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1 Definition and properties of abelian varieties

We fix a field k, and let k be an algebraic closure of k. We recall the definition and basic
properties of abelian varieties. We give some indications as to how the theory is developed,
but omit most of the arguments....

1.1 Definition

Definition 1.1. A algebraic variety X over k is a separated k-scheme X of finite type, which
is geometrically integral (i.e. X ×Spec(k) Spec(k) is integral). We say that X is complete if it
is proper.

Definition 1.2. A group variety over a field k is a k-variety G together with k-morphisms
m ∶ G×G→ G (the group law) and i ∶ G→ G (the inverse) and a k-rational point e ∈ G(k) (the
identity element) such that we have the following commutative diagrams:

(i) Associativity of the group law:

G ×G ×G (G ×G) ×G G ×G

G × (G ×G) G ×G G

idG×G×G

idG×G×G

m × idG

m

idG ×m m

(ii) Identity element:

G × Spec(k) G ×G Spec(k) ×G

G

idG × e e × idG

m
j1 j2

where j1 ∶ Spec(k) ×G→ G and j2 ∶ G × Spec(k)→ G are the projection maps on G.

(iii) Existence of inverse element:

G Spec(k) G

G ×G G G ×G

π

e

π

(idG, i) (i, idG)

m m

where π ∶ G→ Spec(k) is the structure morphism.

Definition 1.3. An abelian variety A defined over k is a k-group variety which is complete as
a k-variety.
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1.2 Commutativity

We begin by explaining the most basic fact, which is commutativity. The main ingredient in
proving this is the following general fact:

Lemma 1.4 (Rigidity Lemma). Let X be a complete variety over k, and Y and Z be arbitrary
varieties. Let f ∶X ×Y → Z be a map of varieties. Suppose there exists x0 ∈X and y0 ∈ Y such
that the restrictions of f to X × {y0} and {x0} × Y are constant. Then f is constant.

Corollary 1.5. Let X and Y be abelian varieties and let f ∶X → Y be any map of varieties
such that f(0) = 0. Then f is a morphism of abelian varieties, i.e., f respects the group
structure.

Proof. Consider the map

h ∶X ×X → Y

(x, y)↦ f(x + y) − f(x) − f(y).

Then h(x, 0) = h(0, x) = 0 for all x ∈X. So, by the Rigidity Lemma h = 0, meaning that f is a
homomorphism.

Corollary 1.6. An abelian variety is commutative.

Proof. The map x ↦ −x takes 0 to 0 and is therefore a homomorphism, which implies
commutativity.

1.3 Theorem of the cube

Theorem 1.7 (Theorem of the cube). Let X,Y and Z be varieties such that X and Y complete.
Let x0 ∈ X,y0 ∈ Y and z0 ∈ Z be points. Let L be a line bundle on X × Y × Z such that the
restrictions of L to X ×Y × {z0},X × {y0}×Z and {x0}×Y ×Z are trivial. Then L is trivial.

Corollary 1.8. Let A be an abelian variety. Let πi ∶ A ×A ×A→ A denote the projection map
on the i-th factor, and set πij ∶= πi + πj and π123 ∶= π1 + π2 + π3. Let L be a line bundle on A.
Then the line bundle

L ′ ∶= π∗123L ⊗ π
∗
12L

−1 ⊗ π∗13L
−1 ⊗ π∗23L

−1 ⊗ π∗1L ⊗ π∗2L ⊗ π∗3L

on A ×A ×A is trivial.

Proof. This follows immediately from the theorem of the cube. For example, if we restrict to
A ×A × {0} then π∗123L = π

∗
12L , π∗13L = π

∗
1L , and π∗3L = 1, so all factors cancel.

Corollary 1.9. Let A be an abelian variety, and X an arbitrary variety. Let f, g, h ∶X → A
be maps of varieties, and L a line bundle on A. Then the line bundle

L ′ ∶= (f + g + h)∗L ⊗ (f + g)∗L −1 ⊗ (f + h)∗L −1 ⊗ (g + h)∗L −1 ⊗ f∗L ⊗ g∗L ⊗ h∗L

on X is trivial.

Proof. This follows from Corollary 1.8 by considering the map X → A × A × A given by
(f, g, h).
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1.4 Theorem of the square

Theorem 1.10 (Theorem of the square). Let A be an abelian variety and L a line bundle on
A, and x, y ∈ A(k). Then t∗x+yL ⊗L = t∗xL ⊗ t

∗
yL . (Here tx denotes translation by x.)

Proof. Apply Corollary 1.9 with f = tx (constant map), g = ty, and h = idA.

Define Pic(A) to be the set of isomorphism classes of line bundles on A. For a line bundle
L , let ϕL ∶ A(k)→ Pic(A) be the map ϕL (x) = t

∗
xL ⊗L −1. The theorem of the square states

exactly that ϕL is a group homomorphism.

1.5 Isogenies

Proposition 1.11. Let f ∶ A→ B be a homomorphism of abelian varieties. Then the following
conditions are equivalent:

(a) f is surjective and dim(A) = dim(B);

(b) ker(f) is a finite group scheme and dim(A) = dim(B);

(c) f is a finite, flat and surjective morphism.

Definition 1.12. Let f ∶ A→ B be a homomorphism of abelian varieties. We say that f is an
isogeny if it satisfies the three equivalent conditions (a), (b) and (c) in Proposition 1.11. The
degree of an isogeny f is [k(A) ∶ k(B)], the degree of the function field extension k(A)/k(B).
(Note that we have a homomorphism k(B)→ k(A), since an isogeny is surjective.)

Definition 1.13. Let f ∶ A→ B be an isogeny. Then, we say that

(i) f is separable if k(A)/k(B) is a separable extension.

(ii) f is (purely) inseparable if k(A)/k(B) is a (purely) inseparable extension.

Proposition 1.14. Let f ∶ A→ C be an isogeny. Then, there exist

(i) an abelian variety B;

(ii) an inseparable isogeny g ∶ A→ B; and

(iii) a separable isogeny h ∶ B → C

such that f = h ○ g. This factorisation is unique up to isomorphism. In other words, if
f = h′ ○ g′ ∶ A→ B′ → C is a second such factorisation then there is an isomorphism α ∶ B → B′

such that g′ = α ○ g and h = h′ ○ α.

1.6 Structure of torsion

For an integer n, let [n]A (or simply [n]) be the morphism

A(k)→ A(k)

x↦ nx.
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Proposition 1.15. Let A be abelian variety, L a line bundle on A, and n ∈ Z. Then, we have

[n]∗L =L (n2+n)/2 ⊗ [−1]∗L (n2−n)/2.

In particular,

(i) if L is symmetric (i.e. [−1]∗L =L ) then [n]∗L =L n2
;

(ii) if L is anti-symmetric (i.e. [−1]∗L =L −1) then [n]∗L =L n.

Proof. Applying Corollary 1.9 to the maps [n], [1], and [−1], we see that

L ′ ∶= [n]∗L ⊗ [n + 1]∗L −1 ⊗ [n − 1]∗L −1 ⊗ [n]∗L ⊗L ⊗ [−1]∗L

is trivial. In other words, we have

[n + 1]∗L = [n]∗L 2 ⊗ [n − 1]∗L −1 ⊗L ⊗ [−1]∗L .

The result now follows by induction.

Theorem 1.16. Let A be an abelian variety of dimension g, and n > 0 an integer. Then
[n]A ∶ A→ A is an isogeny; it is étale if and only if (char(k), n) = 1.

Proof. One can show that abelian varieties are projective. Let L be an ample line bundle on
A. Replacing L by L ⊗ [−1]∗L , we can assume L is symmetric. Since [n]∗L =L n2

, it is
ample. However, the restriction of this to the n-torsion is obviously trivial. Since the n-torsion
is a complete variety on which the trivial bundle is ample, it must be finite. This implies that
[n] is surjective, by reasoning with dimension.

Proposition 1.17. The degree of [n]A is n2g.

Proof. Let f ∶ X → Y be a finite map of complete varieties of degree d. If D1, . . . ,Dn are
divisors on Y , where n = dim(X) = dim(Y ), then there is an equality of intersection numbers:

(f∗D1⋯f
∗Dn) = d(D1⋯Dn).

Now, let D be an ample divisor such that [−1]∗D is linearly equivalent to D (e.g., the divisor
associated to the line bundle used above). Then [n]∗D is linearly equivalent to n2D. We thus
find

deg([n])(D⋯D) = ((n2D)⋯(n2D)) = n2g(D⋯D).

Since D is ample, (D⋯D) ≠ 0, and thus deg([n]) = n2g.

One can show that [n] ∶ A → A induces multiplication by n on the tangent space. This
shows that [n] is separable if and only if n is prime to the characteristic. Combined with the
above (and the usual induction argument), we see that:

Corollary 1.18. If (char(k), n) = 1, then A[n](k) is isomorphic to (Z/nZ)2g.

Since [p] is not separable, A[p](k) must have fewer than p2g points. We will see later,
when studying group schemes, that it can have at most pg points.

Corollary 1.19. Let f ∶ A → B be an isogeny of degree n. Then there exists an isogeny
g ∶ B → A such that g ○ f = [n]A and f ○ g = [n]B.
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2 The dual variety

2.1 Definition of the dual

Let k be an arbitrary field, and A an abelian variety defined over k. We define Pic(A) to be
the set of isomorphism classes of line bundles on A. Then, we let Pic0(A) be the subgroup
consisting of those line bundles L which are translation invariant, i.e., which satisfy t∗x(L ) ≃L
for all x ∈ A. We define the following functor. For each variety T over k, let F (T ) be the of
isomorphism classes of line bundles L on A × T satisfying the following two conditions:

(a) for all t ∈ T , the restriction of L to A × {t} belongs to Pic0(A); and

(b) the restriction of L to {0} × T is trivial.

We see that F (k) = Pic0(A). We define the dual abelian variety A∨ to be the variety that
represents F , if it exists. We will always assume that the dual variety A∨ exists. Then, it
automatically comes with a universal bundle P on A×A∨, which is called the Poincaré bundle.

2.2 Construction of the dual

Let L be an ample bundle on A. We then have the map

ϕL ∶ A→ Pic0(A)

x↦ [t∗xL ⊗L −1].

By the theorem of the square, the image is in Pic0(A). One can prove the map ϕL it is
surjective, and has finite kernel K(L ). In fact, K(L ) has a natural structure of a group
scheme. This suggests that A∨ should be the quotient A/K(L ), and one can show that this is
indeed the case.

Proposition 2.1. Let f ∶ A → B be a homomorphism of abelian varieties over k, and PA

and PB be the Poincaré line bundles on A and B, respectively. Then, there exists an induced
homomorphism f∨ ∶ B∨ → A∨, called the dual or transpose of f . Thus, f∨ is the unique
homomorphism such that

(idA × f
∨)∗PA ≃ (f × idB)

∗PB

as line bundles on A ×B∨ with rigidification along {0} ×B∨.

2.3 Polarisations

Definition 2.2. Let A be an abelian variety. A polarisation on A is an isogeny λ ∶ A → A∨

such that λk ∶ A(k)→ Pic0(A) is given by λk = ϕL for some ample line bundle L on A over k.
The degree of the polarisation λ is its degree as an isogeny. An abelian variety together with a
polarisation is called a polarised abelian variety.

There is an obvious notion of morphisms of polarised abelian varieties. If λ has degree 1,
then we say that (A,λ) is a principally polarised abelian variety.



3 STRUCTURE OF THE ISOGENY CATEGORY 9

3 Structure of the isogeny category

3.1 Poincaré reducibility

Theorem 3.1 (Poincaré reducibility). Let A be an abelian variety, and let B be an abelian
subvariety. Then there exists an abelian subvariety C such that B ∩C is finite and B ×C → A
is an isogeny.

Proof. Choosing polarisations on A and A/B to identify them with their duals, the dual to
the quotient map A → A/B is a map A/B → A. We let C be its image. The properties are
easy to verify.

We say that an abelian variety A is simple if the only abelian subvarieties of A are 0 and A.

Proof. Every abelian variety is isogenous to a product of simple varieties.

3.2 The isogeny category

Define a category Isog as follows. The objects are abelian varieties. For two abelian varieties
A and B, we put

HomIsog(A,B) = Hom(A,B)⊗Q.

One can show that if f ∶ A→ B is an isogeny then there exists an isogeny g ∶ B → A such that
gf = [n], for some n; it follows that 1

ng is the inverse to f in Isog. Thus isogenies become
isomorphisms in Isog.

It is not difficult to see that Isog is in fact an abelian category. The simple objects of
this category are exactly the simple abelian varieties. Poincaré’s theorem shows that Isog
is semi-simple as an abelian category. From this formalism, and general facts about abelian
varieties, we deduce two results:

1. The decomposition (up to isogeny) into a product of simple abelian varieties is unique
(up to isogeny). (Reason: in any semi-simple abelian category, the decomposition into
simples is unique up to isomorphism.)

2. If A is a simple abelian variety then End(A)⊗Q is a division algebra over Q. (Reason:
if A is a simple object in an abelian category and End(A) contains a field k, then it is a
division algebra over k.)

4 Basic example: elliptic curves

We will assume throughout this section, that k is a field of characteristic different from 2.

4.1 Definition of an elliptic curve

Definition 4.1. Let E ∶ y2 = f(x) be a cubic curve, where f(x) = x3 + ax2 + bx + c. Then, the
discriminant ∆E of E is the discriminant ∆f of the polynomial f :

∆E ∶=∆f = −4a
3c + a2b2 + 18abc − 4b3 − 27c2.

Example 4.2. For a cubic curve E ∶ y2 = x3+ax+b, a, b ∈ k, the discriminant ∆E = −4a
3−27b2.
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y

x

Figure 1: Real points of the elliptic curve y2 = x3 − 8

We can now give the definition of an elliptic curve.

Definition 4.3. Let k be a field with characteristic different from 2. An elliptic curve over k
is a cubic curve E ∶ y2 = f(x) = x3 + ax2 + bx + c, with a, b, c ∈ k, such that ∆E ≠ 0.

The following lemma expresses the discriminant of a cubic polynomial in terms of its roots.

Lemma 4.4. Let f(x) = x3 + ax2 + bx + c, with a, b, c ∈ k, and e1, e2, e3 the roots of f in k.
Then the discriminant of f is given by

∆f = [(e1 − e2)(e2 − e3)(e1 − e3)]
2.

A useful criteria to check whether a cubic is an elliptic curve.

Proposition 4.5. Let E ∶ y2 = f(x) be a cubic curve, with f(x) = x3 + ax2 + bx + c and
a, b, c ∈ k. Then, we have E is an elliptic curve ⇐⇒ f has no repeated roots ⇐⇒ ∆E ≠ 0.

Example 4.6. (a) The cubic E ∶ y2 = x3 − 2x + 1 is an elliptic curve over Q since ∆E =

−4(−2)3 − 27(1) = 5 ≠ 0.

(b) For c ∈ Z non-zero, the curve E ∶ y2 = x3+c is an elliptic curve over Q since ∆E = −27c
2 ≠ 0.

(See Figure 1 for the real locus of this curve.)

(c) The curve E ∶ y2 = x3 + x2 + 1 is an elliptic curve over F3. Definition 4.1 shows that
∆E = −1 ≠ 0 ∈ F3. Alternatively, letting f(x) = x3+x2+1, we see that f ′(x) = 3x2+2x = 2x
(char(F3) = 3). So gcd(f, f ′) = 1, which implies that f has distinct roots.
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4.2 Definition of the group law

The homogenisation of the curve E in Definition 4.3 is given by

E ∶ Y 2Z =X3 + aX2Z + bXZ2 + cZ3. (1)

The only point at infinity on E is [0 ∶ 1 ∶ 0], which we denote by ∞ from now on. We will see
that this point is the neutral element in the group structure on E.

Definition 4.7. Let E be an elliptic curve over k, and k′ a field containing k. The set of
k′-rational points of E is the set of k′-rational points on the homogenisation of E, namely

E(k′) ∶= {[x ∶ y ∶ z] ∈ P2(k′) ∶ zy2 = x3 + ax2z + bxz2 + cz3} .

