1. Lecture 1: Construction and Properties of Canonical Heights

K is a characteristic 0 field, typically:

- a number field or 1-dim'l function field.
- a complete local field.

Heights on \mathbb{P}^N

Informal (see notes for formal) definition:

$$\begin{split} h: \mathbb{P}^N(K) &\longrightarrow [0,\infty), \\ h_{\mathbb{P}^N}(P) &\approx \# \text{ of bits needed to describe } P. \end{split}$$

Weil Height Machine Overview

- X/K, a smooth projective variety.
- D, D', \ldots , divisors (on X).

(a) **Normalization**:

$$\begin{pmatrix} D \text{ very ample,} \\ f_D : X \hookrightarrow \mathbb{P}^N \end{pmatrix} \implies h_D(P) = h_{\mathbb{P}^N} (f_D(P)) + O(1).$$

(b) Linear equivalence:

$$D' \sim D \implies h_{D'} = h_D + O(1).$$

- (c) **Functoriality**:
- $\varphi: X \to Y \implies h_{X,\varphi^*D}(P) = h_{Y,D}(\varphi(P)) + O(1).$
- (d) Additivity:

$$h_{D_1+D_2} = h_{D_1} + h_{D_2} + O(1).$$

"(b), (c), (d) convert geometry into arithmetic"
(e) Finiteness (Northcott Property): D ample.

 $\{P \in X(K) : h_D(P) \le B\}$ is finite.

Canonical Height: Construction

A/K is an abelian variety

Def: *D* is symmetric if $[-1]^*D \sim D$. *D* is anti-symmetric if $[-1]^*D \sim -D$.

Abelian varieties satisfy all sorts of interesting divisor relations, including:

$$[m]^*D \sim \frac{m^2 + m}{2}D + \frac{m^2 - m}{2}[-1]^*D$$
$$= \begin{cases} m^2D & \text{if } D \text{ is symmetric,} \\ mD & \text{if } D \text{ is anti-symmetric.} \end{cases}$$

Thus for symmetric D, get

$$h_D([m]P) = h_{[m]*D}(P) + O(1) \quad \text{functoriality,}$$

= $h_{m^2D}(P) + O(1) \quad \text{linear equivalence,}$
= $m^2 h_D(P) + O(1) \quad \text{additivity.} \quad (*)$

Intuition: [m]P is about m^2 as complicated as P. Observation: That O(1) is annoying! \bigcirc

Theorem (Néron–Tate): $D \in \text{Div}(A)$ symmetric. (a) $\hat{h}_D(P) := \lim_{n \to \infty} \frac{1}{4^n} h_D([2^n]P)$ converges. (b) $\hat{h}_D(P) = h_D(P) + O(1)$ for $P \in A(K)$. (c) $\hat{h}_D([m]P) = m^2 \cdot \hat{h}_D(P)$ for $P \in A(K), m \in \mathbb{Z}$. (d) $D' \sim D \implies \hat{h}_{D'} = \hat{h}_D$.

©2024, J.H. Silverman

Proof. (a) **Claim**:

$$\left(\frac{1}{4^n}h_D([2^n]P)\right)_{n\geq 0}$$
 is Cauchy, hence converges.

From (*) with m = 2 and $P \leftarrow [2^i]P$, we get

$$h_D([2^{i+1}]P) = 4h_D([2^i]P) + O(1).$$
 (**)

Telescoping sum argument:

$$\begin{aligned} \left| \frac{1}{4^n} h_D([2^n]P) - \frac{1}{4^k} h_D([2^k]P) \right| \\ &= \left| \sum_{i=k}^{n-1} \left(\frac{1}{4^{i+1}} h_D([2^{i+1}]P) - \frac{1}{4^i} h_D([2^i]P) \right) \right| \quad \text{telescoping sum,} \\ &\leq \sum_{i=k}^{n-1} \frac{1}{4^{i+1}} \left| h_D([2^{i+1}]P) - 4h_D([2^i]P) \right| \quad \text{triangle inequality,} \\ &\leq \sum_{i=k}^{n-1} \frac{1}{4^{i+1}} \cdot C \quad \text{from } (**), \\ &\leq \frac{1}{4^k} \cdot \frac{C}{3} \longrightarrow 0 \quad \text{as } n \ge k \to \infty. \qquad (***) \end{aligned}$$

(b) In (***), taking

k = 0 and let $n \to \infty$

yields

$$\left|\hat{h}_D(P) - h_D(P)\right| \le \frac{C}{3}$$

©2024, J.H. Silverman

(c) We compute

$$\hat{h}_D([m]P) := \lim_{n \to \infty} 4^{-n} \cdot h_D([2^n m]P)$$
Independent of *n* and *P*.

$$= \lim_{n \to \infty} 4^{-n} \cdot \left(m^2 h_D([2^n]P) + \widehat{O(1)}\right)$$

$$= m^2 \hat{h}_D(P).$$

(d) Follows from $h_D = h_{D'} + O(1)$.

