4. Lecture 4: Canonical Heights in Families \& Specialization Theorems

Example: A family of elliptic curves and points:

$$
E_{T}: y^{2}=x^{3}+T^{2} x-1, \quad P_{T}=(1, T) .
$$

We can plug in values $T \in \mathbb{Q}$ and compute (using PARI, where $D=2(O))$:

t	0	2	17	1729	$22 / 7$	$355 / 113$
$\hat{h}_{E_{t}}\left(P_{t}\right)$	0	0.93	2.51	7.11	3.24	5.68

Questions:

- Is P_{t} a non-torsion point for all $0 \neq t \in \mathbb{Q}$?
- How does $\hat{h}_{E_{t}}\left(P_{t}\right)$ vary as a function of $t \in \mathbb{Q}$?

For a general result, we need some preliminary setup.

Figure 1. A family of elliptic curves

K	a number field.
C / K	a smooth projective curve C / K.
$A / K(C)$	an abelian variety defined over $K(C)$.
(\mathcal{A}, π)	a family of abelian varieties $\pi: \mathcal{A} \rightarrow C$
P	with generic fiber is A.
\mathcal{P}	a point $P \in A(K(C))$.
the associated section $\mathcal{P}: C \rightarrow \mathcal{A}$.	

Definition: For $t \in C(\bar{K})$, the associated specialization map is

$$
\mathrm{S}_{t}: A(\bar{K}(C)) \longrightarrow \mathcal{A}_{t}(\bar{K}), \quad \mathrm{S}_{t}(P)=\mathcal{P}_{t} .
$$

Specialization Theorem: Assume that $A / \bar{K}(C)$

 has no "constant part," i.e., no part coming from an abelian variety B / \bar{K}. Then there is a constant H_{0} such that$$
\begin{aligned}
& t \in C(\bar{K}) \text { and } h_{C}(t) \geq H_{0} \\
& \quad \Longrightarrow \mathrm{~S}_{t}: A(\bar{K}(C)) \rightarrow \mathcal{A}_{t}(\bar{K}) \text { is injective. }
\end{aligned}
$$

The proof uses:
Height Limit Theorem: Let $D \in \operatorname{Div}(A / K)$, and let $\mathcal{D} \in \operatorname{Div}(\mathcal{A} / K)$ be its closure. Fix a Weil height function h_{C} on $C(\bar{K})$ associated to a divisor of degree 1 . Then

$$
\begin{equation*}
\lim _{\substack{t \in C(\bar{K}) \\ h_{C}(t) \rightarrow \infty}} \frac{\hat{h}_{\mathcal{A}_{t}, \mathcal{D}_{t}}\left(\mathcal{P}_{t}\right)}{h_{C}(t)}=\hat{h}_{A, D}(P) . \tag{*}
\end{equation*}
$$

Proof Sketch Height Theorem \Rightarrow Specialization Theorem: We have several heights and height pairings:

- Function field canonical height $\hat{h}_{A, D}$ on $A(\bar{K}(C))$.
- Number field canonical heights $\hat{h}_{A_{t}, D_{t}}$ on each fiber $A_{t}(\bar{k})$.
- Number field height on $C(\bar{K})$.

The theorem gives the formula

$$
\lim _{\substack{t \in C(\bar{K}) \\ h_{C}(t) \rightarrow \infty}} \frac{\left\langle P_{t}, Q_{t}\right\rangle_{\mathcal{A}_{t}, \mathcal{D}_{t}}}{h_{C}(t)}=\langle P, Q\rangle_{A, D} .
$$

Let $P_{1}, \ldots, P_{r} \in A(\bar{K}(C))$ generate modulo torsion. Then

$$
\lim _{\substack{t \in C(\bar{K}) \\ h_{C}(t) \rightarrow \infty}} \frac{\operatorname{Reg}_{\mathcal{D}_{t}}\left(\mathrm{~S}_{t}\left(P_{1}\right), \ldots, S_{t}\left(P_{r}\right)\right)}{h_{C}(t)^{r}}=\underbrace{\operatorname{Reg}_{D}\left(P_{1}, \ldots, P_{r}\right)}_{\text {Positive since } P_{1}, \ldots, P_{r} \text { independent. }}>0 .
$$

Hence
$h_{C}(t)$ sufficiently large
$\Longrightarrow \quad \mathrm{S}_{t}\left(P_{1}\right), \ldots, \mathrm{S}_{t}\left(P_{r}\right)$ are independent.
(Additional argument to deal with torsion part of $A(\bar{K}(C))$.)