Since P2(k′) =A2(k′) ⊔ {Z = 0}, and ∞ = [0 ∶ 1 ∶ 0] is the unique point at infinity, we can
write

E(k′) ∶= {(x, y) ∈K ′2 ∶ y2 = x3 + ax2 + bx + c} ⊔ {∞}.

Example 4.8. Let k =Q, and E ∶ y2 = x3 + 1. The set of Q-rational points E(Q) is given by

E(Q) = {(−1,0), (0,±1), (2,±3)} ∪ {∞}.

We have the natural inclusions E(Q) ⊂ E(R) ⊂ E(C). (See Figure 3 for the sets E(Q) ⊂ E(R).)

Example 4.9. Let E ∶ y2 = x3 + 2x + 5 be the curve over F11. Then, we have

E(F11) = {(0,±4), (3,±4), (4,0), (−3,±4), (−2,±2)} ∪ {∞}.

Let h ∈ k[x] be a polynomial of degree n. The number of roots of h counted with multiplicity
in k is n. The following theorem can be see as a generalisation of that statement to elliptic
curves.

Theorem 4.10 (Bézout). Let k be a field, E ∶ y2 = x3 + ax2 + bx + c an elliptic curve over k,
and L ⊂ P1(k) a line. The set L ∩E contains three points counted with multiplicity.

Let L ∶ αx + βy + γ = 0 be a line, with α,β, γ ∈ k. We want to find L ∩E ⊂ P1(k), so we
first homogenise L ∶ αX + βY + γZ = 0. Then we have two cases:

Case 1: The unique point infinity ∞ = [0 ∶ 1 ∶ 0] ∈ L ∩E.
In that case, we see that αx + βy + γz = 0 implies that β = 0. This means that either:

(a) L is the line at infinity Z = 0. In that case P =∞ is the only point of intersection, hence
has multiplicity three.

(b) L is vertical line αX + γZ = 0 (α ≠ 0). The other points of intersection are (x0,±y0),
where x0 = − γ

α and y0 =
√
f(x0). If y0 = 0, then we get a unique point P = (x0,0) with

multiplicity two; otherwise, we get two distinct points P = (x0, y0) and Q = (x0,−y0),
with multiplicity one each. In either case, the point ∞ has multiplicity one.

Case 2: L ∩E consists of three affine points counted with multiplicity.

(a) L∩E has two distinct points P and Q: In this case, L is a tangent to E at P or Q. The
tangent point has multiplicity two, and the other point has multiplicity one.
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Figure 2: Group addition law

(b) L∩E has three disctint points P , Q and R. In that case, each point has multiplicity one.

We are now ready to define the group structure on E(k).

Definition 4.11. Let E be an elliptic curve over k, and

E(k) = {(x, y) ∈ k
2
∶ y2 = x3 + ax2 + bx + c} ⊔ {∞}.

The addition law + on E(k) is defined as follows:

(i) The neutral element is ∞;

(ii) If P,Q,R ∈ E(k) are collinear, then P +Q +R =∞ (⇔ P +Q = −R).

In words, to obtain the sum P +Q, we first draw the line L through P and Q (if P ≠ Q) or the
tangent line (if P = Q), and let R be its third intersection point with E(k). If R = (xR, yR) is
affine, then P +Q = −R = (xR,−yR); otherwise, P +Q =∞. (See Figure 2.)

Remark 4.12. By Definition 4.11 and the discussion preceding it, if P = (x, y) is affine, then
the negative of P is −P = (x,−y) since (x, y) and (x,−y) are on a vertical line, which intersects
E at ∞.

Example 4.13. Let E ∶ y2 = x3 + 1 over Q be the curve in Example 4.8. Let P = (−1,0) and
Q = (0,1). Th equation of the line through P and Q is y = x + 1. So, we see that the point
R = (2,3). The line through R and ∞ is the vertical line x = 2. It intersects E at (2,−3), so
P +Q = (2,−3) (see Figure 3). Similarly, one can compute the sum of any two points in E(Q).
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y

x
(−1, 0)

(0, 1)

(0,−1)

(2, 3)

(2,−3)

Figure 3: Euler cubic: y2 = x3 + 1

The theorem below says that Definition 4.11 makes E(k) into an abelian group.

Theorem 4.14. Let E be an elliptic curve defined over a field K. Then, E(k) is an abelian
group under the operation +, with identity element ∞(= [0 ∶ 1 ∶ 0]). In other words, we have

(i) P +Q = Q + P ∀P,Q ∈ E(k) (commutativity).

(ii) P +∞ = P ∀P ∈ E(k) (identity element).

(iii) If P = (x, y), then −P = (x,−y) (opposite element).

(iv) P + (Q +R) = (P +Q) +R, ∀P,Q,R ∈ E(k) (associativity).

Proof. Properties (i)-(iii) follow easily from Definition 4.11 and the discussion preceding it.
However, the last statement (iv) is very hard to prove, and beyond the scope of this course.

4.3 Computing with the group law

We now give a more explicit description of the group law on E(k).

Proposition 4.15. Let E be as above, and P1, P2 ∈ E(k). Then P1 + P2 is given by

(1) If P1 =∞ then P1 + P2 = P2; if P2 =∞, then P1 + P2 = P1.

Assume that P1, P2 ≠∞, so that Pi = (xi, yi), i = 1,2; then

(2) If x1 = x2 and y1 = −y2 then P1 + P2 =∞.
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(3) Set

λ ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3x21 + 2ax1 + b

2y1
, if x1 = x2 and y1 = y2 ≠ 0;

y1 − y2
x1 − x2

, else.

Let x3 = λ2 − a − x1 − x2, y3 = y1 + λ(x3 − x1) and P3 = (x3,−y3), then P1 + P2 = P3.

Proof. We note that (1) and (2) are just a restatement of Theorem 4.14 (ii) and (iii). So
we only need to prove (3). In that case, let L ∶ y = λx + ν be the line through P1, P2, and
R = (x3, y3) its 3rd point of intersection with E. If P1 = P2, then L is the tangent line at
P1 with λ =

3x2
1+2ax1+b
2y1

and ν = y1 − λx1. Otherwise, L is the line with slope λ = y2−y1
x2−y1

and
x-intercept ν = y1 − λx1 = y2 − λx2. The x-coordinates x1, x2 and x3 of the points in L ∩E
(counted with multiplicity) satisfy the equation

(λx + ν)2 = x3 + ax2 + bx + c.

By moving all terms to the same side, expanding and then factorising, we get

x3 + (a − λ2)x2 + (b − 2λν)x + c − ν2 = (x − x1)(x − x2)(x − x3) = 0.

By equating the terms of degree 2, we get x1 + x2 + x3 = −(a − λ2). From this, we recover
R = (x3, y3), which gives P1 + P2 = P3 = (x3,−y3).

Remark 4.16. From proof above, we note that if xi ∈ k, then yi = λxi + ν ∈ k and the
intersection point (xi, yi) is defined over k. We also note that, if two of the roots x1, x2, x3 are
defined over k, then so is the third one since x1 + x2 + x3 = −(a − λ2) ∈ k.

Example 4.17. Let E ∶ y2 = x3 + 73, and P = (2,9), Q = (3,10).

(a) The slope of the line through P and Q is λ = yQ−yP
xQ−xP

= 10−9
3−2 = 1. Let R = (xR, yR) be

the 3rd point of intersection of this line with E. Then, we have xP + xQ + xR = λ2.
So xR = (1)

2 − 2 − 3 = −4, and yR = yP + λ(xR − xP ) = 9 + (−4 − 2) = 3. Hence
P +Q = −R = (−4,−3).

(b) The slope of the tangent line at P is λ = 3x2
P

2yP
=

3(2)2

2(9) =
2
3 . For the 3rd point of intersection

R = (xR, yR), we have 2xP+xR = λ2. So xR = (23)
2−2(2) = −32

9 , and yR = yP+λ(xR−xP ) =
9 + 2

3(−
32
9 − 2) =

143
27 . Hence 2P = −R = −(xR, yR) = (xR,−yR) = (−

32
9 ,−

143
27 ).

Example 4.18. Let E ∶ y2 = x3 + 2x + 5 be the curve defined F11 in Example 4.9, and
P = (−3, 4). We compute 2P using Proposition 4.15. We have λ = 3x2

P+2

2yP
=

3(−3)2+2
2(4) = 5 mod 11.

So, we have x2P = λ2 − 2xP = (52) − 2(−3) = 25 + 6 = −2 mod 11. So, we get that −y2P =
yP + λ(x2P − xP ) = 4 + 5(−2 − (−3)) = −2 mod 11. This gives y2P = 2 and 2P = (−2,2). If we
compute 4P , we obtain 4P = 2(2P ) = 2(−2,2) = (−3,−4) = −P.

This means that 5P = (4 + 1)P = ∞. Since P ≠ ∞, we see that P is a point of order 5.
Now, let us observe that Q = (4,0) ∈ E(F11) is a point of order 2 since yQ = 0, hence Q = −Q.
(Observe that, if Q = (x, y) ∈ E(K) then −Q = (x,−y).) This means that P +Q is a point of
order 10. Since #E(F11) = 10, we deduce from these computations that E(F11) is a cyclic
group of order 10.
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Corollary 4.19. If k ⊆ k′ ⊆ k is a subfield, then E(k′) is a subgroup of E(k).

Proof. By definition, the identity element ∞ ∈ E(k′); also P = (x, y) ∈ E(k′) implies that
−P = (x,−y) ∈ E(k′). So we only need to show that

P,Q ∈ E(k′)⇒ P +Q ∈ E(k′).

But this follows from Proposition 4.15 and Remark 4.16.

5 Endomorphism rings and Tate modules

5.1 Endomorphism ring of an abelian variety

Let A and B be abelian varieties over a field k. If f and g are homomorphisms from A to A,
then we have a homomorphism (f + g) ∶ A→ B given on points by addition x↦ f(x) + g(x).
This gives the set Hom(A,B) of homomorphisms A→ B the structure of an abelian group. For
A = B we see that End(A) has a natural ring structure, with composition of endomorphisms
as the ring multiplication. We will always write Hom(A,B) for the group of homomorphisms
from A to B, and End(A) for the ring of endomorphisms of A. We will use the notations
Homk(A,B) and Endk(X) for the homomorphisms (resp. endomorphisms defined over k).

Lemma 5.1. Let A and B be abelian varieties over a field k. Then the group Hom(A,B) is
torsion-free, i.e. for f ∈ Hom(A,B) and n ∈ Z non-zero, n ⋅ f = 0 implies that f = 0.

Proof. For n ∈ Z and f ∈ Hom(A,B), we have n ⋅ f = f ○ [n]A = [n]B ○ f . But for n ≠ 0, we
know that [n]A is an isogeny, so is in particular surjective. From this, we see that n ⋅ f = 0
implies that f = 0.

We write

Hom0(A,B) ∶= Hom(A,B)⊗Z Q and End0(A) ∶= End(A)⊗Z Q.

By definition, we see that End0(A) is a Q-algebra.

Theorem 5.2 (Poincaré reducibility). Let A be an abelian variety, and let B be an abelian
subvariety. Then there exists an abelian subvariety C such that B ∩C is finite and B ×C → A
is an isogeny.

Proof. Let i ∶ B ↪ A be the inclusion map and i∨ ∶ A∨ → B∨ its dual. Let λ ∶ A → A∨ be a
polarisation on A. Then, let

X = ker(i∨ ○ λ),

C the reduced subscheme of the zero component X. Then C is an abelian variety. From the
theorem on the dimension of fibres of morphisms, dimC ≥ dimA − dimB. The restriction of
the morphism i∨ ○ λ ∶ A→ B∨ to B is λ∣B ∶ B → B∨, whose kernel is finite since λ arises from
an ample bundle L . Therefore B ∩C is finite, and so B ×C → A is an isogeny.

Definition 5.3. Let A be a non-zero abelian variety X over a field k. We say that A is simple
if A the only subvarieties of A are 0 and A.

Note that an abelian variety that is simple over the ground field k need not be simple over
an extension of k. To avoid confusion we sometimes use the terminology k-simple.
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Proposition 5.4. Let A be a non-zero abelian variety over k. Then, A is isogenous to a
product of k-simple abelian varieties. More precisely, there exists k-simple abelian varieties
B1, . . . ,Br, which are pairwise non k-isogenous, and positive integers n1, . . . , nr such that A is
k-isogenous to Bn1

1 × ⋯ ×B
nr
r , which we denote by A ∼k Bn1

1 × ⋯ ×B
nr
r . Up to permutation,

the abelian varieties Bi are unique up to k-isogeny, and the corresponding multiplicities ni are
uniquely determined.

Proof. The existence of a decomposition is immediate from the Poincaré Splitting Theorem.
The uniqueness statement is an easy exercise–note that a homomorphism between two simple
abelian varieties is either zero or an isogeny.

Corollary 5.5. Let A be an abelian variety defined over k.

(i) if A is k-simple, then End0k(A) is a division algebra;

(ii) If A ∼k Bn1
1 ×⋯ ×B

nr
r , where the Bi are k-simple abelian varieties, then we have

End0k(A) =Mn1(D1) ×⋯ ×Mnr(Dr),

where Di = End
0
k(Bi).

(Here Mm(R) denotes the ring of m ×m matrices with coefficients in the ring R.)

Proof. First we observe that a homomorphism between two k-simple abelian varieties is either
zero or an isogeny. But the isogenies from A to itself are invertible elements of End0k(A). So if
A is k-simple End0k(A) is a division algebra. For the second part of the statement, note that
Hom(Bi,Bj) = 0 if i ≠ j since Bi and Bj are simple and non-isogenous.

Example 5.6. Here is an example of an abelian variety that is Q-simple but not simple over
F ∶=Q(

√
29). See Section 8 for the definition of Jacobian varieties. Let B be the Jacobian of

the curve defined by

C ∶ y2 + (x3 + 1)y = x5 − 3x4 − x3 + 2x2 − 2x − 2.

Then, B/Q is a Q-simple abelian surface such that End0Q(B) =Q(
√
−5). With a bit of analysis,

one can show that the base change of B to F =Q(
√
29) is not F -simple. Namely, consider the

elliptic curve

E ∶ y2 + xy + ϵ2y = x3,

where ϵ = 5+
√
29

2 is the fundamental unit in F =Q(
√
29); it has discriminant ∆C = −ϵ

10. So E
is a curve that has everywhere good reduction. One can show that B admits the following
decomposition over F :

B ×Q F ∼F E ×E.

This example is one of my all time favourite!
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5.2 The Tate module of an abelian variety

Let A/k be an abelian variety of dimension g and let n be an integer such that (chark,n) = 1.
From Proposition 1.17, we know that [n] is a separable map of degree n2g. Furthermore,
all fibers of the map [n] ∶ A(k) → A(k) have cardinality n2g; in other words, A[n](k) has
cardinality n2g, where A[n] = ker[n]. By Corollary 1.18 we have an isomorphism

A[n](k) = (Z/nZ)2g

of abelian groups (hence of Z/nZ-mdoules.
Let ℓ be a prime number different from the chark. The ℓ-adic Tate module of A, denoted

Tℓ(A), is defined by
Tℓ(A) ∶= lim←Ð

A[ℓn],

the inverse limit of the groups A[n](k), where the transition maps are multiplication by ℓ.
Explicitly, an element of Tℓ(E) is a sequence (x0, x1, . . .) of k-points of E, where x0 = 0 and
ℓxi = xi−1 for i > 0. The results of the previous paragraph imply that we have an isomorphism

Tℓ(A) ≃ Z
2g
ℓ .

An extremely important property of the Tate module is that it comes equipped with a Galois
action. If k is not algebraically closed then the n-torsion of A will typically not be defined
over k, and so the absolute Galois group Gk = Gal(k/k) will move the n-torsion points around.
This carries through the inverse limit, and so there is an action of Gk on Tℓ(A). Picking a
basis for Tℓ(A), this action can be thought of as a homomorphism ρ ∶ Gk → GL2g(Zℓ), i.e., an
ℓ-adic representation of the Galois group. This perspective has proved to be very useful.

