2. Lecture 2: Applications \& Local Height Functions

Review: For ample symmetric $D \in \operatorname{Div}(A)$,
$\hat{h}_{D}: A(K) \longrightarrow[0, \infty), \quad \hat{h}_{D}(P)=\lim _{n \rightarrow \infty} 4^{-n} h_{D}\left(\left[2^{n}\right] P\right)$,
$\langle P, Q\rangle_{D}:=\frac{1}{2}\left(\hat{h}_{D}(P+Q)-\hat{h}_{D}(P)-\hat{h}_{D}(Q)\right)$,
$\|P\|_{D}:=\sqrt{\langle P, Q\rangle_{D}}$.

We give $A(K)_{\mathbb{R}}$ the structure of Euclidean vector space via the positive definite bilinear form

$$
\left\langle\sum_{i=1}^{r} a_{i} P_{i}, \sum_{j=1}^{r} b_{j} P_{j}\right\rangle_{D}:=\sum_{i=1}^{r} \sum_{j=1}^{r} a_{i} b_{j}\left\langle P_{i}, P_{j}\right\rangle_{D}
$$

Note on Notation: Every element of

$$
A(K)_{\mathbb{R}}:=A(K) \otimes \mathbb{R}
$$

can be written as a finite sum $\sum P_{i} \otimes a_{i}$, and for notational convenience, we've written this sum as $\sum a_{i} P_{i}$.

2.1. Application: Counting Points.

Néron invented \hat{h}_{D} to give an improved count of points in $A(K)$.

Theorem (Néron).
A / K an abelian variety defined over a number field.
D an ample symmetric divisor on A.
h_{D} an associated Weil height.
r the rank of $A(K)$.
Consider the counting function

$$
\mathcal{N}\left(A(K), h_{D}, T\right):=\#\left\{P \in A(K): h_{D}(P) \leq T\right\} .
$$

There is a constant $\alpha(A / K, D)>0$ such that

$$
\begin{aligned}
& \mathcal{N}\left(A(K), h_{D}, T\right) \\
& \quad=\alpha(A / K, D) T^{r / 2}+O\left(T^{(r-1) / 2}\right) \quad \text { as } T \rightarrow \infty
\end{aligned}
$$

More precisely, we may take

$$
\alpha(A / K, D)=\# A(K)_{\text {tors }} \cdot \frac{\operatorname{Vol}\left\{\mathbf{x} \in \mathbb{R}^{r}:\|\mathbf{x}\| \leq 1\right\}}{\operatorname{Reg}_{D}(A / K)^{1 / 2}}
$$

Proof Sketch.
Step 1. Since

$$
\hat{h}_{D}=h_{D}+O(1),
$$

it suffices to count

$$
\mathcal{N}\left(A(K), \hat{h}_{D}, T\right):=\#\left\{P \in A(K): \hat{h}_{D}(P) \leq T\right\} .
$$

Step 2. We let (abuse of notation)

$$
A(K)_{\mathbb{Z}}:=\operatorname{Image}\left(A(K) \longrightarrow A(K)_{\mathbb{R}}\right)
$$

$A(K)_{\mathbb{Z}}$ is called the Mordell-Weil lattice. This gives an exact sequence

$$
0 \longrightarrow A(K)_{\text {tors }} \longrightarrow A(K) \longrightarrow A(K)_{\mathbb{Z}} \longrightarrow 0 .
$$

This yields

$$
\begin{aligned}
\mathcal{N}(A(K), & \left.\hat{h}_{D}, T\right) \\
& =\# A(K)_{\mathrm{tors}} \cdot \mathcal{N}\left(A(K)_{\mathbb{Z}}, \hat{h}_{D}, T\right) \\
& =\# A(K)_{\mathrm{tors}} \cdot \mathcal{N}\left(A(K)_{\mathbb{Z}},\|\cdot\|_{D}^{2}, T\right) \\
& =\# A(K)_{\mathrm{tors}} \cdot \mathcal{N}\left(A(K)_{\mathbb{Z}},\|\cdot\|_{D}, T^{1 / 2}\right)
\end{aligned}
$$

Step 3. Use a standard "counting lattice points in a (convex) expanding domain" result, such as:

Theorem.

$V \quad \mathbb{R}$-vector space with Euclidean norm $\|\cdot\|$.
L a lattice in V.
\mathcal{F}_{L} a fundamental domain for L.
\mathcal{B} the unit ball $\{\mathbf{v} \in V:\|\mathbf{v}\| \leq 1\}$.
Then
$\{\mathbf{v} \in L:\|\mathbf{v}\| \leq T\}=\frac{\operatorname{Vol}(\mathcal{B})}{\operatorname{Vol}\left(\mathcal{F}_{L}\right)} \cdot T^{\operatorname{dim} V}+O\left(T^{\operatorname{dim} V-1}\right)$.

We apply the theorem with:

$$
\begin{aligned}
V & =A(K) \otimes \mathbb{R} \\
L & =A(K)_{\mathbb{Z}}=\operatorname{Image}(A(K) \longrightarrow A(K) \otimes \mathbb{R}) \\
\|\cdot\| & =\|\cdot\|_{D} \quad(\text { canonical height norm }) \\
\operatorname{Vol}\left(\mathcal{F}_{L}\right) & \left.=\operatorname{Reg}_{D}(A / K)^{1 / 2} \quad \text { (Néron-Tate regulator) }\right)
\end{aligned}
$$

2.2. Local Height Functions. We consider

$v \quad$ a place of K, i.e., $v \in M_{K}$.
K_{v} completion of K at v.
P a point in $\mathbb{P}^{N}\left(K_{v}\right)$.
D an effective divisor in $\operatorname{Div}\left(\mathbb{P}^{N}\right)$.