Generalizations and Strengthenings:

- Higher dimensional bases: Consider $\mathcal{A} \rightarrow B$ with $\operatorname{dim}(B) \geq 2$.
- Rank Jumps: We proved

$$
\begin{aligned}
\operatorname{rank} \mathcal{A}_{t}(K) \geq & \operatorname{rank} A(K(C)) \\
& \text { for } t \in C(K), h_{C}(t) \gg 1 .
\end{aligned}
$$

How frequently can the rank of $\mathcal{A}_{t}(K)$ be strictly larger? By how much?

- Unlikely Intersections: If $\operatorname{dim}(A) \geq 2$, a dimension count suggests that there is a finite set $\Sigma \subset C(\bar{K})$ such that

$$
\begin{aligned}
& t \in C(\bar{K}) \backslash \Sigma \Longrightarrow \\
& \quad \mathrm{S}_{t}: A(\bar{K}(C)) \rightarrow \mathcal{A}_{t}(\bar{K}) \text { is injective. }
\end{aligned}
$$

- Improved Asymptotics: We proved

$$
\hat{h}_{\mathcal{A}_{t}, \mathcal{D}_{t}}\left(\mathcal{P}_{t}\right)=\hat{h}_{A, D}(P) \cdot h_{C}(t)+o\left(h_{C}(t)\right) .
$$

Various people have shown that one can replace the $o\left(h_{C}(t)\right)$ with:

- $O\left(h_{C}(t)^{2 / 3}\right)$ in general.
$-O\left(h_{C}(t)^{1 / 2}\right)$ if $C=\mathbb{P}^{1}$ or $\operatorname{dim}(A)=1$.
$-O(1)$ if $C=\mathbb{P}^{1}$ and $\operatorname{dim}(A)=1$.

Proof Sketch of the Height Limit Theorem: (as time allows)

We start with the triangle inequality

$$
\begin{align*}
\mid \hat{h}_{\mathcal{A}_{t}, \mathcal{D}_{t}}\left(\mathcal{P}_{t}\right)- & \hat{h}_{A, D}(P) \cdot h_{C}(t) \mid \tag{a}\\
\leq & \left|\hat{h}_{\mathcal{A}_{t}, \mathcal{D}_{t}}\left(\mathcal{P}_{t}\right)-h_{\mathcal{A}, \mathcal{D}}\left(\mathcal{P}_{t}\right)\right| \tag{b}\\
& +\left|h_{\mathcal{A}, \mathcal{D}}\left(\mathcal{P}_{t}\right)-h_{A, D}(P) \cdot h_{C}(t)\right| \tag{c}\\
& +\left|h_{A, D}(P)-\hat{h}_{A, D}(P)\right| \cdot h_{C}(t) \tag{d}
\end{align*}
$$

For (b), we know in general that

$$
\hat{h}_{\mathcal{A}_{t}, \mathcal{D}_{t}}=h_{\mathcal{A}, \mathcal{D}}+O(1)
$$

but the $O(1)$ depends on t. One can make the t dependence explicit (interesting argument using blowup to resolve a rational map, see notes):

$$
\hat{h}_{\mathcal{A}_{t}, \mathcal{D}_{t}}=h_{\mathcal{A}, \mathcal{D}}+O\left(h_{C}(t)\right) \quad \text { on } \mathcal{A}_{t}(\bar{K})
$$

where the $\operatorname{big} O$ constant does not depend on t.
The key to estimating (c) is to use the fact that

$$
\mathcal{P}: C \longrightarrow \mathcal{A}
$$

is a morphism. (Here is where we use $\operatorname{dim}(C)=1$.) So by functoriality of heights:

$$
h_{\mathcal{A}, \mathcal{D}}\left(\mathcal{P}_{t}\right)=h_{C, \mathcal{P}^{*} \mathcal{D}}(t)+O_{\mathcal{P}}(1) \quad \text { for } t \in C(\bar{K})
$$

