
ABELIAN VARIETIES OVER FINITE FIELDS

1. Introduction

1.1. Goal. In this series of lectures, we will study abelian varieties over finite fields. The main
goal is to understand the Honda-Tate Theorem which classifies abelian varieties over Fq up to
isogeny in terms of Weil q-numbers. The lectures will be broken down into the key results,
which combine to give the purely algebraic proof of Honda-Tate by Chai–Oort. For background
material, we refer to [3, 5, 4, 11] or Edixhoven, Moonen and van der Geer’s book available
at http://van-der-geer.nl/~gerard/AV.pdf. For the main results of Honda and Tate, we use
the references [8, 9]. The expository notes [1, 6] can also be useful.

1.2. Prerequisites. We will assume some knowledge of third year algebra. But we will not assume
any knowledge of abelian varieties. The main results from algebraic geometry will be treated as
black boxes. We will strive to illustrate the theory with as many examples as possible, mainly using
elliptic curves [7, 10].

2. Abelian varieties over finite fields

2.1. Introduction to abelian varieties over finite fields. Give the definition of abelian varieties
over a field. Discuss isogenies, existence of dual abelian variety and polarisations.

2.2. Endomorphism rings and Tate modules. Study endomorphism rings and Tate modules of
abelian varieties.

2.3. Tate’s isogeny theorem. Define the geometric Frobenius and Verschiebung maps and explain
their relation on the dual abelian variety. Give the main ideas in the proof of Tate’s isogeny theorem:
For an abelian variety A/Fq and a prime ℓ ̸= p, the map

End(A)⊗Z Zℓ → End(TℓA)

is an isomorphism.

2.4. The Weil conjecture. Discuss the proof of Weil’s theorem: For a simple abelian variety
A/Fq, the geometric Frobenius πA ∈ End(A) is a Weil q-number, that is, it is an algebraic integer

and for every complex embedding ψ : Q(πA) → C, we have |ψ(πA)| = q1/2.

2.5. p-divisible groups, Dieudonné modules and Serre–Tate deformation theory. Define
p-divisible groups and give examples. State (without proofs) the main results on Dieudonné theory
over perfect fields. State the main theorem relating the deformation of abelian varieties and their
p-divisible groups and explain the proof.

2.6. Proof of Honda-Tate’s Theorem. Honda-Tate’s Theorem states that the map

{Simple abelian varieties over Fq} /isogeny → {Weil q-numbers} /conjugation
A 7→ πA

is a bijection. The fact that this map is well-defined and injective follows from previous lectures.
We will show that the map is surjective by following the short algebraic proof given by Chai and
Oort [2].
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