Let f ∶ A→ B be a homomorphism of abelian varieties defined over k. Then, f indices a
Zℓ-linear and Gal(k/k)-equivariant map

Tℓf ∶ TℓA→ TℓB.

For x = (0, x1, x2, . . .) ∈ TℓA, we have

(Tℓf)(x) ∶= (0, f(x1), f(x2), . . .).

Lemma 5.7. Let A and B be abelian varieties over a field k, and f ∈ Hom(A,B). Let ℓ be a
prime number such that ℓ ≠ char(k). If Tℓ(f) is divisible by ℓm in HomZℓ

(TℓA,TℓB) then f is
divisible by ℓm in Hom(A,B).

Proof. If Tℓ(f) is divisible by ℓm, then f vanishes on A[ℓm](k). But A[ℓm] is an étale group
scheme since ℓ ≠ char(k). Hence f is zero on A[ℓm]. This means that A[ℓm] ⊆ ker f and f
factors through [ℓm]A.

Theorem 5.8. Let A and B be abelian varieties over a field k. Let ℓ be a prime number such
that ℓ ≠ char(k). Then the Zℓ-linear map

Tℓ ∶ Hom(A,B)⊗Zℓ → HomZℓ
(TℓA,TℓB),

f ⊗ c↦ c ⋅ Tℓ(f)

is injective and has a torsion-free cokernel.

Proof.
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5.3 The Tate module of the multiplicative group

The multiplicative group, denoted Gm is the algebraic group which represents the functor
R → R× (where R is a k-algebra). As a scheme, it is simply A1 ∖ {0}, i.e., Spec(k[t, t−1]).

The construction of the Tate module in the previous section can be applied equally well
to Gm. If n is prime to chark then the n-torsion Gm[n] is just the group of n-th roots of
unity; its k-points is isomorphic to Z/nZ. It follows that Tℓ(Gm) is isomorphic to Zℓ as a
group. Of course, it also carries a Galois action, which can be recorded as a homomorphism
χ ∶ Gk → GL1(Zℓ) = Z

×
ℓ . This homomorphism is called the cyclotomic character, and describes

how the Galois group acts on roots of unity. A common notation, which we will use, is to write
Zℓ(1) for Tℓ(Gm). The idea is that the underlying group is Zℓ and the (1) records that the
Galois group is acting through the first power of the cyclotomic character.

5.4 The Weil pairings

Proposition 5.9. Let A/k be an abelian variety and n > 0 an integer such that (n, chark) = 1.
Then there exists a pairing

en ∶ A[n] ×A
∨[n]→ µn

satisfying the following:

1. Bilinear: en(x + y, z) = en(x, z)en(y, z).

2. Non-degenerate: if en(x, y) = 1 for all y ∈ A∨[n] then x = 0.

3. Galois equivariant: en(σx,σy) = σen(x, y) for σ ∈ Gk.

4. Compatibility: if x ∈ A[nm] and y ∈ A∨[n] then enm(x, y) = en(mx,y).

(Note: the group law on A[n] is typically written additively, while the one on µn is written
multiplicatively.)

Let λ ∶ A→ A∨ be a polarisation on A. Then, we obtain the pairing

eλn ∶ A[n] ×A[n]→ µn

(x, y)↦ en(x,λ(y)).

We call en and eλn Weil pairings. The Weil pairings have the following important compatibility
property.

Proposition 5.10. Let A/k be a polarised abelian variety, with polarisation λ ∶ A→ A∨ and
n > 0 an integer such that (n, chark) = 1. The pairing

eλn ∶ A[n] ×A[n]→ µn

satisfies the following properties:

1. Bilinear: eλn(x + y, z) = e
λ
n(x, z)e

λ
n(y, z).

2. Alternating: eλn(x,x) = 1. This implies eλn(x, y) = e
λ
n(y, x)

−1, but is stronger if n is even.

3. Non-degenerate: if eλn(x, y) = 1 for all y ∈ A[n] then x = 0.
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4. Galois equivariant: eλn(σx,σy) = σe
λ
n(x, y) for σ ∈ Gk.

5. Compatibility: if x ∈ A[nm] and y ∈ A[n] then eλnm(x, y) = e
λ
n(mx,y).

(Note: the group law on A[n] is typically written additively, while the one on µn is written
multiplicatively.)

Proposition 5.11. Let f ∶ A→ B be an isogeny of polarised abelian varieties, where λA and
λB are the polarisations on A and B, respectively. Then, we have

eλA
n (f(x), y) = e

λB
n (x, f

∨(y)), for all x ∈ A[n], y ∈ B[n].

The compatibility condition allows us to take the inverse limit of the eλℓn to obtain a pairing
on the Tate module

eλ ∶ Tℓ(A) × Tℓ(A)→ Zℓ(1).

The pairing eλ satisfies the same properties as in Proposition 5.9.

Proposition 5.12. Let A be an abelian variety over k. The degree map

End0(A)→Q

c⊗ ϕ↦ cdeg(ϕ)

is a homogeneous polynomial function of degree 2g on End0(A), i.e.

deg(nϕ) = n2g deg(ϕ), for all n ∈Q, ϕ ∈ End0(A).

Corollary 5.13. Let A be an abelian variety over k. Then, for each ϕ ∈ End0(A), there is a
polynomial Pϕ(X) ∈Q[X] of degree 2g such that Pϕ(n) = deg(ϕ − [n]A), for all n ∈Q.

We see that Pϕ is monic and that it has integer coefficients when ϕ ∈ End(A). We call Pϕ

the characteristic polynomial of ϕ and we define the trace of ϕ by the equation

Pϕ(X) =X
2g −Tr(ϕ)X2g−1 +⋯ + deg(ϕ).

Proposition 5.14. Let A be an abelian variety over k and ϕ ∈ End(A). For each prime
number ℓ such that ℓ ≠ char(k), Pϕ(X) is the characteristic polynomial of ϕ acting on VℓA;
hence the trace and degree of ϕ are the trace and determinant of ϕ acting VℓA.

6 Tate’s theorem

6.1 Frobenius endomorphism

We le k ∶= Fq be the finite field with q elements, where q = pn for some prime p and an integer
n ≥ 1. We let F be an algebraic closure of Fq.

For a variety V over k, the Frobenius map πV ∶ V → V is defined to be the map which is
the identity on the underlying topological space of V and is the map OV → OV , f ↦ f q on
the structure sheaves. When V ∶= Pn(F) = Proj(k[x0, . . . , xn]), then πV is given by the ring
homomorphism

k[x0, . . . , xn]→ k[x0, . . . , xn]

xi ↦ xqi .
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On points, this induces the map

Pn(F)→ Pn(F)

(x0 ∶ ⋯ ∶ xn)↦ (x
q
0 ∶ ⋯ ∶ x

q
n).

As a results, when V ⊆ Pn is a projective embedding of V , then πV ∶ V → V induces the map

V (F)→ V (F)

(x0 ∶ ⋯ ∶ xn)↦ (x
q
0 ∶ ⋯ ∶ x

q
n).

Thus V (Fq) is the set of fixed points of πV ∶ V (F)→ V (F).
Let A be an abelian variety over Fq. Then πA maps 0 to 0 (because 0 ∈ V (F), and so it

is an endomorphism of A. We write fA = PπA
for the characteristic polynomial of πA. It is a

monic polynomial of degree 2g with coefficients in Z, where g = dimA. For any prime number
ℓ ≠ p, we know by Corollary 5.13 that fA is also the characteristic polynomial of the induced
endomorphism Tℓ(πA) of the Tate module TℓA. We will refer to fA as the characteristic
polynomial of (geometric) Frobenius.

Proposition 6.1. Let A be an abelian variety over Fq.

(i) Let ℓ be a prime such that ℓ ≠ p. Then Vℓ(πA) is a semisimple automorphism of VℓA.

(ii) Assume A is elementary over Fq (i.e., isogenous to a power of a simple abelian variety).
Then Q[πA] ⊂ End

0(A) is a field, and fA is a power of the minimum polynomial fπA
Q of

πA over Q.

Proof. (i) As observed above, πA lies in the centre of End0(A), which is a product of number
fields. Hence Q[πA] ⊂ End0(A) is a product of (number) fields, too. It follows that also
Qℓ[πA] ⊂Qℓ ⊗End0(A) is a product of fields; in particular Qℓ[πA] is a semisimple ring. Now
VℓA is a module of finite type over Qℓ[πA], with πA acting as the automorphism Vℓ(πA). Hence
VℓA is a semisimple Qℓ[πA]-module, and this means that Vℓ(πA) is a semisimple automorphism.

(ii) If A is elementary then the centre of End0(A) is a field, so also Q[πA] is a field. Let
g ∶= fA be the minimum polynomial of πA over Q. If α ∈Qℓ is an eigenvalue of Vℓ(πA) then
g(α) is an eigenvalue of g(Vℓ(πA)) = Vℓ(g(πA)) = Vℓ(0) = 0. Note that these eigenvalues (the
roots of fA) are algebraic over Q, as fA has rational coefficients. So every root of f in Q is
also a root of g, which just means that fA divides a power of g. Because g is irreducible this
implies that f is a power of g.

6.2 Tate’s theorem

Theorem 6.2. Let k be a finite field; for each integer g, there exist only finitely many
isomorphism classes of abelian varieties of dimension g over k.

Lemma 6.3. Let k be a field, ks a separable closure, and let ℓ be a prime number such that
ℓ ≠ char(k).

(i) If A and B are abelian varieties over k then the map

Tℓ ∶ Zℓ ⊗Hom(A,B)→ HomGal(ks/k)(TℓA,TℓB)
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is an isomorphism if and only if the map

Vℓ ∶Qℓ ⊗Hom0(A,B)→ HomGal(ks/k)(VℓA,VℓB) (2)

is an isomorphism.

(ii) Assume that for every abelian variety C over k, the map

Qℓ ⊗End0(C)→ EndGal(ks/k)(VℓC)

is an isomorphism. Then, for any two abelian varieties A and B over k, the map in (2)
is an isomorphism.

Proof. (i) By Theorem 5.8, the map Tℓ is injective and coker(Tℓ) is torsion-free (hence free).
Hence Tℓ is an isomorphism if and only if Qℓ ⊗ coker(Tℓ) = 0. Now use that Qℓ is flat over Zℓ,
so the map Vℓ is again injective and coker(Vℓ) =Qℓ ⊗ coker(Tℓ).

(ii) Take C ∶= A ×B. We have a decomposition of vector spaces

End0(C) = End0(A)⊕Hom0(A,B)⊕Hom0(A,B)⊕End0(B).

Likewise we have, writing Γ ∶= Gal(ks/k), a decomposition

EndΓ(VℓC) = EndΓ(VℓA)⊕HomΓ(VℓA,VℓB)⊕HomΓ(VℓB,VℓA)⊕EndΓ(VℓB).

The map Vℓ,C ∶Qℓ⊗End(C)→ EndGal(ks/k)(VℓC) respects these decompositions. In particular
it follows that if Vℓ,C is an isomorphism then so is the map

Qℓ ⊗Hom0(A,B)→ HomGal(ks/k)(VℓA,VℓB).

Lemma 6.4. Let A an abelian variety over a field k, and let ℓ be a prime number such that
ℓ ≠ char(k). Then for every Qℓ-subspace W ⊂ VℓA that is stable under the action of Gal(ks/k)
there exists an element u ∈QℓEnd(A) such that W = u ⋅ VℓA.

Proof.
Give a reference!

Theorem 6.5. Let A an abelian variety over a field k, and let ℓ be a prime number such that
ℓ ≠ char(k). Then the representation

ρℓ ∶ Gal(ks/k)→ GL(VℓA)

is semisimple and the map

QℓEnd
0(A)→ EndGal(ks/k)(VℓA)

is an isomorphism.
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Proof. To prove that ρℓ is a semisimple representation, suppose we have a Galois-stable
subspace W ⊂ VℓA. By Lemma 6.4, there exists an element u ∈QℓEnd(A) with W = u ⋅ VℓA.
Since QℓEnd(A) is semisimple, the right ideal u ⋅QℓEnd(A) is generated by an idempotent e.
Write u = e ⋅ a and e = u ⋅ b for some a, b ∈QℓEnd(A); this gives

u ⋅ VℓA = e ⋅ (a ⋅ VℓA) ⊆ e ⋅ VℓA = u ⋅ (b ⋅ VℓA) ⊆ u ⋅ VℓA.

Hence W = e ⋅ VℓA. Then W ′ ∶= (1 − e) ⋅ VℓA is a complement for W , and W ′ is again Galois-
stable because ρℓ(g) commutes with (1 − e) for every g ∈ Gal(ks/k). This proves that ρℓ is
semisimple.

The map QℓEnd(A) → EndGal(ks/k)(VℓA) is injective by Theorem 5.8. Letting C =
EndQℓ End(A)(VℓA), Theorem C.6 implies that QℓEnd(A) = EndC(VℓA). Hence it suffices to
show that for every φ ∈ EndGal(ks/k)(VℓA) and c ∈ C we have φc = cφ. The graph Γφ ⊂ VℓA⊕VℓA
is a Galois-stable subspace. Applying Lemma 6.4 it follows that there exists an element
u ∈ QℓEnd(A

2) = M2(QℓEnd(A)) such that Γφ = u ⋅ VℓA
2. But γ ∶= (c 0

0 c) ∈ M2(QℓEnd(A)
commutes with u, so

γ ⋅ Γφ = γ ⋅ u ⋅ VℓA
2 = u ⋅ γ ⋅ VℓA

2 ⊆ Γφ.

This means precisely that for every v ∈ VℓA we have c ⋅ φ(v) = φ(c ⋅ v); hence φc = cφ and the
theorem is proved.

Theorem 6.6 (Tate’s Theorem). Let k be a finite field. Let ℓ be a prime such that ℓ = char(k).

(i) For any abelian variety A over k the representation

ρℓ = ρℓ,A ∶ Gal(ks/k)→ GL(VℓA)

is semisimple.

(ii) For any two abelian varieties A and B over k the map

Zℓ ⊗Hom0(A,B)→ HomGal(ks/k)(TℓA,TℓB)

is an isomorphism.

7 Weil’s conjectures

7.1 Endomorphism rings of abelian varieties: Albert classification

Let A be a k-simple abelian variety of dimension g. Let D = End0k(A) be the endomorphism
algebra of A. Then, by Wedderburn theorem, we know that D is a division algebra. Let F
the centre of D. Also, let (D →D, x↦ x†) be the Rosati involution on A. This is a positive
involution. So, its fixed field F † ∶= {x ∈ D ∣x† = x} is a totally real number field, i.e. every
embedding F † ↪C factors through R. Clearly, F † ⊆ F . We let e = [F ∶Q] and e† = [F † ∶Q],
and we let d ∈ Z≥1 be such that [D ∶ F ] = d2.

Theorem 7.1 (Albert Classification). Let A be a k-simple abelian variety of dimension g, and
D = End0k(A) the endomorphism algebra of A. Keeping the notations above, D is isomorphic
to an algebra of one of the following four types:

(i) TYPE I. D = F = F †, and the Rosati involution † is the identity map. In this case, e ∣ g.
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(ii) TYPE II. F = F †, and D is a totally indefinite quaternion division algebra over F . That
is, for any embedding σ ∶ F ↪R, one has that D ⊗σ R ≃M2(R). In this case 2e ∣ g.

(iii) TYPE III. F = F †, and D is a totally definite quaternion division algebra over F . That
is, for any embedding σ ∶ F ↪ R, one has that D ⊗σ R ≃ H, where H is the Hamilton
quaternion algebra. In this case e2 ∣ g.

(iv) TYPE IV. F is a CM extension of F † (i.e a totally imaginary quadratic extension of
F †) and D is a division algebra with centre F . In this case e†d2 ∣ g if char(k) = 0, and
e†d ∣ g if char(k) > 0.

7.2 Zeta functions of abelian varieties

Theorem 7.2. Let A be an abelian variety of dimension g over Fq, where q = pn.

(i) Every complex root α of fA has absolute value ∣α∣ =√q.

(ii) If α is a complex root of fA then so is α = q/α, and the two roots occur with the same
multiplicity. If α =√q or α = −√q occurs as a root then it occurs with even multiplicity.

