
ABELIAN VARIETIES

Clay Lectures; Arizona Winter School 2024

Barry Mazur

These notes are just the ‘compactification’ (and mild amplification) of the
slides I used in my two Clay lectures. This accounts for the curious coloring
and variation of size and spacing of the texts.

1. Lecture I: What are Abelian Varieties?

• Why are Abelian Varieties interesting?

• Why are they useful?

That’s going to be the theme of my lectures!

as well as a discussion of recent work, recent conjectures, recent questions—
regarding uniformity and statistics (i.e., average values) of the Diophantine
behavior of Abelian varieties.

2. We’ll begin by talking about Abelian Varieties of
dimension 1

—AKA elliptic curves—

defined over a field K, these being representable as plane cubic curves with
coefficients in K.

3. Starting in the spirit of Weierstrass

Given a lattice Λ ⊂ C

— i.e., a discrete subgroup free of rank 2, in C —

Weierstrass (1849) defined the rather amazing doubly periodic function
that bears his name:

P(z,Λ) := 1
z2 +

∑
λ∈Λ\{0}

(
1

(z−λ)2 − 1
λ2

)

1
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where the mapping

z
φ→

(
P(z),P ′(z)

)
∈ C2

parametrizes the affine cubic curve:

Y 2 = 4X3 − g2X − g3

g2 := 60
∑

06=λ∈Λ

λ−4

g3 := 140
∑

06=λ∈Λ

λ−6

Since

P ′2(z) = 4P3(z)− g2P(z)− g3

giving C/Λ an algebraic structure.

4. Leading the theory in two directions:

• To complex tori. I.e.,
Compact Complex Analytic Abelian Lie groups
these being of the form

Cg/Λ

where Λ ⊂ Cg is a discrete free abelian subgroup of
(maximal) rank 2g.

and

• To Abelian varieties—or, at least at first, to cu-
bic plane algebraic curves with an inherited abelian
group structure coming from the quotient C/Λ, and
to the more modern:
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5. Spirit of Poincaré

Although there were hints of this in the work of Jacobi
before, it was in Poincaré‘s 1901 paper:
Sur les propriétés arithmétiques des courbes algébriques
where elliptic curves—i.e., 1-dimensional abelian varieties—
got started:

Points rationnels des cubiques:

Étudions d’abord la distribution des points
rationnels sur ces courbes. J’observe que la
connaissance de deux points rationnels sur une
cubique rationnelle suffit pour en faire connâitre
un troisième.

“Rational points on cubics: Let’s first
study the distribution of rational points on these
curves. I note that knowledge of two rational
points on a rational cubic is sufficient to get us
to know a third.
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6. P +Q+R = 0

Without stating this explicitly, Poincaré views the set of
rational points on an elliptic curve as an abelian group

—and with no proofs getting in the way—

he defines the rank of an elliptic curve to be the number
of points playing the role of P and Q needed to get all the
rational points on the curve; in effect, anticipating:

Mordell’s Theorem proved over two decades later.

7. The spirit of Mordell
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If a non-singular rational plane cubic curve has
a rational point, then the group of rational points
is finitely generated.

L. J. Mordell, On the rational solutions of the indeterminate equations of the third
and fourth degrees Proc. Camb. Philos. Soc. 21, 179-192 (1922)

8. ‘Descent’ as Mordell’s method of proof:

If A is the elliptic curve over Q defined by one of those

“indeterminate equations of the third or fourth degree”

and A(Q) is its (commutative!) group of rational points then Mordell’s proof has
two parts that play off one on the other:

9. “Weak Mordell-Weil” and “Controlling by Height”

(1) (“Weak M-W”:) The group A(Q)/2A(Q) is finite,

and

(2) (“Controlling by Height ”) Multiplication by 2 increases the height of a
Q-rational point (essentially) by a factor of 4.

By (2) it follows that a rational point of nonzero (Néron-Tate) height cannot be
divisible by 2n for n indefinitely large. Given (1), a simple further argument proves
that A(Q) is finitely generated.

