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4. Lecture 4: Canonical Heights in

Families & Specialization Theorems

Example: A family of elliptic curves and points:

ET : y2 = x3 + T 2x� 1, PT = (1, T ).

We can plug in values T 2 Q and compute (using
PARI, where D = 2(O)):

t 0 2 17 1729 22/7 355/113

ĥEt(Pt) 0 0.93 2.51 7.11 3.24 5.68

Questions:
• Is Pt a non-torsion point for all 0 6= t 2 Q?
• How does ĥEt(Pt) vary as a function of t 2 Q?

For a general result, we need some preliminary setup.

Figure 1. A family of elliptic curves
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24 Canonical Heights on Abelian Varieties

K a number field.

C/K a smooth projective curve C/K.

A/K(C) an abelian variety defined over K(C).

(A, ⇡) a family of abelian varieties ⇡ : A ! C
with generic fiber is A.

P a point P 2 A
�
K(C)

�
.

P the associated section P : C ! A.

Definition: For t 2 C(K̄), the associated special-
ization map is

St : A
�
K̄(C)

�
�! At(K̄), St(P ) = Pt.

Specialization Theorem: Assume thatA/K̄(C)
has no “constant part,” i.e., no part coming from an
abelian variety B/K̄. Then there is a constant H0

such that

t 2 C(K̄) and hC(t) � H0

=) St : A
�
K̄(C)

�
! At(K̄) is injective.

The proof uses:

Height Limit Theorem: Let D 2 Div(A/K),
and let D 2 Div(A/K) be its closure. Fix a Weil
height function hC on C(K̄) associated to a divisor
of degree 1. Then

lim
t2C(K̄)
hC(t)!1

ĥAt,Dt(Pt)

hC(t)
= ĥA,D(P ). (⇤)
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4. Lecture 4: Canonical Heights in Families & Specialization Theorems 25

Proof Sketch Height Theorem ) Specialization
Theorem : We have several heights and height pair-
ings:

• Function field canonical height ĥA,D onA
�
K̄(C)

�
.

• Number field canonical heights ĥAt,Dt on each
fiber At(k̄).

• Number field height on C(K̄).

The theorem gives the formula

lim
t2C(K̄)
hC(t)!1

hPt,QtiAt,Dt

hC(t)
= hP,QiA,D.

Let P1, . . . , Pr 2 A
�
K̄(C)

�
generate modulo tor-

sion. Then

lim
t2C(K̄)
hC(t)!1

RegDt

�
St(P1), . . . , St(Pr)

�

hC(t)r
= RegD(P1, . . . , Pr)| {z }

Positive since P1, . . . , Pr independent.

> 0.

Hence

hC(t) su�ciently large

=) St(P1), . . . , St(Pr) are independent.

(Additional argument to deal with torsion part ofA
�
K̄(C)

�
.)

Generalizations and Strengthenings:

• Higher dimensional bases : Consider A ! B
with dim(B) � 2.
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26 Canonical Heights on Abelian Varieties

• Rank Jumps : We proved

rankAt(K) � rankA
�
K(C)

�

for t 2 C(K), hC(t) � 1.

How frequently can the rank ofAt(K) be strictly
larger? By how much?

• Unlikely Intersections : If dim(A) � 2, a di-
mension count suggests that there is a finite
set ⌃ ⇢ C(K̄) such that

t 2 C(K̄)r ⌃ =)
St : A

�
K̄(C)

�
! At(K̄) is injective.

• Improved Asymptotics : We proved

ĥAt,Dt(Pt) = ĥA,D(P ) · hC(t) + o
�
hC(t)

�
.

Various people have shown that one can replace
the o

�
hC(t)

�
with:

– O
�
hC(t)2/3

�
in general.

– O
�
hC(t)1/2

�
if C = P1 or dim(A) = 1.

– O(1) if C = P1 and dim(A) = 1.

Proof Sketch of the Height Limit Theorem : (as
time allows)
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We start with the triangle inequality���ĥAt,Dt(Pt)� ĥA,D(P ) · hC(t)
��� (a)


���ĥAt,Dt(Pt)� hA,D(Pt)

��� (b)

+
���hA,D(Pt)� hA,D(P ) · hC(t)

��� (c)

+
���hA,D(P )� ĥA,D(P )

��� · hC(t). (d)

For (b), we know in general that

ĥAt,Dt = hA,D +O(1),

but the O(1) depends on t. One can make the t-
dependence explicit (interesting argument using blow-
up to resolve a rational map, see notes):

ĥAt,Dt = hA,D +O
�
hC(t)

�
on At(K̄), (b0)

where the big O constant does not depend on t.

The key to estimating (c) is to use the fact that

P : C �! A
is a morphism. (Here is where we use dim(C) = 1.)
So by functoriality of heights:

hA,D(Pt) = hC,P⇤D(t)+OP(1) for t 2 C(K̄). (c0)

For (d), the function field version says

ĥA,D = hA,D +O(1) on A
�
K̄(C)

�
, (d0)
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28 Canonical Heights on Abelian Varieties

Substituting (b0), (c0), and (d0) into (a) and dividing
by hC(t) yields
�����
ĥAt,Dt(Pt)

hC(t)
� ĥA,D(P )

����� 
����C1 +

C2

hC(t)

����

+

����
hC,P⇤D(t)

hC(t)
+

C3(P )

hC(t)
� hA,D(P )

���� + C4. (e)

For any e↵ective �1,�2 2 Div(C), we have (another
height property)

lim
t2C(K̄)
hC(t)!1

hC,�1
(t)

hC,�2
(t)

=
deg(�1)

deg(�2)
,

and hence

lim
t2C(K̄)
hC(t)!1

hC,P⇤D(t)

hC(t)
= deg(P⇤D) = hA,D(P ) +O(1)| {z }
Height via intersection theory over K̄(C).

.

Using this in (e) yields

lim sup
t2C(K̄)
hC(t)!1

�����
ĥAt,Dt(Pt)

hC(t)
� ĥA,D(P )

�����  C5. (f)

Key Observation: The constant C5 does not de-
pend on P . We know that

ĥAt,Dt

�
[m]Pt

�
= m2 · ĥAt,Dt(Pt),

ĥA,D

�
[m]P

�
= m2 · ĥA,D(P ),
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4. Lecture 4: Canonical Heights in Families & Specialization Theorems 29

so replacing P by [m]P in (f) gives

lim sup
t2C(K̄)
hC(t)!1

�����
ĥAt,Dt(Pt)

hC(t)
� ĥA,D(P )

�����  C5

m2
for all m � 1.

Let m ! 1 to complete the proof.
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