Proof. (i) We first reduce to the case that A is simple (over Fq). For this, choose an isogeny

h ∶ A→ A′ = A1 ×⋯ ×As,

where the factors Ai are simple. Then h induces an isomorphism

Vℓ(h) ∶ VℓA
≃
→ VℓA

′ = VℓA1 ⊕⋯⊕ VℓAs.

Since h ○ πA = πA′ ○ h, the automorphism Vℓ(h) ○ Vℓ(πA) ○ Vℓ(h)
−1 of VℓA1 ⊕⋯⊕ VℓAs is the

one given by
(ξ1, . . . , ξs)↦ (Vℓ(πA1)(ξi), . . . , Vℓ(πAs)(ξs)).

So fA = fA1⋯fAs , and it suffices to prove the theorem for simple abelian varieties.
Let λ be any polarisation on A, and † the associated Rosati involution on End0(A). We

will first show that πA ⋅ π
†
A = [q]A. Since

πA ⋅ π
†
A = πA ⋅ λ

−1 ⋅ π∨A ⋅ λ = λ
−1 ⋅ πA∨ ⋅ π

∨
A ⋅ λ,

it suffices to show that πA∨ ⋅ π∨A = [q]A∨ . By definition, πA = Fn
A/Fq. So by the properties of

the Verschibung map VA/Fq
(see next section), we have π∨A = VA∨/Fq

, and

πA∨ ⋅ π
∨
A = F

n
A∨/Fq

⋅ V n
A∨/Fq

= [pn]A∨ = [q]A∨ .

This gives πA ⋅ π
†
A = [q]A.

Now, since A is simple, Q[πA] is a number field. Furthermore, by Propostion 6.1, fA
is a power of the minimum polynomial of g of πA over Q. So, the complex roots of fA are
precisely the complex numbers of the form ι(πA) for some embedding ι ∶ Q[πA] → C. The
relation π†

A = q/πA shows that Q[πA] ⊂ End
0(A) is stable under the Rosati involution, which

is a positive involution. This leads to two possible cases:

(a) Totally real case: Q[πA] is a totally real field and † is the identity on Q[πA].
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(b) CM case: Q[πA] is a CM-field and for every complex embedding ι ∶Q[πA]→ C we have
ι(x†) = ι(x), for all x ∈Q[πA].

In either cases, πA ⋅ π
†
A = q implies that all roots α ∈C of fA have absolute value ∣α∣ =√q.

(ii) The first two assertions are trivial, because fA has rational (hence real) coefficients. The
only non-trivial point is that √q and −√q can only occur as roots with even multiplicity. Again,
it is enough to show this for A is simple. The field Q[πA] cannot have any real embedding if
its CM. Therefore, the cases α = ±√q only occur when Q[πA] is totally real. In that case, they
are the only possible roots since α ⋅ α = q. If √q occurs with multiplicity m then −√q occurs
with multiplicity 2g −m, so fA(0) = (−1)mqg. But fA(0) = deg(−πA) = qg, so m is even.

Let X be a scheme of finite type over Fq. For any positive integer n the number, let
Nn ∶=#X(Fqn) of Fqn-rational points of X. The zeta function of X is defined by

Z(X; t) ∶= exp(
∞

∑
n=1

Nn
tn

n
) ∈QJtK (3)

Theorem 7.3. Let A be an abelian variety of dimension g over Fq. Let α1, . . . , α2g be the
sequence of complex roots of the characteristic polynomial fA (counted with multiplicity), so
that we have

fA =
2g

∏
i=1

(t − αi).

(i) For any positive integer n we have

#A(Fqn) =
2g

∏
i=1

(1 − αn
i ) =

2g

∑
k=0

(−1)kTr(πnA;
k

⋀VℓA) ,

where ℓ is any prime number different from p and Tr(πnA;⋀
k VℓA) is the trace of the

automorphism ⋀k V (πnA) acting on ⋀k VℓA.

(ii) The zeta function of A is given by

Z(A; t) =
P1P3⋯P2g−1

P0P2⋯P2g

where Pk ∈ Z[t], k = 0, . . . ,2g, is the polynomial given by

Pk(t) = ∏
1≤i1<...<ik≤2g

(1 − αi1⋯αikt) = det(id − tπA;
k

⋀VℓA).

(iii) The zeta function satisfies the functional equation

Z(A;
1

qgt
) = Z(X; t).

Proof. (i) The characteristic polynomial fπn
A

is given by

fπn
A
∶=

2g

∏
i=1

(t − αn
i ).
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Now, recall that
A(Fqn) = ker(1 − π

n
A).

Since #A(Fqn) <∞, 1 − πnA is an isogeny. But πA is purely inseparable (using the differential
criterion of separability). Hence, 1 − πnA is a separable isogeny. This implies that

#A(Fqn) = deg(1 − π
n
A) = fπn

A
(1) =

2g

∏
i=1

(1 − αn
i ).

The eigenvalues of ⋀k Vℓ(π
n
A) are the numbers the products

αn
i1⋯α

n
ik

with 1 ≤ i1 < i2 < ⋯ < ik ≤ 2g.

The second identity in (i) follows from the elementary relation

2g

∏
i=1

(1 − αn
i ) =

2g

∑
k=0

⎛

⎝
(−1)k ∑

1≤i1<i2<⋯<ik≤2g

αn
i1⋯α

n
ik

⎞

⎠
.

(ii)We use the general fact (see Hartshorne [8, Appendix C, Lemma 4.1]) that for ϕ ∈ End(V ),
where V is a finite dimensional vector space V over a field K, we have an identity of formal
power series

exp(Tr(ϕn;V ) ⋅
tn

n
) = det(1 − t ⋅ ϕ;V )−1.

Applying (i) then gives

Z(A; t) = exp(
∞

∑
n=1

2g

∑
k=0

(−1)kTr(πnA;
k

⋀VℓA)
tn

n
) =

2g

∏
k=0

exp(
∞

∑
n=1

(−1)kTr(πnA;
k

⋀VℓA)
tn

n
)

(−1)k

The eigenvalues of ⋀Vℓ(πA) are the numbers the products

αi1⋯αik , with 1 ≤ i1 < i2 < ⋯ < ik ≤ 2g.

Therefore

det(1 − tπA;
k

⋀VℓA) = ∏
1≤i1<i2<⋯<ik≤2g

(1 − tαi1⋯αik) =∶ Pk.

Since Gal(Q/Q) acts naturally on the set of sequences (αij)1≤j≤k, Pk ∈ Q[x]. Furthermore,
since Pk is a monic, all its roots are algebraic integers; hence Pk ∈ Z[t].

8 Jacobian varieties

8.1 The functor

Let X be a complete nonsingular curve over k. We recall that the set of divisors on X, denoted
Div(X) is the set formal sums

D =
n

∑
i=1

niPi, with ni ∈ Z, Pi ∈X(k).
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The degree map deg ∶ Div(X)→ Z is given by deg(D) = ∑n
i=1 ni. Since every invertible sheaf

L on X is of the form L (D) for some divisor D, and D is uniquely determined up to linear
equivalence, we can define deg(L ) = deg(D). By the Riemann-Roch theorem says that

χ(X,L ) = deg(L ) + 1 − g.

We recall Pic(X) is the set of isomorphism classes of invertible sheaves on X, and we define

Pic0(X) ∶= {L ∈ Pic(X) ∣ degL = 0} .

Let T be a connected scheme over k, and write on X × T =X ×k T for X ×Spec(k) T , or simply
X ×k k

′ when T = Spec(k′) for a field extension k′/k. For t ∈ T , let Xt be the fibre at t. For
L ∈ Pic(X × T ), one can show that the map t ↦ χ(Xt,Lt) is locally constant. Therefore
deg(Lt), is independent of t. Moreover, the constant degree of Lt is invariant under base
change relative to maps T ′ → T . Let

F (T ) = {L ∈ Pic(X × T ) ∣ deg(Lt) = 0, for all t ∈ T} /p∗T Pic(T ),

where pT ∶ X ×k T → T is the projection onto T . Then F is a functor from schemes over k to
abelian groups. For T a connected scheme over k, we may think of F (T ) as being the group of
families of invertible sheaves on X of degree 0 parametrised by T , modulo the trivial families.
Indeed, for any sheaf M ∈ Pic(T ), (p∗TM )t is isomorphic to OXt and so deg(p∗TM )t = 0. The
Jacobian attempts to represent the functor F .

Theorem 8.1. There is an abelian variety Jac(X) over k and a morphism of functors
ι ∶ F → Jac(X) such that ι ∶ F (T ) → Jac(X)(T ) is an isomorphism whenever X(T ) is
nonempty.

8.2 Obstruction to representability

The functor F is representable if and only if it is a sheaf. However, there can some obstruction
to this being the case. Indeed, let k′/k be a Galois extension with group Γ. Then the natural
map F (k)→ F (k′)Γ need not be a bijection, which is a requirement for representability.

Proposition 8.2. Let k′/k be a Galois extension of group Γ. Then there is a natural exact
sequence

0→ Pic(X)→ Pic(X ×k k
′)Γ → Br(k),

where Br(k) is the Brauer group of k. In particular, given L ∈ Pic(X ×k k
′) there is an

obstruction in Br(k) measuring the failure of L to descend to X.

Proof. We first show that the first map is injective. Let pX ∶ X ×k k′ → X be the projection
onto X, and L and L ′ are two line bundles on X. We need to show that, if p∗XL and p∗XL ′

are isomorphic over X ×k k′, then L and L ′ are isomorphic. Let i ∶ p∗XL ≃ p∗XL ′ be an
isomorphism over X ×k k′. For σ ∈ Γ, the map i ○ σ ∶ p∗XL → p∗XL ′ is also an isomorphism.
Thus i and i ○ σ differ by an element cσ ∈ Aut(L ) = k′

×. One easily sees that c satisfies
the cocycle condition. By Hilbert’s Theorem 90, the class of c in H1(Γ, k′

×
) vanishes. Thus

c is a coboundary, i.e., is of the form cσ = σ(α)/α for some α ∈ k′×. One easily sees that
α−1i ∶ p∗XL ≃ p∗XL ′ is a Γ-invariant isomorphism over X ×k k′, and thus descends to X.

Now, let L ∈ Pic(X ×k k
′)Γ. We will construct an element of Br(k) measuring the

obstruction that L comes from Pic(X). Since L ∈ Pic(X ×k k
′)Γ, we see that, for all
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σ ∈ Γ, there exists an isomorphism iσ ∶ L ≃ σ∗L . The collection of isomorphisms (iσ)σ∈Γ
is not a priori compatible, which is a requirement for descent. In fact, the failure of the
compatibility is what defines the Brauer obstruction. Indeed, for each σ, τ ∈ Γ, both σ∗(iτ) ○ iσ
and iστ are isomorphisms L ≃ (στ)∗L ; thus they differ by an element cσ,τ ∈ Aut(L ) = k′

×.
It is easy to see that c satisfies the 2-cocycle condition, and thus defines an element of
H2(Gal(k′/k), k′

×
) ⊂ Br(k). If this 2-cocycle is a coboundary, then the choice of i’s can be

modified to give descent data on L , and L belongs to Pic(X). This completes the proof.

Example 8.3. Let k = R, k′ = C, and X the curve given by X2 + Y 2 + Z2 = 0. Then X is
isomorphic to P1 over k′ but not over k. Therefore, Pic(X ×k k′) is isomorphic to Z. Since
Γ = Z/2Z, Pic(X) has index at most 2 inside Pic(X ×k k

′). But the bundle O(1) on X ×k k′

does not descend to X, as this would give an isomorphism X → P1 over k. Therefore Γ acts
trivially on Pic(X ×k k

′) given the exact sequence

0→ 2Z→ Z→ Z/2Z→ 0.

Remark 8.4. Suppose k is a finite extension of Qp. Then Br(k) = Q/Z, and Lichtenbaum
showed that the image of the the map Pic(X ×k k)

Γ → Br(k) is N−1Z/Z, where N is the gcd
of the degrees of divisors on X. Thus Pic(X) = Pic(X ×k k)

Γ if and only if X has a divisor of
degree 1 defined over k.

Remark 8.5. We have not actually give an example where a line bundle of degree 0 fails to
descend, which is the case of interest (as F (k′) = Pic0(X ×k k′)). I believe such an example
exists if X is a genus 1 curve over a finite extension of Qp without a point.

8.3 The case when a rational point exists

The failure of F to satisfy descent only occurs when X has no k-rational points. To see this,
suppose X has a k-rational point x. Define Cx(T ) to be the category

Cx(T ) ∶= {(L , i) ∶L ∈ Pic(X ×k T ) ∣ degLt = 0, for all t ∈ T, and i ∶L ∣{x}×T ≃ OT} .

Define Fx(T ) to be the set of isomorphism classes in Cx(T ). The key point is that objects of
Cx(T ) are rigid: they have no automorphisms. This means that if an isomorphism class is
invariant, then it has canonical descent data. It follows that Fx is a sheaf. On the other hand,
we have the following lemma:

Lemma 8.6. The forgetful map (Fx → F, (L , i)↦L ) is an isomorphism.

Proof. Let T be a connected scheme over k, and (L , i) and (L ′, i′) two elements in Cx(T )
such that L ≃L ′ ⊗ p∗T (L

′′) for some line bundle L ′′ on T . Since L ∣{x}×T ≃ OT ≃L ′∣{x}×T ,
we see that L ′′ is trivial, and so L ≃L ′. This proves injectivity.

For the surjectivity, let L be a line bundle on X ×k T , and L0 its restriction to {x} × T .
Then L ⊗ p∗T (L

−1
0 ) is naturally an element of Fx(T ) mapping to L in F (T ).

We thus see that, when X has a k-point, F is a sheaf.

Theorem 8.7. Suppose X has a k-point x. Then the functor F is representable. The
representing scheme is denoted by Jac(X), and called the Jacobian variety of X.
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Theorem 8.7 implies that there exists a pair (Jac(X),M ), where Jac(X) is an abelian
variety and a line bundle M on X × Jac(X)) such that the following are true:

(a) M ∣X×{0} ≃ OX and M ∣{x}×Jac(X) ≃ OJac(X);

(b) for any connected scheme T over k, a point t on T , and a line bundle L on X × T such
that L ∣X×{t} ≃ OX and L ∣{x}×T ≃ OT , there exits a unique morphism ϕ ∶ T → Jac(X)
such that ϕ(t) = 0 and (1 × ϕ)∗M ≃L .

The pair (Jac(X),M ) is unique up to isomorphism. If X does not have a point then F is not
necessarily a sheaf, and thus not necessarily representable. However, one can replace F with
its sheafification, and this turns out to be representable. Thus one can define the Jacobian of
X even when X(k) = ∅.

8.4 Construction of the Jacobian

We now sketch the proof of the representability of F when X(k) is non-empty. Let x ∈X(k),
and X(r) the r-th symmetric power of X, i.e., the quotient of Xr by the action of the symmetric
group Sr. Points on X(r) defined over k′ can be identified with effective divisors on X ×k k′ of
degree r. We will consider X(g), where g is the genus of X. Let U ⊂X(g) ×X(g) be the subset
given by

U ∶= {(D,D′) ∈X(g) ×X(g) ∶ ℓ(D +D − g[x]) = 1} .

For any effective divisors D and D′ of degree g on X, the Riemann–Roch theorem implies that
ℓ(D +D′ − g[x]) ≥ 1. So, by semi-continuity, the locus U where equality holds is open. To
show U is non-empty, proceed as follows. Taking D′ = g[x], one must find an effective divisor
D of degree g with ℓ(D) = 1, or, equivalently ℓ(K −D) = 0. Simply pick g points x1, . . . , xg on
X such that the restriction map H0(X,Ω1)→∏

g
i=1 T

∗
xi

is an isomorphism.
Given (D,D′) ∈ U , there is a non-zero meromorphic function f on X, unique up to scaling,

such that D′′ = div(f) +D +D − g[x] is effective. We define a map U → X(g) by sending
(D,D′) to D′′. By working systematically with families of divisors, one shows that this is a
map of schemes. Therefore, it induces a rational map X(g) ×X(g) ⇢X(g). This rational map
satisfies the axioms of a groupg (it is a group object in the category of varieties with rational
maps). Weil showed that any such rational group variety can be upgraded to an actual group
variety. Precisely, there exists a group variety J (unique up to isomorphism) and a unique
isomorphism of rational group varieties X(g) ⇢ J .