10. The surprising computability of upper bounds for the “Weak
Mordell-Weil” quotient groups

A(K)/2A(K)

—Or more generally, of the quotient groups—

A(K)/nA(K)

is the strength of Mordell’s original proof. This is echoed by all the later proofs
of the more general Mordell-Weil Theorem, making use of:

The fundamental short exact sequence:

0→ A[n]→ A
n−→ A→ 0

that gives rise to:
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11. the basic “weak-MW-framework”:

0 −→ A(K)/nA(K) −→ H1(K,A[n]) −→ H1(K,A)[n] −→ 0

which doesn’t quite get you where you want since H1(K,A[n]) is very likely of
infinite rank over Z/nZ.

12. Local Conditions

But once you impose local conditions at primes v:

0 // A(K)/nA(K) //

��

H1(K,A[n])

��
0 // A(Kv)/nA(Kv) // H1(Kv, A[n])

satisfied by global rational points you cut out Selmer subgroups withinH1(K,A[n])
obtaining finiteness.

0 // A(K)/nA(K) // H1(K,A[n])

0 // A(K)/nA(K) //

=

OO

Selmern(A;K)

local conditions

OO

0

OO

These Selmer groups Selmern(A;K) are finite (and computable!) so it follows
that

A(K)/n · A(K) is finite

(with a computable upper bound). This is how you prove “Weak MW.”

13. That’s what got our subject started

Milestones. . .

The elliptic curve with the highest rank found so far is:

y2 + xy + y = x3 − x2−
20067762415575526585033208209338542750930230312178956502x+

3448161179503055646703298569039072037485594435931 ∼
∼ 9180361266008296291939448732243429
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which has rank at least 28.

‘Noam Elkies’ Elliptic Curve’

14. Uniformity of Mordell-Weil rank

And here’s a fairly recent conjecture1 suggested by computations that depend
on the random matrix heuristic. It is striking in its precision, and in how close it
is to the data accumulated so far.

Conjecture 1. (Park, Poonen, Voight, Wood) There are only finitely many elliptic
curves over K = Q of Mordell-Weil rank greater than 21.

15. Average Mordell-Weil rank

There is an immense literature on this, both in terms of what is proved, and what
is conjectured, but the simplest to state qualiitative conjecture still outstanding is
that

roughly ‘half’ of the elliptic curves over Q have Mordell-Weil rank 0 and half have
rank 1, and those with higher rank amount to 0% of the total number of elliptic
curves over Q. This would imply that the average rank of the Mordell-Weil group
of an elliptic curve over Q is 1

2 .

It is known2 that arranging elliptic curves E over Q by a natural “naive” height—
the average size of Sel2(E) is 3 and Sel3(E) is 4. The latter result alone implies
that

the average Mordell-Weil rank of elliptic curves over Q is ≤ 7
6

16. Now for Abelian Varieties in general

Curiously, you need very few axioms to define this notion.

Definition 2. (Quite a sparce definition!) Let K be a field and A/K a smooth
projective variety, and e ∈ A(K) a K-rational point. Suppose that A is endowed
with a morphism

A×A m−→ A

1A heuristic for boundedness of ranks of elliptic curves, Jennifer Park, Bjorn Poonen,
John Voight, Melanie Matchett Wood https://arxiv.org/abs/1602.01431

2See, for example,

• M. Bhargava and A. Shankar, Binary quartic forms having bounded invariants,
and the boundedness of the average rank of elliptic curves, Annals of Mathematics
181 (2015), 191-242;

• Bjorn Poonen’s Bourbaki Seminar article arXiv:1203.0809v2

• M. Bhargava and W. Ho, On average sizes of Selmer groups and ranks in families
of elliptic curves having marked points arXiv:2207.03309v2
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defined over K (that, for the moment, we view as ‘multiplication’ writing m(x, y) =
x · y) and relative to which e is an ‘identity element.’ That is,

x · e = x = e · x.

Then A is called an abelian variety over K.

17. Basic Theorems

Theorem 3. Abelian varieties are in fact abelian algebraic groups; “multiplica-
tion” is a commutative group law. And so, naturally, multiplication is written as
‘addition’ (+).