Remark. There is a similar construction for antisymmetric divisors, and then for general divisors, by writing

$$D = \underbrace{\frac{D + [-1]^* D}{2}}_{\text{symmetric}} + \underbrace{\frac{D - [-1]^* D}{2}}_{\text{anti-symmetric}}.$$

We will (mostly) use symmetric divisors.

Theorem (Néron–Tate): $D \in \text{Div}(A)$ ample and symmetric.

(a) $\hat{h}_D : A(K) \to \mathbb{R}$ is a quadratic form.

(b) $\hat{h}_D(P) \ge 0$ for all $P \in A(K)$.

(c) $\hat{h}_D(P) = 0$ if and only if $P \in A(K)_{\text{tors}}$.

(d) \hat{h}_D extends to a positive definite quadratic form on

 $A(K)\otimes \mathbb{R}\cong \mathbb{R}^{\operatorname{rank} A(K)}.$

Proof sketch at end if there's time, but first:

Definition. The canonical (Néron-Tate) height pairing is

$$\langle \cdot, \cdot \rangle_D : A(\bar{K}) \times A(\bar{K}) \longrightarrow \mathbb{R},$$

 $\langle P, Q \rangle_D = \frac{1}{2} \Big(\hat{h}_D(P+Q) - \hat{h}_D(P) - \hat{h}_D(Q) \Big).$

Definition. The Néron-Tate regulator of $P_1, \ldots, P_r \in A(K)$

is

$$\operatorname{Reg}_D(P_1,\ldots,P_r) = \det\left(\langle P_i,P_j\rangle_D\right)_{1\leq i,j\leq r}.$$

We also let

$$\operatorname{Reg}_D(A/K) = \operatorname{Reg}_D(P_1, \dots, P_r)$$
for any basis P_1, \dots, P_r of $A(K)/A(K)_{\operatorname{tors}}$.

Remark. \hat{h}_D makes $A(K) \otimes \mathbb{R}$ into a Euclidean space, where the norm

$$\|P\|_D := \sqrt{\hat{h}_D(P)}$$

measures of the arithmetic complexity of the point $P \in A(K)$, where we can measure "complexity" angles

 $\langle P, Q \rangle_D := \|P\|_D \cdot \|Q\|_d \cdot \cos \theta_D(P, Q),$ and where $\operatorname{Reg}_D(A/K)$ is the co-volume of the lattice

 $A(K)/A(K)_{\text{tors}} \cong \mathbb{Z}^{\operatorname{rank} A(K)}$ sitting in

the Euclidean space $A(K) \otimes \mathbb{R} \cong \mathbb{R}^{\operatorname{rank} A(K)}$.

Proof Sketch. [As Time Allows] We'll start with (b) and (c), since they tie in with Lecture #3. (b) $[\hat{h}_D(P) \ge 0]$ $D \text{ ample } \Longrightarrow h_D(Q) \ge -C \text{ for all } Q \in A(K),$ by positivity. $\implies \hat{h}_D(P) = \lim_{n \to \infty} \frac{1}{4^n} h_D([2^n]P)$ $\geq \lim_{n \to \infty} \frac{1}{4^n} \cdot (-C)$ = 0.(c) $P \in A(K)_{\text{tors}} \implies \hat{h}_D(P) = 0$ $P \in A(K)_{\text{tors}} \implies \hat{h}_D(P) := \lim_{n \to \infty} 4^{-n} h_D(\underline{[2^n]P}) = 0.$ Only finitely many possible values (c) $|\hat{h}_D(P) = 0 \implies P \in A(K)_{\text{tors}}|$ $\hat{h}_D(P) = 0$ $\implies \hat{h}_D([m]P) = m^2 \hat{h}_D(P) = 0 \text{ for all } m \ge 1,$ $\implies h_D([m]P) \leq C \text{ with } C \text{ independent of } m,$ using $h_D = h_D + O(1)$, $\implies \left\{ [m]P: m \ge 1 \right\} \subseteq \underbrace{\left\{ Q \in A(K) : h_D(Q) \le C \right\}}_{}$ Finite set, since D is ample. $\implies [m_1]P = [m_2]P$ for some $m_1 > m_2 \ge 1$ (pigeonhole principle), $\implies P \in A(K)_{\text{tors}}.$

©2024, J.H. Silverman

(a) $[\hat{h}_D(P)$ is a quadratic form on A(K)]This is a computation using the Theorem of the Cube. See the lecture notes.

(d) $[\hat{h}_D(P)$ is positive definite on $A(K) \otimes \mathbb{R}]$ The positive definiteness on $A(K)/A(K)_{\text{tors}}$ follows from (b) & (c). But more is needed for $A(K) \otimes \mathbb{R}$, with the Northcott property playing a crucial role.

8