Finally, we need to show that J represents F . To that end, we first show that J is proper,
so that the rational map X(g) ⇢ J is an actual map. Then, we define a map ϕ ∶ Div0(X)→ J
as follows. If degD = 0 is a degree 0 and D + g[x] is effective, then we view D + g[x] as an
element of X(g) and takes its image in J . If D + g[x] is not effective, then we finds a divisor
D′ such that degD′ = 0, and both D +D′ + g[x] and D′ + g[x] are effective; and we define
ϕ(D) = ϕ(D+D′)−ϕ(D′). Working with families of divisors, ϕ gives a map of functors F → J .
One then verifies that it is a bijection on T -points.

8.5 Basic properties

The Jacobian variety satisfies the following basic properties:

• One can show that T0(Jac(X)) = H1(X,O) using the functor of points of Jac(X) and
the interpretation of the tangent space in terms of dual numbers.
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• From this, one finds that H0(Jac(X),Ω1) is naturally isomorphic to H0(X,Ω1).

• One again has a map fx ∶X → Jac(X) given a base point x ∈X(k). On field points, this
takes a point y ∈X(k) to the degree 0 divisor [y] − [x]. On T -points, it does the same
thing, but one must use a relative notion of divisor.

• By definition, Jac(X)(k) is isomorphic to Pic0(X).

There are comparison theorems between the first (co)homology groups of X and Jac(X),
though this now involves cohomology. To see this, one can use Kummer theory. Suppose n is
prime to char(k), so that we have an exact sequence of sheaves on the étale site of X:

0→ µn →Gm
[n]
→ Gm → 0.

Taking cohomology over k, and using the fact that (k
×
→ k

×
, x↦ xn) is surjective, we see that

H1(Xk,Gm)[n] = H
1(Xk, µn).

Now, we also have
H1(Xk,Gm) = Pic(Xk).

Since all torsion in this group is of degree 0, we see that

H1(Xk,Gm)[n] = Jac(X)[n](k).

Replacing n with ℓn and taking an inverse limit, we find

Tℓ(Jac(X)) = H
1(Xk,Zℓ(1)),

where the (1) is a Tate twist.

9 Zeta functions of curves

9.1 Hasse–Weil–Serre theorem

Proposition 9.1. Let X be a nonsingular complete curve over a finite field Fq, and J ∶= Jac(X)
its Jacobian. Let α1, . . . , α2g be the complex roots of the polynomial fJ . Then for every positive
integer n we have

#X(Fqn) = 1 −Tr(π
n
J) + q

n = 1 −∑
i=1

αn
i + q

n.

Proof. It suffices to prove this for n = 1, as the assertion for arbitrary n then follows by
considering X ×Fq Fqn . The number of points is given by the intersection number

#X(Fq) =∆X ⋅ Γ, where ΓX ⊂X ×X

is the graph of the geometric Frobenius πX . To prove the identity

∆X ⋅ Γ = 1 −Tr(πJ) + q.

we may work over k ∶= Fq. Choose a point P ∈ X(k) and let ϕ ∶ X → J be the map given on
points by Q↦ [Q − P ].
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Theorem 9.2. Let X be a nonsingular complete curve of genus g over a finite field Fq, and
J ∶= Jac(X) its Jacobian. Let α1, . . . , α2g be the complex roots of the characteristic polynomial
fJ of the geometric Frobenius of J . Let P0 ∶= 1 − t and P2 ∶= 1 − qt, and let

P1 ∶=
2g

∏
i=1

(1 − αi ⋅ t)

be the reciprocal of the polynomial fJ . Then we have

Z(X; t) =
P1

P0P2
=

P1

(1 − t)(1 − qt)
.

All complex roots of the polynomial Pi are algebraic integers of absolute value qi/2. Further,
Z(X; t) satisfies the functional equation

Z(X; t) = qg−1 ⋅ t2g−2 ⋅Z(X;
1

qt
).

Theorem 9.3. Let X be an abelian variety of dimension g over Fq. Then, we have

∣Tr(πX)∣ ≤ g ⋅ ⌊2
√
q⌋.

This is an equality if and only if either αi + αi = ⌊2
√
q⌋ for all i or αi + αi = −⌊2

√
q⌋ for all i.

Corollary 9.4 (Hasse–Weil–Serre). Let X be a complete nonsingular curve over Fq. Then for
the number of Fq-rational points of X, we have the inequalities

q + 1 − g⌊2
√
q⌋ ≤#X(Fq) ≤ q + 1 + g⌊2

√
q⌋.

9.2 Examples: curves of genus ≤ 3

Example 9.5. Let X ⊂ P2 be the Klein curve over F2; this is the nonsingular quartic curve
over F2 given by the homogeneous equation X3Y + Y 3Z +Z3X = 0. The genus of X is 3 and
one easily checks that #X(F2) = 3, that #X(F4) = 5, and #X(F8) = 24. The characteristic
polynomial of Frobenius is fJ = t6 + 5t3 + 8 and X is ordinary. This curve reaches the Serre
bound q + 1 + g⌊2√q⌋ over F8. Note that in this case Serre’s bound is better than the original
Hasse–Weil bound: 8 + 1 + 3⌊2

√
8⌋ = 24, whereas 8 + 1 + ⌊6

√
8⌋ = 25.

Example 9.6. Let F =Q(
√
53) and OF = Z[w] the ring of integers of F , where w = 1+

√
53

2 .
We let X be the curve defined over F by X ∶ y2 +Q(x)y = P (x), where

P ∶= −4x6 + (w − 17)x5 + (12w − 27)x4 + (5w − 122)x3 + (45w − 25)x2 − (9w + 137)x + 14w + 9,

Q ∶= wx3 +wx2 +w + 1.

The discriminant of this curve is ∆X = −ϵ
7, where ϵ = 4 −w. Thus X has everywhere good

reduction. This means that the Jacobian A = Jac(X) has everywhere good reduction. So for
each prime ideal p ⊂ OF , A ×OF

Fp is an abelian surface. Using Sage or Magma, compute the
reduction of A modulo all the primes ideals of norm less than 100, and find the number of
points on A ×OF

Fp.
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Example 9.7. Let S2(61, ( ⋅61)) be the space of cusp forms of weight 2, level 61 and character
the quadratic character of F ∶=Q(

√
61). The space S2(61, ( ⋅61)) has dimension 4. The space

is irreducible and has a unique conjugacy class of newforms. Let f be the newform given by

f =
∞

∑
n=1

anq
n

= q +
√
4 −
√
3q2 + (

√
3 − 1)q3 + (

√
3 − 2)q4 −

√
3q5 + (

√
3 − 1)

√
4 −
√
3q6 −

√
3
√
4 −
√
3q7 +O(q8).

Then f corresponds to an abelian variety Bf of dimension 4 defined over Q. One can show
that, for each prime p ≠ 61, the eigenvalues of Frobenius are given by the conjugates of ap.
So, the traces of Frobenius acting on the Tate module Tℓ(Bf ×Z Fp) is given by bp where the
sequence (bn)n≥1 is given by

Tr(f) = ∑
σ∶E↪C)

(
∞

∑
n=1

anq
n) =

∞

∑
n=1

( ∑
σ∶E↪C

an) q
n =

∞

∑
n=1

bnq
n.

= 4q − 4q3 − 8q4 + 4q9 + 20q12 + 12q13 − 12q14 +O(q15).

The abelian variety Bf is Q-simple. However, Bf ×Q F is no longer simple. One can show that
there exists an abelian surface Af defined over F such that

Bf ×Q F ) ∼F Af ×A
σ
f ,

where Aσ
f is the Gal(F /Q)-conjugate of Af . The endomorphism ring of the surface Af is

EndF (Af) = Z[
√
3]. The surface Af has everywhere good reduction. This means that, for

every prime ideal p ⊂ OF , Af ×OF
Fp is an abelian surface, where OF is the ring of integers of

F , and Fp = OF /p the residue field at p. The endomorphism ring EndFp(Af ×OF
Fp) ⊃ Z[

√
3].

10 Dieudonné modules and p-divisible groups

We have seen that the notion of ℓ-adic Tate modules, for primes ℓ away from the characteristic
p of the ground field, is incredibly useful when studying abelian varieties. The analogous
notion at the prime p is that of Dieudonné modules. At finite level, Dieudonné modules classify
commutative finite group schemes of p-power order over a field of characteristic p. Dieudonné
modules can be used to determine local Brauer invariants of the endomorphism algebra of a
simple abelian variety over a finite field at p-adic places of the centre.

10.1 p-divisible groups

Definition 10.1. Let S be a base scheme. A p-divisible group over S, also called a Barsotti-Tate
group over S, is an inductive system

{Gn ∶ in ∶ Gn → Gn+1}n∈N ∶ G1
i1
Ð→ G2

i2
Ð→ G3

i3
Ð→ ⋯,

where:

(i) each Gn is a commutative finite locally free S-group scheme, killed by pn, and flat when
viewed as a sheaf of Z/pnZ-modules;
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(ii) each in ∶ Gn → Gn+1 is a homomorphism of S-group schemes, inducing an isomorphism
Gn

∼
→ Gn+1[p

n].

Homomorphisms of p-divisible groups are defined to be the homomorphisms of inductive
systems of group schemes.

Given a p-divisible group as in Definition 10.1, we may consider the (Gn)n∈N as fppf sheaves
on S and form the limit

G ∶= lim
Ð→
n

Gn,

in the category of fppf sheaves of abelian groups. We can recover (Gn)n∈N from G by
Gn = G[p

n]. If {Gn} and {Hn} are two p-divisible groups and we form G ∶= lim
Ð→n

Gn and
H ∶= lim

Ð→n
Hn, then the homomorphisms from {Gn} and {Hn} are just the homomorphisms

from G to H as fppf sheaves. In other words, by passing from the inductive system {Gn} to
the limit G, we can identify the category of p-divisible groups over S with a full subcategory
of the category of fppf sheaves in abelian groups over S.

In our case, we have S = Spec(k). If G = lim
Ð→

Gn is a p-divisible group over a connected base
scheme S then, by definition, the group scheme G1 is locally free and killed by p. It follows
that the rank of G1 equals ph for some integer h. We call h(G) ∶= h the height of G.

Definition 10.2. Let A be an abelian variety over a field k, and p be a prime number. Then
the p-divisible group associated to A, denoted by A[p∞], is the inductive system {A[pn] ↪
A[pn+1]}n≥1 with respect to the natural inclusion homomorphisms A[pn]↪ A[pn+1].

In that case, we see that the height of A[p∞] is 2g, where g = dim(A). If f ∶ A → B is a
homomorphism of abelian varieties over k, it induces a homomorphism of p-divisible groups
f∞ ∶ A[p

∞]→ B[p∞].
When G is a p-divisible group over k, viewed as an fppf sheaf, then we define the p-adic

Tate module associated to G by TpG ∶= Hom(Qp/Zp,G(k)). Concretely, we take the limit of
the projective system

{Gn ∶ in ∶ Gn ← Gn+1}n∈N ∶ G1
π1,1
←Ð G2

π1,2
←Ð G3

π1,3
←Ð ⋯.

When p ≠ char(k), then the p-adic Tate module of an abelian variety A is Tp(A[p∞]) = TpA
as defined in Section 5. Similarly, the Tate module of Gm[p

∞] is Zp(1).

10.2 Dieudonné modules

10.2.1 Commutative group schemes of p-power order

Let k be a perfect field of characteristic p. (We will be mainly interested in the case when k is
finite or algebraically closed.) We want to classify finite commutative group schemes over k
whose orders are p-powers. For motivation, suppose A is an abelian variety of dimension g
over k. To make a p-adic analogue of the Tate module, we need to begin with the p-power
torsion of A. The pn-torsion of A, for n a positive integer, is a group scheme of order p2ng. So
we are naturally interested in a description of such group schemes.

Finite commutative group schemes of p-power order over k are classified in terms of
Dieudonné modules. See Fontaine [10] for a detailed exposition on Dieudonné theory, and [4]
for a concise summary.
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Proposition 10.3. Let k be field with char(k) = p > 0. Let G be a flat k-group scheme. Then,
there exists a homomorphism of group schemes VG/k ∶ G(p) → G such that

(i) VG/k ○ FG/k = [p]G and FG/k ○ VG/k = [p]G(p);

(ii) (VG/k)D = FGD/k and VG/k = (FGD/k)
D.

The homomorphism VG/k is called the Verschiebung map.

Given our perfect field k of characteristic p, let W =W (k) denote the ring of Witt vectors
of k (as defined in [17]). When k is finite, W (k) is the ring of integers of the unique extension
of Qp whose residue field is k. Let K0 ∶=W (k)[1/p] be the field of fraction of W (k). Let σ
denote the unique automorphism of W (k) lifting the absolute Frobenius x↦ xp on k.

Definition 10.4. The Dieudonné ring Dk ∶= W (k)[F,V ] over k is the associative W (k)-
algebra (non-commutative when k ≠ Fp) generated by elements F and V subject to the relations

FV = V F = p

Fα = σ(α)F, and αV = V σ(α), for all α ∈W (k).

Elements of the Dieudonné ring Dk have unique expressions as finite sums

a0 +∑
j>0

ajF
j +∑

j>0

bjV
j , with aj , bj ∈W (k).

The centre of Dk is Zp[F
n, V n] when k = Fpn , and Zp otherwise (i.e., if k is infinite).

We now state the relationship between Dieudonné modules and finite commutative group
schemes of p-power order over k (see [4, Theorem 1.4.3.2]).

Theorem 10.5. There is an additive anti-equivalence of categories:

Finite commutative
group schemes G/k
of order ph, h ∈N

Left Dk-modules M
of finite length h ∈N

over W (k)

G↦M(G)

Writing M(G) for the Dk-module associated to G, we have the following.

1. If G has order ph, then M(G) has W (k)-length h.

2. The functor M is functorial in the base field: given an inclusion i ∶ k ↪ k′, we have

M(G ×k k
′) =M(G)⊗W (k)W (k

′).

3. The relative Frobenius morphism FG/k ∶ G→ G(p) corresponds to the linearisation

M(FG/k) ∶M(G)
(p) = σ∗(M(G))→M(G).

and the Verschiebung morphism VG/k ∶ G
(p) → G corresponds to the linearisation

M(VG/k) ∶M(G)→ σ∗(M(G)) =M(G)(p).

4. The Cartier dual of G has associated Dieudonné module naturally isomorphic to the
K0/W (k)-dual of M(G) equipped with F and V operators that are semi-linear dual to
the V and F operators on M(G) respectively.

5. The quotient M(G)/FM(G) is naturally isomorphic to the dual of the tangent space to
G at the identity.
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10.3 Some basic examples

To illustrate the correspondence between commutative group schemes of p-power order and
their Dieudonné modules, we compute the correspondence explicitly for some groups of small
order. A Dieudonné module, i.e. a left Dk-module, is a W (k)-module equipped with actions
of F and V satisfying the relations in Definition 10.4. We are interested in Dieudonné modules
of finite length over W (k). For k a finite field, we know that W (k) is the ring of integers of
some unramified extension of Qp. In general, W (k) is a complete discrete valuation ring with
residue field k and uniformiser p, so is a PID. (See e.g. [17, Section 2.5. Theorem 3].) By the
classification of modules over a PID, every Dieudonné module with finite W (k)-length has as
its underlying W (k)-module a finite direct sum of modules W /(pni).

For the examples below we assume k is algebraically closed.

10.3.1 Group schemes of order p

We first classify the commutative finite group schemes of order p over k. These must be
in bijection with left Dk-modules whose underlying W (k)-module is of length 1. The only
W (k)-module M of length 1 is a line over W /(p) = k. Thus, to specify our Dk-module it
suffices to give actions of F and V on a basis element e of a k-line such that their product acts
as multiplication by p. Suppose

Fe = αe, V e = βe, for some α,β ∈ k.