There are some (different) neat proofs of this—
two in David Mumford’s book Abelian Varieties.

For example, to see that such a multiplication morphism m has inverses, consider
the mapping

A×A φ→ A×A

that sends

(x, y) 7→ (xy, x).

Visibly the inverse of (e, e) is nothing more than the point (e, e). I.e., the fiber of φ
over (e, e) is one point. Therefore by a standard dimension theorem, we have that
φ is surjective, so for any x ∈ A, there’s a y ∈ A such that xy = e.

Arguments of a similar nature give that the multiplication law m is commutative,
and associative.

18. The spirit of André Weil

Although the Mordell-Weil theorem—the result that generalize Mordell’s Theorem—
is usually stated this way:

Theorem 4. (Mordell-Weil) Let K be a number field and A/K an abelian variety,
then the ‘Mordell-Weil group’ of A over K; i.e., the group A(K) of K-rational
points of A is a finitely generated abelian group.
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19. Weil proved it specifically for Abelian varieties that are
Jacobians of curves

He stated it this way:

“One finds that all rational systems of points on a curve are derived
from a finite number of them by addition and subtraction.”

20. In our more modern terminology

rational systems of points ↔ Divisors on the curve

and

“derived from” ↔ “linearly equivalent to”

—leading us to:

21. The particular class of abelian varieties that are Jacobians of
curves

but happily:

Lemma 5. Any abelian variety over K is isogenous to a sub-abelian variety of the
Jacobian of some curve over K.

from which “The Mordell-Weil Theorem” then follows for all abelian varieties—so
let’s consider Jacobians.

22. Jacobians

From now on K will be a number field. Fix C be a smooth projective curve of
genus g ≥ 1 defined over K, and let e ∈ C be a K-rational point. The abelian
varieties we’ll focus on are:

• A := JC : The jacobian of such curves C

The jacobian, JC , of the curve C is the abelian variety over K given in any of
these ways:

23. (1) Viewed in the spirit of Weierstrass, at least when the base
field is C:

By the lattice of periods!
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24. (2) Or viewed concretely:

as having the property that for any field extension L/K, its group of L-valued
points, JC(L), is the quotient group:

{Divisors on C of degree zero defined over L} / {Principal Divisors}

DIV 0(C)/K(A)∗

(3) Or viewed more structurally:

Pic0(C)/K ,

the abelian group scheme representing the functor

K-scheme S 7→

{the group (under tensor product) of isomorphism classes of line bundles of
degree zero (relative to S) over C ×SpecK S}. Note that

C 7→ Pic0(C)/K

is a contravariant functor—and is, sort of—

the motivic H1 of C.

25. (4) Or viewed straight functorially:

as “the smallest group scheme containing C.”

That is, consider the problem of mapping (C, e) (base changed to any K-scheme
S) to any abelian scheme A over S:

(1) C
φ // A

e

OO

// 0

OO

26. JC is the Albanese variety of (C, e) (over K).

That is, C ↪→ Alb(C) represents that universal problem: Alb(C) is an abelian
variety over K together with a morphism over K,

that has the property that any morphism C → A such as (1) above factors
uniquely:

C // Alb(C)
φ // A
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where Alb(C)
φ−→ A is a homomorphism of abelian varieties. Note that

C 7→ Alb(C)

is a covariant functor—and is, sort of—

the motivic H1 of C.

Discuss duality and self-duality

(5) Or in a way, relevant to Diophantine issues that we’ll be discussing, in terms
of symmetric powers:

Definition 6. For n ≥ 1 let Sn be the symmetric group “on n letters” acting on
the n-th power of the curve C. Denote by

Symmn(C) := Cn/Sn,

the quotient n-dimensional projective variety.

27. The relation between Symmn(C) and JC

For any n ≥ 1 there is a natural map, defined over L:

(2) ι : Symmn(C) −→ JC

sending an unordered n-tuple

(e1, e2, . . . , en)

to the linear equivalence class of the divisor of degree zero in C:
n∑
k=1

ek − n · e.

