field of such a
polynomial f(x).

When working over finite fields, one encounters many interesting counting problems, such as the following
three.

Problem 6 (⋆⋆)
Let q be a prime power, and let d be a positive integer. Show that the average number of roots in Fq of
a degree-d monic polynomial over Fq is 1. That is:

1

#(degree d monic polynomials in Fq[x])
·
∑

f∈Fq [x]
degree d, monic

#(roots of f in Fq) = 1.

For the next problem, you might want to check out SageMath’s reference manual to get familiar with the
commands related to finite fields and/or matrices.

Problem 7 (⋆⋆)

(1) Let q be a prime power, and let GLn(Fq) denote the group of n × n invertible matrices with entries
in Fq. Show that

#GLn(Fq) = (qn − 1)(qn − q) · · · (qn − qn−1).

(2) Ï Use your favorite computer algebra system to write a computer program that verifies this formula.

Problem 8 (⋆⋆)
Let q be a prime power. Show that an irreducible polynomial f ∈ Fq[x] is a factor of xq

n − x if and only

if deg f | n. Show that xq
n − x factors as the product of all monic irreducible polynomials of degrees
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dividing n. Let N(q, r) be the number of monic irreducible polynomials of degree r, where r | n. Derive
the formula

N(q, n) =
1

n

∑
d|n

µ
(n
d

)
qd

where µ is the Möbius function.a

aHint: Google the Möbius inversion formula.

The following problem uses some basic concepts from complex analysis. It might be helpful to keep in
mind the Riemann zeta function, and the algebraic similarities between the rings Z and Fq[x] (see [Ros02]).

Problem 9 (⋆⋆)
Let q be a prime power. The zeta function of the polynomial ring Fq[x]

a, denoted by ζFq [x](s), is defined
by the infinite series

ζFq [x](s) :=
∑

f ∈ Fq [x]
f monic

1

|f |s
,

where |f | := # Fq[x]/(f).

(1) Show that ζFq [x](s) converges absolutely to a holomorphic function in the half-plane Re(s) > 1.
(2) Show that ζFq [x](s) has an expression as an infinite product indexed by irreducible monic polynomials

in Fq[x].
(3) Show that ζFq [x](s) has an analytic continuation to C − {1} with a simple pole at s = 1. Calculate

the residue at this pole.
(4) Define ξFq [x](s) := q−s(1− q−s)−1ζFq [x](s) and note that ξFq [x](s) = ξFq [x](1− s).

aRemark: This is also the zeta function of the affine line A1
Fq := SpecFq [x].

There are interesting relations between quadratic residues of different finite fields, as suggested by the
following problem.

Problem 10 (⋆⋆)
Let p be an odd prime number.

(1) Given a ∈ F×
p , write (a/p) = 1 if a is a square in Fp and write (a/p) = −1 if not. Show that

( · /p) : F×
p → {±1} is a surjective homomorphism.

(2) Let φ : F×
p → {±1} be a surjective homomorphism. Show that φ = ( · /p).

(3) Show that (a/p) = a(p−1)/2 for every a ∈ F×
p .

(4) Show that (−1/p) = 1 if and only if p ≡ 1 mod 4.
(5) Show that (2/p) = 1 if and only if p ≡ ±1 mod 8.
(6) (⋆ ⋆ ⋆) Let ℓ be an odd prime distinct from p. Prove the quadratic reciprocity law:

(p/ℓ)(ℓ/p) = (−1)(p−1)(ℓ−1)/4.

In the following three problems, we build the algebraic closure of a finite field, and introduce its absolute
galois group.

Problem 11 (⋆ ⋆ ⋆)
Recall that there exists an injective homomorphism Fpm → Fpn whenever m | n. Consider the set of
finite fields {Fpn}n≥1 together with the set of injective homomorphisms {ϕm,n : Fpm → Fpn}. Show that
⟨{Fpn}, {ϕm,n}⟩ forms a direct system and its direct limit is the algebraic closurea of Fp:

lim
−→

Fpn = Fp.
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aSince each Fpn is separable over Fp, Fp is also the separable closure of Fp.

Problem 12 (⋆⋆)
Let Fp be the algebraic closure of Fp constructed in the previous problem.

(1) We construct an sequence (an)n≥1 as follows: write n = n′pvp(n), where n′ and p are coprime. Let

xn, yn be such that 1 = n′xn + pvp(n)yn. Let an = n′xn.
(a) Show that for m | n, we have am ≡ an mod m.
(b) Show that there does not exist a ∈ Z such that a ≡ an mod n.

(2) Let Gal(Fp/Fp) be the Galois group, and let Frobp : β 7→ βp denote the p-Frobenius automorphism

of Fp. Consider the element ψ ∈ Gal(Fp/Fp) defined by ψ(β) := Frobai
p (β) = βpai

if β ∈ Fpi . Show
that ψ is not in the cyclic group ⟨Frobp⟩.

Problem 13 (⋆ ⋆ ⋆)
Show that the absolute Galois group of a finite field is isomorphic (as a topological group) to the profinite

completion of the integers: Gal(Fq/Fq) ∼= Ẑ. Conclude that Gal(Fq/Fq) is the closure of the cyclic group

⟨Frobq⟩, where Frobq : Fq → Fq, β 7→ βq is the q-Frobenius automorphism.a

aA good reference to learn about infinite Galois theory is [? , Chapter 7].

The following problem is a theorem attributed to Chevalley and Warning (see [Ser73]).

Problem 14 (⋆ ⋆ ⋆)
Let q be a power of a prime number p. Let f ∈ Fq[x1, . . . , xn] be a polynomial in n variables with
deg f < n. Let V be the set of zeros of f in Fn

q . Show that |V | ≡ 0 mod p. In particular, every quadratic
form in at least 3 variables over Fq has a nontrivial zero.

The next problem requires some algebraic geometry.

Problem 15 (⋆ ⋆ ⋆)
Let G be a finite p-group, and let k be an algebraically closed field of characteristic ℓ ̸= p. Suppose that
G acts algebraically on n-dimensional affine space An

k . In this problem, we will show that the action of
G has a fixed point.a

(1) Do the case of k = Fℓ.
(2) General case: Since G is finite, we can find a subring Λ ⊂ k, finitely generated over Z, over which the

action of G is defined. Proceed by contradiction to reduce to the case of k = Fℓ.

aSee Theorem 1.2 in Serre’s: How to use finite fields for problems concerning infinite fields for the solution, and other
interesting applications of finite fields!
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