By semilinearity, we have
FV e = αβ(σ)e;

the requirement that FV = p implies that at least one of α and β must be zero. Conversely, if
at least one of α and β is zero, then the condition FV = V F = p is satisfied. So to specify the
Dieudonné module with basis we need only give values α,β ∈ k, at least one equal to zero.

Under a change of basis e′ = λe, with λ ∈ k×, by semilinearity α and β become

α′ =
σ(λ)

λ
= λp−1α

β′ =
λ

σ(λ)
= λ−(p−1)β.

Since k is algebraically closed, we may thereby arrange by a change of basis that if one of α
and β is nonzero then it is in fact equal to 1. Thus we obtain three possibilities for the pair
(α,β) the pair may be (0,0), (0,1), or (1,0). It is clear that these represent three distinct
isomorphism classes of Dk-module. To what groups do they correspond?

The relative Frobenius kills a connected order-p group scheme, while its action on an étale
group scheme has trivial kernel. Thus, the unique étale group scheme of order p (consisting of
p reduced points with the group structure of Z/(p) corresponds to (α,β) = (1,0).

There are two well-known connected group schemes of order p, namely µp and α. The first,
µp, is the kernel of the p-th power map acting on the multiplicative group Gm; specifically,
the scheme is Speck[x]/(xp − 1), and the group law is multiplication. The second, αp, is that
subgroup of the additive group Ga cut out by the equation xp = 0. The relative Frobenius kills
both these groups; we need to distinguish them by the action of the Verschiebung. We will use
Cartier duality.
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The Cartier dual of µp is Z/(p), which is étale, so its Verschiebung is nonzero. Thus, µp
corresponds to the pair (0,1). On the other hand, one can show that αp is its own Cartier
dual, which is again infinitesimal, so αp corresponds to (0, 0). (Alternatively, via the theory of
the Verschiebung homomorphism that makes sense beyond the finite case, one can show that
the Verschiebung homomorphism for Ga vanishes, ultimately because its Frobenius is finite at,
so this gives the conclusion for the subgroup scheme αp by functoriality.)

10.3.2 A group scheme of order p2

We move on to order p2 killed by p. It is an elementary exercise in semi-linear algebra to show
that there are three possibilities for the Dieudonné module of an infinitesimal group scheme
with infinitesimal dual (i.e., the module is a k-vector space of dimension 2 on which V and F
are each nilpotent). We focus here on deducing the one corresponding to p-torsion G = E[p] of
a supersingular elliptic curve E over k. (In particular, we get the non-obvious conclusion that
its isomorphism class is independent of the elliptic curve.)

Since G has order p2, its Dieudonné module M(G) has length 2. Since G is killed by
p, by functoriality M(G) is also killed by p. Thus the underlying W (k)-module of M(G)
is (W (k)/(p))2. Again, all we need to do now is to determine the actions of F and V on
(W (k)/(p))2. The relative Frobenius on a smooth connected commutative group scheme of
dimension 1 is a finite at morphism of degree p, so its kernel has order p. Thus F acts on
M(G) in such a way that its kernel has W -length 1, and similarly for V since n-torsion in an
elliptic curve is self-dual (see [14] for an explanation). Since E is supersingular, the action of
F on M(G) is nilpotent, so (by some semilinear algebra) we can find a k-basis e1, e2 of M(G)
such that

Fe1 = e2, and Fe2 = 0.

By the relation V F = p, we have V e2 = V Fe1 = 0; and from FV = p, we know that V e1 = αe2
for some α ∈ k. Since the kernel of V has W (k)-length 1, the action of V on M(G) is nonzero,
so α ≠ 0. Since k is algebraically closed, by scaling the basis element e1, we may assume that
α = 1. Thus, we have determined the Dieudonné module of our group scheme.

10.4 Dieudonné modules associated to abelian varieties

Let A be an abelian variety over k with dimension g ≥ 1, and recall that the torsion group
scheme A[pn] is commutative and has rank p2ng. We define the p-divisible group A[p∞]
associated to A the p-divisible group

A[p∞] = lim
Ð→

A[pn].

It is a p divisible group of height 2g. Generally, for any p-divisible group G = (Gn)n≥1 over k
with height h ≥ 1, we let M(G) denote the Dk-module

M(G) ∶= lim
←Ð

M(Gn).

Then by the same style of arguments used to work out the Zℓ-module structure of Tate
modules of abelian varieties in characteristic ℓ ≠ p (resting on knowledge of the size of the
ℓ-power torsion subgroups of geometric points), we use W (k)-length to replace counting to
infer that M(G) is a free right W (k)-module of rank h with

M(G)/prM(G) ≃M(Gr), for all r ≥ 1.
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The p-divisible group G is connected if and only if F is topologically nilpotent on M(G)
(since this is equivalent to nilpotence of F on each M(Gr)).

In analogy with the ℓ-adic case we will now write TpG for M(G) and TpA for the case
G = A[p∞]. The Dk-module TpG will be the replacement for the ℓ-adic Tate module in the
“classical” case, even though it is contravariant in A; its Dk-action is the analogue of the Galois
action on ℓ-adic Tate modules, though this Dieudonné structure remains non-trivial when k is
algebraically closed (whereas the Galois action on Tate modules is trivial for such k).

Let K0 ∶=W (k)[1/p] be the fraction field of W (k). For any p-divisible group G over k, let
VpG ∶=Qp ⊗Zp TpG (and write VpA for G = A[p∞]). Then VpG is an K0-module of rank equal
to the height h of G, and it also has a left module structure over the Laurent polynomial ring
Dk[1/p] =K0[F,1/F ] that is non-commutative if k ≠ Fp.

Theorem 10.6. Let A and B be an abelian varieties over k, and A[p∞] and B[p∞] their
associated p-divisible groups. Then the map

Zp ⊗Z Homk(A,B)→ HomDk
(TpB,TpA) (4)

is an injective of Zp-algebras; it is an isomorphism when k is finite.

Recall that the Tate module of A is defined to be

TpA = lim←Ð
M(A[pn]).

This is naturally a module over the noncommutative ring Dk. Additionally, we define

VpA =Qp ⊗Zp TpA.

As in the ℓ-adic case (ℓ ≠ p), we find by a computation at finite level that TpA is, as a
W (k)-module, free of rank 2g. The Tate theorem holds for TpA as well: the natural map

Zp ⊗Z Homk(A,B)→ HomDk
(TpB,TpA) (5)

is an isomorphism. The proof of injectivity is essentially the same as in the ℓ-adic case (see
Theorem 6.6): the argument for ℓ ≠ p carries through with the simplification that Hom(A,B)
is already known to be finitely generated (by the work with ℓ ≠ p).

For the proof of surjectivity. we reduce to the case when A is k-simple by an argument
similar to the one in the proof of Theorem 6.6. So, it is enough to prove that the map

Qp ⊗Z Endk(A)→ EndDk[1/p](Vp(A))
opp (6)

is surjective for any k-simple abelian variety A. We start with the following result.

Lemma 10.7. Let g ∈K0[x] be monic polynomial such that deg(g) = d > 0 and g(0) ≠ 0. Let
M ∶= Dk[1/p]/Dk[1/p]g(F ). Then M is a left Dk[1/p]-module which has dimension d as a
left K0-vector space.

Proof. Working as in the commutative case, one can show that every element h ∈Dk[1/p] can
be uniquely written as

h = α ⋅ g(F ) + (c0 + c1F +⋯ + cd−1F
d−1), with c0, . . . cd−1 ∈K0 and α ∈Dk[1/p].

The result then follows.
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Exercise 10.8. Show that I ⊂ Dk[1/p] is a two-sided ideal if and only if there exists a
polynomial g ∈Qp[x] such that I =Dk[1/p]g(F

n) = g(Fn)Dk[1/p] = (g(F
n)).

Lemma 10.9. Let g(x) ∈Qp[x] be an irreducible polynomial of degree m such that the field
E ∶= Q[x]/(g) is a subfield of K0. Let π ∈ E be a root of g, r = n/m and Gal(K0/Qp) = ⟨σ⟩,
where σ is the automorphism lifting the arithmetic Frobenius. Let ∆ ∶= Dk[1/p]/(g(F

n)).
Then, there is an isomorphism between ∆ and the cyclic E-algebra (K0/E,σ

r, π).

Proof. Since the degree of the residue field K0 ∶= W (k)[1/p] is n, the centre of Dk[1/p] is
Qp[F

n]. Therefore, ∆ ∶=Dk[1/p]/(g(F
n)) is an algebra over Qp[F

n]/(g(Fn)). Writing

Qp[F
n]/(g(Fn)) =Qp[((F

r)m]/(g((F r)m) =Qp[F
′m]/(g(F ′

m
)),

We see tha the map

(E →Qp[F
′m]/(g(F ′

m
)), π ↦ F ′

m
)

is an isomorphism. This makes ∆ into a cyclic E-algebra, i.e. ∆ satisfies the relations

F ′
m
= π, F ′ ⋅ x = σr(x) ⋅ F ′, for x ∈K0.

Theorem 10.10. Let h ∈ Qp[x] be a monic irreducible polynomial of degree n such that
h(0) ≠ 0. Let L ∶= Qp[x]/(h) and D′ ∶= Dk[1/p]/(h(F

n)). Then D′ is a central simple
L-algebra. More precisely, let E ∶= Q[x]/(g) = K0 ∩ L, where g(x) ∈ Qp[x] is an irreducible
polynomial of degree m. Let π ∈ E be a root of g, r = n/m and Gal(K0/Qp) = ⟨σ⟩, where σ is
the automorphism lifting the arithmetic Frobenius. Then, D′ is isomorphic to Mr(∆), where ∆
is the cyclic L-algebra ∆ ∶= (K0L/L,σ

r, π).

Proof. Let σ ∶K0 →K0 is the cyclic automorphism lifting the geometric Frobenius on k = Fq.
Let E =K0 ∩L, and denote by g the minimal polynomial of E. Let m = deg(g) and r = n/m.
Since the centre of D′ ∶=Dk[F ]/(h(F

n)) is Z(D′) ∶=Qp[F
n]/(h(Fn)), which is isomorphism

to L, we see that D′ is indeed a central L-algebra. By Exercise 10.8, it is also simple since h
is irreducible. By construction, we have E ⊂ L; so the cyclic algebra ∆0 ∶= (K0/E,σ

r, π) is a
contained in D′. The field E is the maximal unramified subfield of L contained in K0. So, since
K0 and L have the same degree (over Qp), L/E must be ramified. Therefore L/E doesn’t split
∆ ∶= ∆0⊗EL, the base change of ∆0 to L. So ∆ is the cyclic L-algebra ∆ = (LK0/L,σ

r, π) ⊆D′.
By Wedderburn’s theorem D′ ≃Mr(∆).

Corollary 10.11. Let h ∈ Qp[x] be a monic irreducible polynomial of degree n such that
h(0) ≠ 0. Let L ∶=Qp[x]/(h), D′ ∶=Dk[1/p]/(h(F

n)), and M a finite D′-module. Then, we
have

dimK0 EndK0[Fn](M) = dimQp EndD′(M),

Proof. Since D′ is a simple L-algebra, it is enough to prove the statement for M a simple
D′-module. So, from now on, assume that M is a simple D′-module. Then, the commutant of
M is C = EndD′(M) and the bi-commutant of C is D′ ∶= EndC(M). Now, observe that since
Dk[1/p] = K0[F,1/F ] = K0[F ] and the centre of Z(Dk[1/p]) = Qp[F

n], the result follows
from general properties of semi-simple modules.
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Proof of Theorem 10.6. Let D ∶= End0k(A), and recall that, by Albert classification theorem,
the centre of D is Z =Q[πA]. To show that the map in (6) is surjective, we will make use of
Corollary 10.11 and Proposition C.13. First, consider the algebra

D′ ∶= EndDk[1/p](Vp(A))
opp,

and recall that fA ∈ Z[x], the characteristic polynomial of Vℓ(πA), is independent of ℓ ≠ p, and
is the same for ℓ = p. Also, since A is k-simple, we have fA = grA, where gA is the minimal
polynomial of πA and r ≥ 1 an integer.

By functoriality of Dieudonné modules, Vp(πA) = Fn. Therefore, the centre of D′ is

Z(D′) ∶=Qp[F
n]/(gA(F

n)) ≃ Z ⊗Q Qp.

We have the decomposition

Qp ⊗Q Z =Qp[x]/(gA) =∏
v∣p

Qp[x]/(gA,v) =∏
v∣p

Zv,

where gA,v is the minimal polynomial of Zv over Qp. Up to isogeny, the group G ∶= A[p∞]
decomposes accordingly into a product G =∏v∣pGv, where Gv corresponds to the idempotent
of Zv. The module Vp(A) also decomposes accordingly as a sum of Dk[1/p]-modules

Vp(A) ≃⊕
v∣p

Vp(Gv).

It follows that Vp(Gv) is a left module over the quotient algebra

D′v =Dk[1/p]/(gA,v(F
n)).

There is a similar decomposition for the algebra Qp ⊗Q End0k(G):

Qp ⊗Q End0k(G) =∏
v∣p

Qp ⊗Q End0k(Gv).

So, it is enough to show that

dimQp Qp ⊗Q End0k(Gv) = dimQp EndD′v(Vp(Gv)), for all v ∣ p.

However, by construction the field

Lv =K0[x]/(gA,v(x) ≃K0[F
n]/(gA,v(F

n)),

is a commutative sub-algebra of both algebras of dimension [D′v ∶ Fv]
1/2. So it is enough to

prove that

dimLv Qp ⊗Q End0k(Gv) = dimLv EndD′v(Vp(Gv)), for all v ∣ p.

Since Lv is maximal commutative, the result now follows from Corollary 10.11 and Proposi-
tion C.13.



10 DIEUDONNÉ MODULES AND P -DIVISIBLE GROUPS 39

10.5 Local invariants associated to abelian varieties

Let k to be finite of size q, and A a k-simple abelian variety, and set D ∶= End0k(A). By Albert’s
classification, D is a division algebra with centre Z ∶=Q[πA].

Since the Dieudonné functor is fully faithful and contravariant, and the map in (4) is an
isomorphism for finite fields k, as Z ⊗Q Qp-algebras, we have

D ⊗Q Qp = EndDk[1/p](VpA)
opp.

Now, recall the natural the decomposition

D ⊗Q Qp =∏
v∣p

D ⊗F Fv =∏
v∣p

Dv.

It yields a corresponding decomposition of G ∶= A[p∞] (up to isogeny) into a product of
p-divisible groups over k

G =∏
v∣p

Gv,

where Gv is defined over Zv. So, for each v ∣ p, we have

Dv ≃ End
0
k(Gv) = EndDk[1/p](VpGv)

opp.

Consequently, the right handside is a central simple Zv-algebra. We now determine its invariant.
Since the action of πA decomposes accordingly to

VpG =⊕
v∣p

VpGv,

its characteristic polynomial factors as

gA(x) =∏
v∣p

gA,v(x).

Since Z ⊗F Qp maps to the centre Z(Dk[1/p]) = Zp[F
n]/(gA(F

n)), we see that, for all v ∣ p,

Dv ∶=Dk[1/p]/(gA,v(F
n)).

By Theorem 10.10 and Theorem C.24, the class of Dv in Br(Zv) is the same as that of the
cyclic Zv-algebra

∆v = (K0Zv/Zv, σ
′, πfv/gv),

where σ′ ∈ Gal(K0Zv/Zv) is the arithmetic Frobenius and the element πfv/gv ∈ Z×v where
fv = f(v ∣ p) and gv = gcd(fv, n). Since [K0Zv ∶ Zv] = n/gv, the formula in Theorem C.24 gives

invv(Dv) =
1

n/gv
⋅ v(πfv/gv) =

fv
n
v(π) ∈Q/Z.

Let ev = e(v ∣ p), so that evfv = [Zv ∶Qp], we have

v(q) = n ⋅ v(p) = n ⋅ ev,

so a = v(q)/ev. This implies that

invv(Dv) =
fv
n
v(π) =

evfv
v(q)

v(π) =
v(π)

v(q)
⋅ [Zv ∶Qp] ∈Q/Z.
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11 Honda–Tate’s theorem

11.1 Statement of main result

Definition 11.1. Let q = pn with n ≥ 1 and integer and p prime number. Let F be a field of
characteristic 0.