We would like to define

$$
\begin{aligned}
\lambda_{D, v}(P) & :=\binom{\text { the } v \text {-adic local height }}{\text { of } P \text { with respect to } D} \\
& :=-\log \binom{\text { the } v \text {-adic distance }}{\text { from } P \text { to } D \text { in } \mathbb{P}^{N}\left(K_{v}\right)}
\end{aligned}
$$

Note: $\quad \lambda_{D, v}(P)$ is big $\Longleftrightarrow P$ is v-adically close to D.
Formally, we choose an equation for D, say

$$
\begin{array}{ll}
D=\left\{F_{D}(\mathbf{x})=0\right\}, & \text { for a homogeneous degree } d \\
& \text { polynomial } F_{D} \in K\left[x_{0}, \ldots, x_{N}\right]
\end{array}
$$

and we set

$$
\lambda_{D, v}(P):=-\log \min \left\{\left|\frac{F(P)}{x_{0}(P)^{d}}\right|_{v}, \cdots,\left|\frac{F(P)}{x_{n}(P)^{d}}\right|_{v}\right\}
$$

Then (for properly normalized absolute values) we have

$$
h_{\mathbb{P}^{N}}(P)=\sum_{v \in M_{K}} \lambda_{D, v}(P)+O(1) \quad \text { for } P \in \mathbb{P}^{N}(K) \backslash|D|
$$

More generally one can construct local heights $\lambda_{X, D, v}$ on any (smooth) variety, but they are only welldefined up to bounded functions. For abelian varieties, Néron constructed canonical local heights that are well-defined up to constant functions. He gave three constructions:

- A limit process building on Tate's construction.
- Using intersection theory for non-archimedean v
- Using complex analysis (theta functions) for archimedean v.

Theorem. (Néron) There exists a (unique) collection of functions

$$
\hat{\lambda}_{D, v}: A\left(K_{v}\right) \backslash|D| \longrightarrow \mathbb{R},
$$

indexed by divisors $D \in \operatorname{Div}_{K}(A)$ and absolute values $v \in M_{K}$, so that:
(a) $\hat{\lambda}_{D, v}$ is continuous for the v-adic topology on $A\left(K_{v}\right)$.
(b) $\hat{\lambda}_{D+D^{\prime}, v}=\hat{\lambda}_{D, v}+\hat{\lambda}_{D^{\prime}, v}+\gamma_{v}$.
(c) $\hat{\lambda}_{A, \varphi^{*} D, v}=\hat{\lambda}_{B, D, v} \circ \varphi+\gamma_{v}$ for isogenies $\varphi: A \rightarrow B$.
(d) (Normalization)

$$
\lim _{N \rightarrow \infty} N^{-2 g} \sum_{\substack{P \in A \mid N] \\ P \notin|D|}} \hat{\lambda}_{D, v}(P)=0 .
$$

[Really working in extensions L_{w} / K_{v}.]
(e) (Local-Global Decomposition)

$$
\hat{h}_{D}(P)=\sum_{v \in M_{K}} \hat{\lambda}_{D, v}(P)-\underbrace{\kappa(A, D)}_{\text {Vanishes if } \operatorname{dim}(A)=1 .} .
$$

Explicit Formulas for Local Heights:

(as time permits)
Good Reduction: Suppose that A / K has good reduction at $v \in M_{K}^{\circ}$. Let
$\mathcal{A} / R_{K}=$ Néron model of A / K
$\bar{D}=$ closure in \mathcal{A} of the divisor $D \in \operatorname{Div}(A / K)$
$\bar{P}=$ closure in \mathcal{A} of the point $P \in A(K)$
Then

$$
\hat{\lambda}_{A, D, v}(P)=\underbrace{\langle\bar{D} \cdot \bar{P}\rangle_{\mathcal{A}, v}}
$$

Intersection index of \bar{D} and \bar{P} on the fiber over v.

Bad Reduction: Let

$$
j_{v}: A(K) \longrightarrow\left(\mathcal{A} / \mathcal{A}^{\circ}\right)_{v}\left(k_{v}\right)
$$

be the homomorphism that sends a point to its image in the group of components of the Néron model over v. Then there is a function

$$
\mathbb{B}_{D, v}:\left(\mathcal{A} / \mathcal{A}^{\circ}\right)_{v}\left(k_{v}\right) \longrightarrow \mathbb{R}
$$

so that
$\hat{\lambda}_{A, D, v}(P)=\langle\bar{D} \cdot \bar{P}\rangle_{\mathcal{A}, v}+\mathbb{B}_{D, v}\left(j_{v}(P)\right)-\kappa(A, D, v)$.
Here $\kappa(A, D, v)$ is to make normalization hold.
Archimedean Absolute Values: Write

$$
A\left(\bar{K}_{v}\right)=A(\mathbb{C})=\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\tau \mathbb{Z}^{g}\right) .
$$

There is an associated theta divisor Θ_{τ} and a theta function $\theta_{\tau}(\mathbf{z})$. Then

$$
\hat{\lambda}_{A_{\tau}, \Theta_{\tau}}: A_{\tau}(\mathbb{C}) \backslash \operatorname{Support}\left(\Theta_{\tau}\right) \longrightarrow \mathbb{R}
$$

is given by

$$
\begin{aligned}
\hat{\lambda}_{A_{\tau}, \Theta_{\tau}}(\mathbf{z})= & -\log \left|\theta_{\tau}(\mathbf{z})\right| \\
& +\pi \cdot{ }^{t}(\operatorname{Im} \mathbf{z}) \cdot(\operatorname{Im} \tau)^{-1} \cdot(\operatorname{Im} \mathbf{z})+\kappa_{\tau}
\end{aligned}
$$

