1. Lecture 1: Construction and
 Properties of Canonical Heights

K is a characteristic 0 field, typically:

- a number field or 1-dim'l function field.
- a complete local field.

Heights on \mathbb{P}^{N}
Informal (see notes for formal) definition:

$$
\begin{aligned}
h: \mathbb{P}^{N}(K) & \longrightarrow[0, \infty) \\
h_{\mathbb{P}^{N}}(P) & \approx \# \text { of bits needed to describe } P .
\end{aligned}
$$

Weil Height Machine Overview

- X / K, a smooth projective variety.
- D, D^{\prime}, \ldots divisors (on X).
(a) Normalization:

$$
\binom{D \text { very ample, }}{f_{D}: X \hookrightarrow \mathbb{P}^{N}} \Longrightarrow h_{D}(P)=h_{\mathbb{P}^{N}}\left(f_{D}(P)\right)+O(1)
$$

(b) Linear equivalence:

$$
D^{\prime} \sim D \Longrightarrow h_{D^{\prime}}=h_{D}+O(1)
$$

(c) Functoriality:

$$
\varphi: X \rightarrow Y \Longrightarrow h_{X, \varphi^{*} D}(P)=h_{Y, D}(\varphi(P))+O(1)
$$

(d) Additivity:

$$
h_{D_{1}+D_{2}}=h_{D_{1}}+h_{D_{2}}+O(1)
$$

"(b), (c), (d) convert geometry into arithmetic"
(e) Finiteness (Northcott Property): D ample.

$$
\left\{P \in X(K): h_{D}(P) \leq B\right\} \text { is finite. }
$$

Canonical Height: Construction

A / K is an abelian variety
Def: D is symmetric if $[-1]^{*} D \sim D$. D is anti-symmetric if $[-1]^{*} D \sim-D$.
Abelian varieties satisfy all sorts of interesting divisor relations, including:

$$
\begin{aligned}
{[m]^{*} D } & \sim \frac{m^{2}+m}{2} D+\frac{m^{2}-m}{2}[-1]^{*} D \\
& = \begin{cases}m^{2} D & \text { if } D \text { is symmetric }, \\
m D & \text { if } D \text { is anti-symmetric. }\end{cases}
\end{aligned}
$$

Thus for symmetric D, get

$$
\begin{array}{rlrl}
h_{D}([m] P) & =h_{[m]^{*} D}(P)+O(1) & \text { functoriality, } \\
& =h_{m^{2} D}(P)+O(1) & & \text { linear equivalence, } \\
& =m^{2} h_{D}(P)+O(1) & \text { additivity. }
\end{array}
$$

Intuition: $[m] P$ is about m^{2} as complicated as P. Observation: That $O(1)$ is annoying! ©

Theorem (Néron-Tate): $D \in \operatorname{Div}(A)$ symmetric.
(a) $\hat{h}_{D}(P):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} h_{D}\left(\left[2^{n}\right] P\right)$ converges.
(b) $\hat{h}_{D}(P)=h_{D}(P)+O(1)$ for $P \in A(K)$.
(c) $\hat{h}_{D}([m] P)=m^{2} \cdot \hat{h}_{D}(P)$ for $P \in A(K), m \in \mathbb{Z}$.
(d) $D^{\prime} \sim D \Longrightarrow \hat{h}_{D^{\prime}}=\hat{h}_{D}$.

Proof. (a) Claim:

$$
\left(\frac{1}{4^{n}} h_{D}\left(\left[2^{n}\right] P\right)\right)_{n \geq 0} \text { is Cauchy, hence converges. }
$$

From (*) with $m=2$ and $P \leftarrow\left[2^{i}\right] P$, we get

$$
h_{D}\left(\left[2^{i+1}\right] P\right)=4 h_{D}\left(\left[2^{i}\right] P\right)+O(1) . \quad(* *)
$$

Telescoping sum argument:

$$
\begin{aligned}
& \left|\frac{1}{4^{n}} h_{D}\left(\left[2^{n}\right] P\right)-\frac{1}{4^{k}} h_{D}\left(\left[2^{k}\right] P\right)\right| \\
& \quad=\left|\sum_{i=k}^{n-1}\left(\frac{1}{4^{i+1}} h_{D}\left(\left[2^{i+1}\right] P\right)-\frac{1}{4^{i}} h_{D}\left(\left[2^{i}\right] P\right)\right)\right| \quad \text { telescoping sum }, \\
& \quad \leq \sum_{i=k}^{n-1} \frac{1}{4^{i+1}}\left|h_{D}\left(\left[2^{i+1}\right] P\right)-4 h_{D}\left(\left[2^{i}\right] P\right)\right| \quad \text { triangle inequality, } \\
& \quad \leq \sum_{i=k}^{n-1} \frac{1}{4^{i+1}} \cdot C \quad \text { from }(* *) \\
& \quad \leq \frac{1}{4^{k}} \cdot \frac{C}{3} \longrightarrow 0 \quad \text { as } n \geq k \rightarrow \infty . \quad(* * *)
\end{aligned}
$$

(b) In $(* * *)$, taking

$$
k=0 \quad \text { and let } n \rightarrow \infty
$$

yields

$$
\left|\hat{h}_{D}(P)-h_{D}(P)\right| \leq \frac{C}{3} .
$$

(c) We compute

$$
\begin{aligned}
\hat{h}_{D}([m] P) & :=\lim _{n \rightarrow \infty} 4^{-n} \cdot h_{D}\left(\left[2^{n} m\right] P\right) \\
& =\lim _{n \rightarrow \infty} 4^{-n} \cdot(m^{2} h_{D}\left(\left[2^{n}\right] P\right)+\overbrace{O(1)}^{\text {Independent of } n \text { and } P}) \\
& =m^{2} \hat{h}_{D}(P)
\end{aligned}
$$

(d) Follows from $h_{D}=h_{D^{\prime}}+O(1)$.