(i) A Weil q-integer in F (or a Weil q-integer of weight 1) is an algebraic integer α ∈ F
whose Q-conjugates in C have absolute value q1/2.

(ii) Let w be an integer. A Weil q-number of weight w is an algebraic number α such that
ordv(α) = 0 for all finite places v of Q(α) prime to q and ∣τ(α)∣ = qw/2 for all injective
ring homomorphisms τ ∶Q(α)→C.

We will denote by W (q) the set of conjugacy classes of all Weil q-numbers.

Theorem 11.2 (Honda–Tate). Let k be a finite field of size q = pn.

(i) The following map is a bijection:

Isogeny classes of
simple abelian
varieties A/k

Gal(Q/Q)-conjugacy
classes of q-Weil
numbers π ∈Q

A↦ πA

(ii) Let A be a k-simple abelian variety, and set D ∶= End0k(A) and F ∶=Q[πA], where πA is
the Frobenius endomorphism. Then, we have the following:

(a) D is a totally definite algebra of centre of D is F =Q(πA);

(b) We have 2 ⋅ dimA = [D ∶ F ]1/2[F ∶Q];

(c) For every finite place v ∤ p of F , D splits at v;

(d) For every finite place v ∣ p of F , we have

invv(D) =
v(πA)

v(q)
[Fv ∶Qp]mod 1, (7)

where Fv denotes the completion of F at v.

We set

WAV(q) ∶= {π ∈W (q) ∣ [π] = [πA] for some simple abelian variety A/k} .

Our goal is to show that WAV(q) =W (q).

11.2 Examples

Let π ∈W (q) be a Weil q-integer, where q = pn, with n ∈ Z≥1.
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11.2.1 The totally real case

Assume F =Q[π] has a real embedding. Then by Albert’s classification (Theorem 7.1), F is
totally real. Therefore, by Theorem 7.2, we have π =√q or π = −√q, in which case it appears
with even multiplicity. There are two possible cases to consider.

(1) Case: n is even. In that case, we have F =Q. By (7), we have invp(D) = 1/2. So D is
a division quaternion algebra over Q ramified at p and ∞. The formula

2dimA = [D ∶ F ]1/2[F ∶Q]

implies that dimA = 1. Since D = End0k(A), A is a supersingular elliptic curve. Clearly,
the characteristic polynomial of fA ∈ Z[x] is of the form fA = (x − p

n/2)2.

(2) Case: n is odd. In that case, we have F =Q(π) =Q(p1/2). In other words, F is a real
quadratic field. Hence, it has two real places at which invv(D) = 1/2 (v ∣∞). Since there
is only one place v of F dividing p, and

∑
v

invv(D) = 0 ∈ Br(F ),

we must have invv(D) = 0, for v ∣ p, meaning that D is a definite quaternion algebra
ramified at v ∣ ∞ only. From this, we see that dimA = 2. By Theorem 7.2, the
characteristic polynomial fA of πA ∈ Z[x] is of the form

fA(x) = ((x − p
n/2)(x + pn/2))2 = (x2 − pn)2 = g(x2),

where g(x) = (x − pn)2. Let k′ be the quadratic extension of k. By Case (1), there exists
a supersingular elliptic curve A′/k′ such that fA′ = g. By Corollary A.3, we see that A is
k′-isogenous to Resk′/k(A

′).

11.2.2 Totally imaginary case

By Theorem 7.2, both π and π = π/q are roots of fA. In that case, F0 =Q(π + π/q) is a totally
real field, and F /F0 is a CM extension. Let α ↦ α the complex conjugation of F /F0. Since
F is CM, the division algebra D splits at all the places v ∤ p of F . For each place v ∣ p of F ,
since ππ = q, we have v(π) + v(π) = v(q). Therefore, since [Fv ∶Qp] = [Fv ∶Qp], we have

invv(D) + invv(D) = 0 mod 1, if v ≠ v, (8)
invv(D) = 0 mod 1, if v = v. (9)

Let ev and fv be the inertia and residue degrees of F at v ∣ p, respectively. Then, we have

invv(D) =
v(πA)

v(q)
[Fv ∶Qp] =

v(πA)evfv
n

mod 1.

Therefore, if n ∣ v(πA)ev for all v ∣ p, D splits at all places of F , meaning that D = F = End0k(A)
is commutative. This is the case when k = Fp is the prime field.



11 HONDA–TATE’S THEOREM 42

Proof of Theorem 11.2. Uniqueness: Let A and B be two k-simple abelian varieties such that
πA and πB are Gal(Q/Q)-conjugate. Then, πA and πB have the same minimal polynomial
h ∈ Z[x]. Let fA and fB be the characteristic polynomials of πA and πB, respectively. Since
A and B are simple, there exist integers r, s ≥ 1 such that fA = hr and fB = hs. Without loss
of generality, we may assume that r ≤ s. This means that fA divides fB. Therefore, by [14,
Theorems 2 and 3, Appendix I], we see that B is isogenous to an abelian subvariety of A over
k. Since A and B are k-simple, this inclusion must be an isogeny.

Structure of D ∶= End0k(A): Let Gk ∶= Gal(k/k). Tate’s isogeny theorem implies that

D ⊗Q Qℓ ≃Qℓ ⊗Q EndGk
(VℓA), if ℓ ≠ p;

D ⊗Q Qp ≃Qp ⊗Q EndDk[1/p](VpA)
opp, if ℓ = p.

By Theorem C.21, D is determined by its local structures. Therefore, D is also determined by
fA. We compute these local structures using the results of Section 10.5.

11.3 Proof of Theorem 11.2: Existence

Lemma 11.3. Let π ∈W (q), and m ≥ 1 an integer. If πm ∈WAV(q
m), then π ∈WAV(q).

Proof. Let k′ be an extension of k of degree m, and A′/k′ an abelian variety such that
[πm] = [πA′]. Let A be the abelian variety over k which is the restriction of scalars of A′. Let
ℓ be a prime, ℓ ≠ p. By Theorem A.2, we have as Qℓ[Gk]-modules (with Gk = Gal(k/k) for a
separable closure k/k′) we have

VℓA = Ind
Gk
Gk′

VℓA
′.

So by Corollary A.3, we see that fA(x) = fA′(xm). Since π is a root of fA, this implies that
[π] = [πA1], where πA1 is the Frobenius of some k-simple factor A1 of A.

Let π be a Weil q-integer, and D be the division algebra obtained from π and the local
information in Theorem 11.2. Note that, by Theorem C.21, such a D indeed exists and is
unique up to isomorphism.

Lemma 11.4. There exists a CM field E containing F =Q(π) such that E splits D and such
that [E ∶ F ] = [D ∶ F ]1/2.

Proof. Let E ⊂D be a maximal commutative sub-algebra of D given in Proposition C.13. Then
[E ∶ F ] = [D ∶ F ]1/2 and E splits D. Since D is totally definite, E must be a CM field.

Proof of existence in Theorem 11.2. by using Lemma 11.4, choose a CM extension E/F con-
tained in D. By Theorem B.2, let K/Qp be a finite extension, and B/K an abelian variety
with CM by E such that the reduction B0 of B at the maximal ideal in OK has Frobenius
endomorphism [π0] = [πmA ], for some integer m ≥ 1. Then apply Lemma 11.3 to conclude the
proof of Theorem 11.2.
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A Weil restriction of an abelian variety

Let k be a field and k′ a finite Galois extension of k.
Let V /k′ be an variety. Then for any k-algebra R, set

FV (R) ∶= V (k
′ ⊗k R) = Hom(Spec(R⊗k k

′), V ).

In particular, we see that
FV (k) = V (k

′ ⊗k k) = V (k
′).

One can see that

FV ∶ k–Alg→ Sets
R ↦ FV (R).

is a functor.

Theorem A.1. The functor FV is representable by a variety defined over k, denoted by
Resk′/k(V ), and called the Weil restriction of V from k′ to k. It has the universal property
that, for any k-algebra R, we have

Resk′/k(V )(R) = V (R⊗k k
′).

If V is an abelian variety over k′, then Resk′/k(V ) is an abelian variety defined over k.

Proof. See Weil [24, Chapter I, Section 1.3].

Theorem A.2. Let k be a field and k′ a finite extension of k. Let Gk ∶= Gal(k/k) and
Gk′ ∶= Gal(k/k′) be the absolute Galois groups of k and k′, respectively. Let A be an abelian
variety defined over k′ and ℓ ≠ char(k). Then, we have

Tℓ(Resk′/k(A)) = Ind
Gk
Gk′

Tℓ(A).

Proof. This follows from the functorial properties of Weil restriction.

Corollary A.3. Let k be a finite field of size q = pn, where p is prime and n ≥ 1 an integer.
Let k′ a finite extension of k of degree r. Let A be an abelian variety defined over k′, and
B ∶= Resk′/k(A). Let πA and πB be the Frobenius endomorphisms of A and B, respectively.
Let gA and gB be the minimal polynomial of πA and πB, respectively. Then, we have πB = πrA
so that gB(x) = gA(xr).

Moreover, let F ⊂ End0k′(A) and E ⊂ End0k(B) be their respective centres. Then, under the
extension of scalar (F → E,πA ↦ πrB), we have an isomorphism

E ⊗F End0k′(A) ≃ End
0
k(B).

Proof. This follows from Theorem A.2.
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B CM lifting of abelian varieties

Lemma B.1. Let F be a totally real field and E/F a CM extension. Let π be a Weil q-integer
in E and π0 a Weil q0-integer in E which satisfy

w(π)

w(q)
=
w(π0)

w(q0)
, for all places w of E.

Then there exist positive integers m and m0 such that πm = πm0
0 .

Proof. Replacing π and π0 by appropriate powers, if necessary, we may assume that q = q0, so
that

w(π) = w(π0), for each place w ∣ p of E.

For each finite place w ∤ p of E, it then follows that both π and π0 are units since they divide
a power of p. At the infinite places, π and π0 have the same absolute value ∣π∣ = ∣π0∣ = q1/2.
Therefore, we have

∣
π

π0
∣
w
= 1, for each place w of E.

This means that π/π0 is a root of unity. So there exists an integer s ≥ 1 such that (π/π0)s = 1,
and the lemma follows.

Theorem B.2. Let E be a CM field containing F =Q(π) which splits D. Then there exist a
finite extension K/Qp and an abelian variety A defined over K such that

(i) A has good ordinary reduction;

(ii) The geometric Frobenius of the reduction of A is conjugate to a power πm of π;

(iii) [E ∶Q] = 2dimA.

The proof of Theorem B.2 requires some preparation. We start by recall the results need
from the theory of complex multiplication.

Let E be a CM field with [E ∶Q] = 2g. Let τ be the automorphism of E of order 2 which
is induced by complex conjugation for each embedding E ↪C. Intrinsically, τ is the unique
nontrivial automorphism of E over its maximal totally real subfield. Let Φ be a CM type for
E, i.e. Φ is a subset of HomQ–alg(E,C) such that

Φ ∩Φτ = ∅, and Φ ⊔Φτ = Hom(E,C). (10)

Definition B.3. An abelian variety A over a subfield F ⊂ C is of type (E,Φ), if A satisfies the
conditions of Theorem B.2 over F , and the action of C⊗QE on the tangent space Lie(A×F C)
is through the decomposition

C⊗Q E = ∏
ϕ∈Φ

C

(where E acts on ϕ-th component of the product through the embedding ϕ ∶ E ↪C).
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Theorem B.4. There exist a number field K/Q, and an abelian scheme A defined over the
ring of integers OK of K, which is of type (E,Φ).

Proof. The proof of this result is explained in Tate [21, Lemma 4]. It combines results from
Serre–Tate [18, §§6.2 and 12.4] and Shimura–Taniyama [19, Theorem 7].

From now, we fix an identification Qp ≃ C. For each place w ∣ p of E, we let Ew be the
completion of E with respect to w. We identify HomQp(Ew,C) with its image in Hom(E,C)
which we denote by Hw. Let Φw ∶= Φ ∩Hw. We have a decomposition

Qp ⊗Q E =∏
w∣p

Ew

and the disjoint unions

Hom(E,C) = ⊔
w∣p

Hw and Hw = ⊔
w∣p

Φw. (11)

Lemma B.5. Let K/Qp be a finite extension, with ring of integers OK , and A an abelian
scheme of type (E,Φ) defined over OK . Let k0 be the residue field of OK , with q0 =#k0. Let
A0 be the reduction of A modulo the maximal ideal of OK . Then there exists an element π0 ∈ E
such that i(π0) ∈ End(A) induces the Frobenius πA0 ⊂ End

0
k(A0), and we have

w(π0)

w(q0)
=
#Φw

#Hw
, for all w ∣ p.

Proof. See Shimura and Taniyama [19].

Proof of Theorem B.2. Keeping the above notations, assume that π, q, F , D and E satisfy
the hypotheses of Theorem B.2. Let z ↦ zτ be the complex conjugation on E. We will now
show how we can choose the set Φ such that we have

w(π)

w(q)
=
#Φw

#Hw
, for each place w of E with w ∣ p.

Let w ∣ p be a place of E, v be the place of F below w, and define nw ∈Q≥0 by

nw =
w(π)

w(q)
#Hw =

w(π)

w(q)
[Ew ∶Qp] =

v(π)

v(q)
[Ew ∶ Fv][Fv ∶Qp].

Since E splits D, we see that invw(D ⊗F E) = 0. By properties of local invariants and (7), we
also have

invw(E ⊗F D) = [Ew ∶ Fv]
v(π)

v(q)
[Fv ∶Qp] = nw ∈Q/Z.

Therefore, nw must be a non-negative integer. Since ππτ = q, we see that

nw + nτw =#Hw =#Hτw. (12)

Since τ is the CM involution of E/F , it acts without a fixed point on the partition in (11) and
such that Hτw = τ ⋅Hw. Therefore, for any sequence of non-negative integers nw satisfying (12),
we can choose a CM type Φ = ⊔w Φw such that #Φw = nw which satisfies (11) as follows: First,
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we consider the places w ∣ p fixed by τ , then we consider the pairs of places (w, τw) where
w ≠ τw. Given such a CM type Φ, the condition

w(π)

w(q)
=
#Φw

#Hw

is satisfied by construction.
By Theorem B.4, there exists an abelian scheme of type (E,Φ) defined over OK . By

Lemma B.5, there exists a Weil q0-number π0 ∈ E which is conjugate to the Frobenius πA0 of
the reduction A0 of A such that

w(π)

w(q)
=
#Φw

#Hw
=
w(π0)

w(q0)
.

Replacing K/Q by an unramified extension of degree m leads to π0 being replaced by πm0 . We
then conclude the proof of Theorem B.2 by using Lemma B.1.

C Background on non-commutative algebra

C.1 Semi-simple modules

In this subsection, all rings have an identity element. A ring homomorphism is a map f ∶ A→ B
such that

1. f(x + y) = f(x) + f(y), for all x, y ∈ A;

2. f(x ⋅ y) = f(x) ⋅ f(y), for all x, y ∈ A;

3. f(1A) = 1B.

If A is a ring then, we let Aopp denotes the opposite ring and Z(A) the center of A. For a
integer r ≥ 0, we le Mr(A) be the ring of r × r matrices with coefficients in A.

Let A be a ring, and M a non-zero left (resp. right) A-module.

a) We say that M is an irreducible (or simple) A-module if the only left (resp. right)
A-submodules of M are {0} and M itself.

b) We say that M is a semisimple left (resp. right) A-module if every left (resp. right)
A-submodule of M is a direct summand.

Lemma C.1. Let A be a ring, and M a non-zero left (resp. right) A-module. Then M is
semisimple if and only if there exists an finite set of simple A-modules (Mi)i∈I such that M a
direct sum

M =⊕
i∈I

Mi.

Note that the zero module is semisimple but not simple; by convention it is the direct sum
of the empty collection of A-modules.

Let A be nonzero ring.

a) We say that A is simple (as a ring) if the only two-sided ideals of A are {0} and A itself.

b) A ring A is called semisimple if every left (resp. right) A-module is semisimple.
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Lemma C.2. Let A be nonzero ring. Then A is semisimple if and only if A is semisimple as
a left (resp. right) A-module.

