Algebraic Cycles on AV

Ben Moonen - Radboud Univ. Nijmegen

$/k$, X, Y : sm. proj. var. $/k$

Def: $i, j \in \mathbb{Z}$

$Z^i(X) := \mathbb{Z} \cdot \left\{ \text{cl. irreducible subspace } \mathcal{Z}_C X \right\}$ of codim i

$Z_j(X) := \mathbb{Z} \cdot \left\{ \mathcal{Z} \mid \text{dim}(\mathcal{Z}) = j \right\}$

elt: $\sum \sum_{i \in \mathbb{Z}} Z_i^{m_i}$ $m_i \in \mathbb{Z}$

Rat'l eq: $W \subset X$ irreducible of Codim $= i - 1$

generated by: $0 \neq f \in k(W) \sim \text{div}(f)$

$\text{div}(f) \sim \text{rat } 0$
Flat fam. U of cycles on $X \times \mathbb{P}^1$

at t: V_t

Rat'eq: gen'd by

$V_{t_1} \sim \text{rat} \; V_{t_2}$

$CH^i(X) := Z^i(X)/\sim \text{rat}$

$CH_j(X) := Z_j(X)/\sim \text{rat}$

$CH(X) := \bigoplus_i CH^i(X) = \bigoplus_j CH_j(X)$

$CH(X)_{\mathbb{Q}} := CH(X) \otimes \mathbb{Q}$
Exa (X ined)

\[\text{ch}^0(X) \cong \mathbb{Z}. [x] \]

\[\text{ch}^1(X) = \text{Cl}(X) \cong \text{Pic}(X) \]

Operations

push-forward \(f : X \rightarrow Y \)

\[f_* : \text{ch}^i(X) \rightarrow \text{ch}^i(Y) \]

Idea: \(ZcX \rightarrow f(Z)cY \)

- \(Z \rightarrow f(Z) : \) if gen. f.m. of deg = d
- then \(f_* [Z] = d. [f(Z)] \)
- else \(f_* [Z] = 0 \).
Pullback (Gysin) \(f: X \to Y \)
\[f^*: CH^*(Y) \to CH^*(X) \]
preserves codim-grading

Special case: if flat then for \(W \subseteq Y \)
\[f^{-1}(W) \to f^* [W] = [f^{-1}(W)]. \]

Intersection product: \((X/\& \text{sm. proj}) \)

\(CH^*(X) \) is comm. graded ring

\[CH^i(X) \times CH^j(X) \to CH^{i+j}(X) \]

Very special case: \(W, Z \subseteq X \) intersect transversally:
\[[W] \cdot [Z] = [Z \cap W]. \]
Exterior prod: \(X \times Y / \mathcal{E} \)

\[\alpha \in \text{CH}^i(X), \quad \beta \in \text{CH}^j(Y) \]

\[\Rightarrow \alpha \times \beta \in \text{CH}^{i+j}(X \times Y) \]

Idea: \(\alpha = [\mathcal{W}] \) then \(\alpha \times \beta = [\mathcal{W} \times \mathcal{Z}] \)

\(\beta = [\mathcal{Z}] \)

Relations:

1. \(\alpha \cdot \beta = \Delta^* (\alpha \times \beta) \)

\[\Delta: X \to X \times X \]

2. \(\alpha \times \beta = \pi_1^* (\alpha) \cdot \pi_2^* (\beta) \)

\[\begin{array}{ccc}
\pi_1 & \downarrow & \pi_2 \\
X \times X & \to & X \\
\end{array} \]
Projected formula: \(f: X \to Y \)

\[
\psi_*(f^*(\alpha) \cdot \beta) = \alpha \cdot f_*(\beta)
\]

\[X/\mathcal{P} \text{ ab. var, dim }= q,\]
\[m: X \times X \to X\]

\[\square \text{ CH}(X) \text{ has a 2nd ring structure!}\]

\[\star : \text{CH}_i(X) \times \text{CH}_j(X) \to \text{CH}_{i+j}(X)\]
\[\alpha, \beta \mapsto m_*(\alpha \times \beta)\]

\[\text{CH}(X): \text{ comm. graded ring}\]

\[\uparrow \text{ for dim of cycles}\]
\[
\begin{align*}
X & \xrightarrow{\Delta} X \times X \xrightarrow{\mu} X \\
\alpha \times \beta \\
\alpha = [w], \quad \beta = [z] & \xrightarrow{\mu} \\
(w + z) \subset X \\
\{p + q \mid p \in \mathbb{G} w, \quad q \in \mathbb{Z}\} & \\
w \times z & \xrightarrow{\mu} (w + z) \quad \text{if gen. fin. of degree } = d \text{ then } \alpha \star \beta = d \cdot [(w + z)] \\
\text{unit for } \times \text{-prod} & = [e]
\end{align*}
\]
$X \rightarrow X^t := \text{Pic}^0_{X/k}$

$\text{Pic}^0_{X/k} = \text{moduli of line bun on } X$

$\text{Pic}^0 \text{ comp. } = \mathbb{G}_m$

Always: $X \sim X^t$

in gen'l: $X \not\sim X^t$

Poincane LB: P on $X \times X^t$

$\exists \in X^t: P|_{X \times \{ \exists \}} = \text{line bun on } X$

corr. to \exists

$X \cong (X^t)^t$

P_{X^t} on $X^t \times X$ is just $(\text{SW})^* P$

$\text{SW}: X^t \times X^t \rightarrow X \times X^t$
\(\eta := \zeta_1(P) \in CH^1(X \times X^t) \)

\[
ch(P) := \exp(\eta) = 1 + \eta + \frac{1}{2} \eta^2 + \cdots + \frac{1}{(2g)!} \eta^{2g} \in CH(X \times X^t)_{Q}
\]

Def. Fourier transform

\(\mathcal{F} = \mathcal{F}_X : CH(X)_{Q} \rightarrow CH(X^t)_{Q} \)
\[F(x) = \Pr_{X^t, \star} \left(\Pr_X^*(x) \cdot \text{ch}(P) \right) \]

\[F^t = F^t_{x^t} : \text{CH}(X^t)_Q \rightarrow \text{CH}(X)_Q \]

THEOREM: (Mukai, Beauville)

(i) \[F^t \circ F = (-1)^t \cdot [-1]_* \]

\((n \in \mathbb{Z}, [n]_X: X \rightarrow X \text{ mult by } n \text{ map}) \)

Hence \(F: (\text{CH}(X)_{Q^*}) \sim (\text{CH}(X^t)_{Q^*}) \)

(ii) \[F(\alpha \ast \beta) = F(\alpha) \cdot F(\beta) \]

\[F(\alpha \cdot \beta) = (-1)^t \cdot F(\alpha) + F(\beta) \]