Remark. There is a similar construction for antisymmetric divisors, and then for general divisors, by writing

$$
D=\underbrace{\frac{D+[-1]^{*} D}{2}}_{\text {symmetric }}+\underbrace{\frac{D-[-1]^{*} D}{2}}_{\text {anti-symmetric }}
$$

We will (mostly) use symmetric divisors.
Theorem (Néron-Tate): $D \in \operatorname{Div}(A)$ ample and symmetric.
(a) $\hat{h}_{D}: A(K) \rightarrow \mathbb{R}$ is a quadratic form.
(b) $\hat{h}_{D}(P) \geq 0$ for all $P \in A(K)$.
(c) $\hat{h}_{D}(P)=0$ if and only if $P \in A(K)_{\text {tors }}$.
(d) \hat{h}_{D} extends to a positive definite quadratic form on

$$
A(K) \otimes \mathbb{R} \cong \mathbb{R}^{\mathrm{rank} A(K)}
$$

Proof sketch at end if there's time, but first:

Definition. The canonical (Néron-Tate) height pairing is

$$
\begin{aligned}
& \langle\cdot, \cdot\rangle_{D}: A(\bar{K}) \times A(\bar{K}) \longrightarrow \mathbb{R}, \\
& \langle P, Q\rangle_{D}=\frac{1}{2}\left(\hat{h}_{D}(P+Q)-\hat{h}_{D}(P)-\hat{h}_{D}(Q)\right) .
\end{aligned}
$$

Definition. The Néron-Tate regulator of

$$
P_{1}, \ldots, P_{r} \in A(K)
$$

is

$$
\operatorname{Reg}_{D}\left(P_{1}, \ldots, P_{r}\right)=\operatorname{det}\left(\left\langle P_{i}, P_{j}\right\rangle_{D}\right)_{1 \leq i, j \leq r}
$$

We also let

$$
\operatorname{Reg}_{D}(A / K)=\operatorname{Reg}_{D}\left(P_{1}, \ldots, P_{r}\right)
$$

for any basis P_{1}, \ldots, P_{r} of $A(K) / A(K)_{\text {tors }}$.
Remark. \hat{h}_{D} makes $A(K) \otimes \mathbb{R}$ into a Euclidean space, where the norm

$$
\|P\|_{D}:=\sqrt{\hat{h}_{D}(P)}
$$

measures of the arithmetic complexity of the point $P \in$ $A(K)$, where we can measure "complexity" angles

$$
\langle P, Q\rangle_{D}:=\|P\|_{D} \cdot\|Q\|_{d} \cdot \cos \theta_{D}(P, Q)
$$

and where $\operatorname{Reg}_{D}(A / K)$ is the co-volume of the lattice

$$
A(K) / A(K)_{\mathrm{tors}} \cong \mathbb{Z}^{\operatorname{rank} A(K)} \quad \text { sitting in }
$$

the Euclidean space $A(K) \otimes \mathbb{R} \cong \mathbb{R}^{\mathrm{rank}} A(K)$.

Proof Sketch. [As Time Allows]
We'll start with (b) and (c), since they tie in with Lecture \#3.
(b) $\left[\hat{h}_{D}(P) \geq 0\right]$
D ample $\Longrightarrow h_{D}(Q) \geq-C$ for all $Q \in A(K)$, by positivity,

$$
\begin{aligned}
\Longrightarrow \hat{h}_{D}(P) & =\lim _{n \rightarrow \infty} \frac{1}{4^{n}} h_{D}\left(\left[2^{n}\right] P\right) \\
& \geq \lim _{n \rightarrow \infty} \frac{1}{4^{n}} \cdot(-C) \\
& =0
\end{aligned}
$$

(c) $\left[P \in A(K)_{\text {tors }} \Longrightarrow \hat{h}_{D}(P)=0\right]$
$P \in A(K)_{\text {tors }} \Longrightarrow \hat{h}_{D}(P):=\lim _{\substack{n \rightarrow \infty \\ \text { Only finitely many possible values }}} 4^{-n} h_{D}\left(2^{\left[2^{n}\right] P}\right)=0$.
(c) $\left[\hat{h}_{D}(P)=0 \Longrightarrow P \in A(K)_{\text {tors }}\right]$
$\hat{h}_{D}(P)=0$
$\Longrightarrow \hat{h}_{D}([m] P)=m^{2} \hat{h}_{D}(P)=0$ for all $m \geq 1$,
$\Longrightarrow h_{D}([m] P) \leq C$ with C independent of m, using $\hat{h}_{D}=h_{D}+O(1)$,
$\Longrightarrow\{[m] P: m \geq 1\} \subseteq \underbrace{\left\{Q \in A(K): h_{D}(Q) \leq C\right\}}_{\text {Finite }}$
Finite set, since D is ample.
$\Longrightarrow\left[m_{1}\right] P=\left[m_{2}\right] P$ for some $m_{1}>m_{2} \geq 1$ (pigeonhole principle),
$\Longrightarrow P \in A(K)_{\text {tors }}$.
(a) $\left[\hat{h}_{D}(P)\right.$ is a quadratic form on $\left.A(K)\right]$ This is a computation using the Theorem of the Cube. See the lecture notes.
(d) $\left[\hat{h}_{D}(P)\right.$ is positive definite on $\left.A(K) \otimes \mathbb{R}\right]$ The positive definiteness on $A(K) / A(K)_{\text {tors }}$ follows from (b) \& (c). But more is needed for $A(K) \otimes \mathbb{R}$, with the Northcott property playing a crucial role.