Let A be a semisimple ring. Then, there exists has finitely many minimal nonzero ideals
A1, . . . ,Ar ⊂ A. Each ideal Ai is also a ring, with an identity element making it a simple ring.
Thus A is isomorphic to the product A1 ×⋯ ×Ar. So every semisimple ring is a product of
finitely many simple rings. Conversely, every finite product of simple rings is semisimple.

Proposition C.3. Let A be a semisimple ring. Then, up to isomorphism, there are finitely
many simple A-modules.

Proof. Since A is a semisimple ring, every left ideal I ⊂ A (resp. right ideal J ⊂ A) is generated
by an idempotent, i.e., there is an idempotent e ∈ A with I = Ae (resp. J = eA). Indeed,
because A is semisimple as a left (resp. right) module over itself there exists a left ideal I ′(resp.
right ideal J ′) such that A = I ⊕ I ′ as left A-modules (resp. A = J ⊕ J ′ as right A-modules);
writing 1 = e + e′ one easily finds that e is an idempotent and I = Ae (resp. J = eA). If A is a
simple ring then up to isomorphism there is a unique simple A-module. It follows that, up to
isomorphism, there are finitely many simple modules over A; one corresponding to each simple
factor Ai.

Let A be a simple ring, and M a simple A-module. The ring D ∶= EndA(M) is a division
algebra. We called D the commutant of A, and EndD(M) its bi-commutant. For a ∈ A, let
aM ∈ EndD(M) be the map (M →M,m↦ am). Then, we have a map

A→ EndD(M)

a↦ aM .

Lemma C.4. Let A be a simple ring, M a simple A-module and D = EndA(M). Then, the
map a↦ aM is an isomorphism of A onto its bi-commutant EndD(M).

Corollary C.5 (Wedderburn). Let A be a simple ring. Then, there exist an integer r ≥ 1 and
a division algebra D such that A ≃Mr(D), where Mr(D) is the ring of r × r matrices over D.
In particular, Z(A) = Z(D) is a field.

Proof. Let M be a simple A-module. Then we see that A has finite length r as a left module
over itself. So, A isomorphic to M r as A-modules. From this and the lemma above, it follows
that A ≃Mr(D).

Conversely, if D is a division algebra and r is a positive integer, Mr(D) is a simple ring.
The unique simple module over this ring is given by Dr with its natural structure of a left
Mr(D)-module. It follows from the discussion that if A is a simple ring, so is Aopp.

Theorem C.6 (Bi-commutant). Let A be a semisimple ring, and let M be an A-module of
finite type. Let C ∶= EndA(M), and consider M as a left module over C by the rule

c ⋅m = c(m), for c ∈ C and m ∈M.

Then the map (A→ EndC(M), a↦ aM) is an isomorphism.

Theorem C.7 (Skolem-Noether). Let A be a simple algebra with center K. Let B and B′ be
simple K-subalgebras of A of finite dimension over K. Then for every isomorphism φ ∶ B → B′

of K-algebras there is an inner automorphism ψ of A with φ = ψ∣B.

In particular, if A is a simple algebra of finite dimension over its centre K then all
automorphisms of A over K are inner, so AutK(A) = Inn(A) ≃ A

×/K×.
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C.2 Brauer group

We let K be a field.

Definition C.8. A central simple algebra over K is a K-algebra A such that

(a) A is finite dimensional over K.

(b) K is the centre of A.

(c) A is a simple ring.

If in addition A is a division algebra, we call it a central division algebra over K.

Theorem C.9. Let A une K-algebra of finite dimension. Then, the following are equivalent

(i) A is a simple central;

(ii) Then canonical homomorphism of K-algebras

A⊗K Aopp → EndK(A)

a⊗ a′ ↦ (x↦ axa′)

is a bijection;

(iii) There exist a field extension L/K and an integer n ≥ 1 A⊗K L is isomorphic to Mn(L);

(iv) For any separable closure Ks of K, there exists an integer n ≥ 1 such that the Ks-algebras
A⊗K Ks and Mn(Ks) are isomorphic;

(v) There exists a finite Galois extension L of K and an integer n ≥ 1 such that A⊗K L and
Mn(L) are isomorphic;

(vi) There exists a division K-algebra D of finite dimension and an integer n ≥ 1 such that A
is isomorphic to the matrix algebra Mn(D).

Proof. See Bourbaki [2, §14, Theorem 1].

Corollary C.10. Let A be a central simple algebra of finite dimension over an algebraically
closed field K. Then, there exists an integer n ≥ 1 such that A is isomorphic to the matrix
algebra Mn(K).

Corollary C.11. Let A be a central simple K-algebra of finite dimension. Then, there exists
an integer n ≥ 1 such that [A ∶K] = n2.

Proof. By Theorem C.9, there exist an extension L of K and an integer n ≥ 1 such that the
algebra A⊗K L and Mn(L) are isomorphic. Therefore, we have

[A ∶K] = [A⊗K L ∶ L] = [Mn(L) ∶ L] = n
2.

Corollary C.12. Let A be a central simple algebra over F .

(a) For any field extension K/F , A⊗F K is a central K-algebra.
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(b) If B is another F central simple algebra, then A⊗F B is a central simple F -algebra.

Proof.

Proposition C.13. Let A be a simple central K-algebra of finite degree, and L a semi-simple
commutative sub-algebra. Then, the following conditions are equivalent:

(i) L is a maximal commutative sub-algebra of A;

(ii) The L-module A is free of dimension [L ∶K];

(iii) We have [A ∶K] = [L ∶K]2.

Suppose that, in addition, A is the algebra EndK(V ), where V is a vector space of finite
dimension n ≥ 1 over K. Then, the conditions (i)–(iii) are also equivalent to

(iv) V est un L-module libre de dimension 1.

Proof. See Bourbaki [2, §14, Proposition 3].

Proposition C.14. Let A and B be central simple K-algebras of finite dimension. Then, the
following are equivalent:

(i) There exists an integer t ≥ 1 such that the K-algebra A ⊗K Bopp is isomorphic to the
matrix algebra Mt(K);

(ii) There exist integers r, s ≥ 1 such that the K-algebras A⊗K Mr(K) and B ⊗K Ms(K) are
isomorphic;

(iii) There exists a division algebra D over K and integers m,n ≥ 1 such that A is isomorphic
to Mm(D) and B to Mn(D).

Proof. See Bourbaki [2, §15, Proposition 3].

Let A and B be finite dimensional central simple K-algebras. We say that A and B are
equivalent, and write A ∼ B, if one of the equivalent conditions in Theorem C.9 is satisfied. We
write [A] for the equivalence class of A.

Lemma C.15. Let A,A′ and B be central simple K-algebras of finite dimension. Then,
[A] = [A′] implies that [A⊗K B] = [A′ ⊗K B].

Proof. This follows from Proposition C.14 (ii).

By Lemma C.15, setting

[A][B] ∶= [A⊗F B].

gives a well-defined composition law on the set of equivalent classes of simple central K-algebras
of finite dimension.

Definition C.16. The Brauer group of F , denoted by Br(F ), is the set of equivalence classes
of central simple K-algebras. It is an abelian group, where −[A] = Aopp. (We recall that Aopp

is the opposite algebra.)
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Let K ′/K be a field extension. Then, by Proposition C.14, by extension of scalars, one
obtains a group homomorphism

Br(K)→ Br(K ′).

As a result, the map K ↦ Br(K) is a covariant functor in K. We have

Br(K) = ∐
K′/K Galois

Br(K ′/K),

where we set Br(K ′/K) ∶= ker(Br(K)→ Br(K ′)).

Proposition C.17. Let K ′/K be a finite Galois extension. Then, we have an isomorphism
Br(K ′/K) ≃ H2(K ′/K).

Proof. We will use a descent argument which follows [17, Chapter X, §5, Proposition 9]. Let
K ′/K be a Galois extension, and set

Br(K ′/K) ∶= {[A] ∈ Br(K) ∶ [A⊗K K ′] = 0 ∈ Br(K ′)} .

Let [A], [B] ∈ Br(K ′/K) be such that [A⊗K K ′] = [B ⊗K K ′] = 0 ∈ Br(K ′). This means that
precisely that [A] = [B] by the equivalence relation in Theorem C.9 which defines Br(K).
We will show that these are compatible with the definition of H2(K ′/K). Let [A ∶ K] = n2.
By definition, there exists an isomorphism of K ′-algebras ϕ ∶ A⊗K K ′ → B ⊗K K ′. For any
σ ∈ Γ ∶= Gal(K ′/K), let σ ∶ A⊗KK ′ → A⊗KK

′ be the automorphism induced by the action of
σ on K ′. Then, by composition, we get another isomorphism ϕσ ∶ A⊗KK

′ → B⊗KK
′. Setting

cσ ∶= ϕ
σ ○ϕ−1, we get an automorphism cσ ∈ AutK(A⊗KK

′) = AutK(Mn(K
′)). However, every

automorphism of Mn(K
′) is an inner automorphism by Skolem-Noether theorem. So, we have

AutK(Mn(K
′)) = GLn(K

′) and the map σ ↦ cσ determines a 1-cocycle in Z1(Γ,GLn(K
′)).

By [17, Chapter X, §1, Proposition 3], we have H1(Γ,GLn(K
′)) = 1. So, [A] = [B] as expected.

Keeping the notations above, for any σ ∈ Γ, ϕσ ∶ A⊗K K ′ →Mn(K
′) be isomorphism such

that the following diagram commutes:

A⊗K K ′ Mn(K
′)

Mn(K
′)

ϕ

σ
ϕσ

Using Skolem-Noether’s theorem, choose uσ ∈ GLn(K
′) such that ϕσ = u−1σ ⋅ ϕ ⋅ uσ. If τ ∈ Γ is

another element, we must have ϕστ = u−1στ ⋅ ϕ ⋅ uστ . We must also have

ϕστ = (ϕσ)τ = u−1τ ⋅ u
−1
σ ⋅ ϕ ⋅ uσ ⋅ uτ .

Set

c(σ, τ) ∶= uσ ⋅ uτ ⋅ u
−1
στ , for all σ, τ ∈ Γ.

Since A is simple and c(σ, τ) commutes with ϕ, we see that c(σ, τ) must be a scalar matrix.
This gives rise to a 2-cocycle c ∈ Z2(Γ,K ′

×
). We let [c] ∈ H2(K ′/K) be the class of c...
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Theorem C.18. Let Ks be a separable closure of K. Then, there exists an isomorphism

Br(F ) ≃ H2(Fs/F,F
×
s ).

Proof. It remains to show that the isomorphisms Br(K ′/K) ≃ H2(K ′/K) in Proposition C.17
are compatible with the injections

Br(K ′/K)→ Br(L/K) and H2(K ′/K)→ H2(L/K) for all L ⊃K ′.

But that is not too hard to prove.

Now, let K be a non-archimedean local field, and Kunr the maximal unramified subextension
of Ks. Let κ and κ be the residue fields of K and Kunr, respectively. Let Frob ∈ Gal(κ/κ) be
the arithmetic Frobenius; this is a topological generator. By local class field theory, there is a
canonical isomorphism

H2(Kunr/K,Kunr×) ≃ H2(Ks/K,K
×
s ).

The normalised valuation v ∶ Kunr× → Z also induces an isomorphism

H2(Kunr/K,Kunr×) ≃ H2(Kunr/K,Z)
δ
≃ H1(Gal(Kunr/K),Q/Z).

Theorem C.19. Let K be a non-archimedean local field. Then, the map

invK ∶ Br(K) ≃Q/Z

is a group homomorphism.

Proof.
Give proof or reference!!

Remark C.20. Since Br(R) is cyclic of order 2 and Br(C) is trivial, for archimedean local
fields F there is a unique injective homomorphism invF ∶ Br(F )↪Q/Z. By [3, Thm. 3, p. 131],
for a finite extension F ′/F of nonarchimedean local fields, composition with the natural map
Br(F ) → Br(F ′) carries invF ′ to [F ′ ∶ F ] ⋅ invF . By [17, p. 194, Cor. 3], invF (D) has order
[D ∶ F ]1/2 for any central division algebra D over F . These assertions are trivially verified to
also hold for archimedean local fields F .

Theorem C.21. Let F be a global field. There is an exact sequence

0→ Br(F )→ ⊕
v∈MF

Br(Fv)
Σ
→Q/Z→ 0,

where MF denotes the set of nonequivalent nontrivial absolute values of F and Fv denotes
the completion of F at v. The first map is defined via the maps Br(F ) → Br(Fv) given by
extension of scalars, and the second map is given by summing the local invariants.

Proof. This is [3, §§9.7, 11.2].
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For a global field F and a central division F -algebra D, write invv(D) for invFv(D ⊗F Fv)

for a place each place v of F . Theorem C.21 asserts that a central division algebra D over
a global field F is uniquely determined by its local invariants invv(D), up to isomorphism.
These local invariant may be arbitrarily assigned subject to the condition invv(D) = 0 for all
but finitely many v and ∑v invv(D) = 0. Moreover, the order of [D] in Br(F ) is the least
common “denominator” of the invv(D) ∈Q/Z.

We need one more theorem that gives such a result over global fields:

Theorem C.22. Let F be a global field, and D a central division algebra over F . Then, the
order of [D] in Br(F ) is [D ∶ F ]1/2.

Proof. Let [D ∶ F ] = n2, and let d be the order of [D] in Br(F ), so that d ∣ n. For a place v of
F , let Dv =D ⊗F Fv and dv the order of [Dv] in Br(Fv). Note that

d = lcm{dv ∶ v a place of F},

where dv = 1 for complex v, dv ∣ 2 for real v, and dv = 1 for all but finitely many v. We recall
that dv = [Lv ∶ Fv], where Lv ⊂Dv is the maximal commutative sub-algebra of Dv (that splits
Dv). By Proposition C.13,

[Dv ∶ Fv] = [Lv ∶ Fv]
2 = d2v.

By global class field theory [1, Chapter X, Theorem 5], there exists an abelian extension
L/F of degree d such that dv ∣ [Lw ∶ Fv], for every v of F and w ∣ v of L. Since the map
Br(Fv) → Br(Lw) sends invFv to [Lw ∶ Fv] invLw , we see that D ⊗F L splits at all the places
w of L. It follows that L necessarily splits D. Since [L ∶ F ] = d ∣ n and L splits D, we must
have [D ∶ F ] = [L ∶ F ]2 by Proposition C.13.

C.3 Local invariants of division algebras

Lemma C.23. Let F be a field and E/F a cyclic extension. Fix a generator σ of Γ ∶= Gal(E/F ),
and let χσ ∶ Γ→Q/Z be the unique homomorphism given by

(χσ ∶ Γ→Q/Z, σ ↦ 1/[E ∶ F ]).

Let θσ ∶= δ(χσ) ∈ H
2(Γ,Z), where δ ∶ H1(Γ,Q/Z) → H2(Γ,Z) is the connecting map arising

from 0→ Z→Q→Q/Z→ 0. Recall the Tate isomorphism induced by the cap product

Ĥ0(Γ,E×)
∪θσ
≃ H2(Γ,E×).

Then, we have the following.

1. For c ∈ F ×, the class of the cyclic algebra (E/F,σ, c) ∈ Br(F ) is the image of cmod
NmE/F (E

×) under the map

E×/NmE/F (E
×)→ Br(F ).

2. If E0/F is a sub-extension of E/F and σ′ = σ∣E0 then

[(E0/F,σ
′, c)] = [(E/F,σ, c[E∶E0])] ∈ Br(F ).
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Proof. See [4, Appendix A] or Serre [17, Chapter V, Section 4].

Theorem C.24. Let F be a non-archimedean local field and E/F an unramified finite extension.
Let ϕ ∈ Gal(E/F ) be the arithmetic Frobenius element. For any c ∈ F×, the cyclic F -algebra
(E/F,ϕ, c) has local invariant in Q/Z represented by ordF (c)/[E ∶ F ].

Proof. See [4, Appendix A] or Serre [17, Chapter V, Section 4].
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