For (d), the function field version says

$$
\hat{h}_{A, D}=h_{A, D}+O(1) \quad \text { on } A(\bar{K}(C))
$$

Substituting $\left(\mathrm{b}^{\prime}\right),\left(\mathrm{c}^{\prime}\right)$, and $\left(\mathrm{d}^{\prime}\right)$ into (a) and dividing by $h_{C}(t)$ yields

$$
\begin{align*}
& \left|\frac{\hat{h}_{\mathcal{A}_{t}, \mathcal{D}_{t}}\left(\mathcal{P}_{t}\right)}{h_{C}(t)}-\hat{h}_{A, D}(P)\right| \leq\left|C_{1}+\frac{C_{2}}{h_{C}(t)}\right| \\
& \quad+\left|\frac{h_{C, \mathcal{P}^{*} \mathcal{D}}(t)}{h_{C}(t)}+\frac{C_{3}(P)}{h_{C}(t)}-h_{A, D}(P)\right|+C_{4} \tag{e}
\end{align*}
$$

For any effective $\Delta_{1}, \Delta_{2} \in \operatorname{Div}(C)$, we have (another height property)

$$
\lim _{\substack{t \in C(\bar{K}) \\ h_{C}(t) \rightarrow \infty}} \frac{h_{C, \Delta_{1}}(t)}{h_{C, \Delta_{2}}(t)}=\frac{\operatorname{deg}\left(\Delta_{1}\right)}{\operatorname{deg}\left(\Delta_{2}\right)}
$$

and hence

$$
\lim _{\substack{t \in C(\bar{K}) \\ h_{C}(t) \rightarrow \infty}} \frac{h_{C, \mathcal{P}^{*} \mathcal{D}}(t)}{h_{C}(t)}=\underbrace{\operatorname{deg}\left(\mathcal{P}^{*} \mathcal{D}\right)=h_{A, D}(P)+O(1)}_{\text {Height via intersection theory over } \bar{K}(C)}
$$

Using this in (e) yields

$$
\begin{equation*}
\limsup _{\substack{t \in C(\bar{K}) \\ h_{C}(t) \rightarrow \infty}}\left|\frac{\hat{h}_{\mathcal{A}_{t}, \mathcal{D}_{t}}\left(\mathcal{P}_{t}\right)}{h_{C}(t)}-\hat{h}_{A, D}(P)\right| \leq C_{5} \tag{f}
\end{equation*}
$$

Key Observation: The constant C_{5} does not depend on P. We know that

$$
\begin{aligned}
\hat{h}_{\mathcal{A}_{t}, \mathcal{D}_{t}}\left([m] \mathcal{P}_{t}\right) & =m^{2} \cdot \hat{h}_{\mathcal{A}_{t}, \mathcal{D}_{t}}\left(\mathcal{P}_{t}\right), \\
\hat{h}_{A, D}([m] P) & =m^{2} \cdot \hat{h}_{A, D}(P)
\end{aligned}
$$

so replacing P by $[m] P$ in (f) gives
$\limsup _{t \in C(\bar{K})}\left|\frac{\hat{h}_{\mathcal{A}_{t}, \mathcal{D}_{t}}\left(\mathcal{P}_{t}\right)}{h_{C}(t)}-\hat{h}_{A, D}(P)\right| \leq \frac{C_{5}}{m^{2}} \quad$ for all $m \geq 1$.
$h_{C}(t) \rightarrow \infty$
Let $m \rightarrow \infty$ to complete the proof.

Mathematics Department, Box 1917, 151 Thayer Street, Brown University, Providence, RI 02912 USA

Email address: joseph_silverman@brown.edu