(3)


Symmn(C)

ι→ JC

(e1, e2, . . . , en)]
ι7→

[ ∑n
k=1 ek − n · e

]

Theorem 7. • The fibers of the morphism ι are rational varieties.
• If n ≥ g, ι is surjective.

• If n < δC := the Kalg-gonality of C, then

Symmn(C)
ι
↪→ JC
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is injective.

28. Gonality

Definition 8. The K-gonality of a curve is the smallest degree of any nonconstant
rational function on it–that is defined over K.

This notion (at least for K = C) was originally introduced by Bernhard Riemann
in Section V of his Theory of Abelian Functions.

29. The connection between algebraic points on C and rational
points on JC

If α ∈ C(Kalg) is an algebraic point on C and the set

{α1, α2, . . . , αν} ⊂ C(Kalg)

consists of α and its conjugates over K, define j(α) ∈ JC(K) to be the divisor class
of

ν∑
i=1

αi − ν · e.

Let SC(K; d) denote the set of K-conjugacy classes of algebraic points on C of
degree ≤ d. We have the natural mapping

SC(K; d)
j−→ JC(K)

30. Lecture 2: Uniform Diophantine Bounds

Recall our set-up:

• Let K be a number field, and C a smooth projective
curve over K (say of genus > 0) with e ∈ C a chosen
K-rational point;

• JC : the jacobian of C where we consider the injection
C ↪→ JC that sends the point x to the divisor class
of [x]− [e];

• Symmn(C)
ι−→ JC the natural map of the n-th sym-

metric power of C to JC ;

• δC the gonality of C;

• SC(K; d): the set of K-conjugacy classes of algebraic
points on C of degree ≤ d.
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31. ‘Gonality’ as related to striking ‘Uniformity’

As mentioned yesterday:

Corollary 9. Let SC(K; d) denote the set of K-conjugacy classes of algebraic points
on C of degree ≤ d. Then if d < δC , the natural mapping

SC(K; d)
j
↪→ JC(K)

is injective.3

This is one of the great uses of Mordell-Weil: to control
algebraic points on curves!

32. Examples of gonality

The modular curve Y1(N) is an affine smooth curve over Q which K-rational
points correspond to pairs (E,P ) where E is an elliptic curve over K and P is a
K-rational point of (finite) order N . Here is a table4 of the Q-gonalities of Y1(N)
for 11 ≤ N ≤ 30:

33. An impressive example

Consider
C = X1(31),

the curve that classifies elliptic curves with a fixed torsion point of order 31.

Its genus is 26 and, by the table, its gonality is 12.

So, over any number field K and any degree d < 12,

we have the inclusion:

3In another context where gonality plays a fundamental role in a uniformity result,
consider The Geometric Torsion Conjecture for Abelian Varieties with Real Multiplication
by B. Bakker and J. Tsimerman, arXiv:1504.02090v1(2015) in which it is proved that
that the torsion part of the Mordell-Weil group of a family of abelian varieties with real
multiplication over a complex quasiprojective curve is uniformly bounded in terms of the
field of multiplication, the genus and the gonality of the base curve.

4taken from Gonality of the modular curve X1(N) by Maarten Derickx and Mark van
Hoeij (arXiv:1307.5719v3)
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SC(K; d)
j
↪→ JC(K)

34. Gerd Faltings’ Theorem

Faltings’ theorem—is striking:

Any subvariety V defined over a number field K that is

• contained in an abelian variety A (over K) and
• is such that V (K) is Zariski-dense in V

is a finite union of translates of subabelian varieties defined over K.

The proof is not constructive. The beguiling character of Faltings’ proof is that
it is tantalizingly semi-effective. That is, even when you take the variety V to
be the curve C sitting in its own jacobian—noting that Faltings’ Theorem proves
Mordell’s Conjecture if the curve is of genus > 1—

• the proof doesn’t give an upper bound for the size (i.e., “height”) of rational
points on C but

• it seems that it does—implicitly—offer a bound for the number of rational
points—with another “but”:

• that bound is likely to be very high.

35. Uniformity consequence of Faltings Theorem:

Theorem 10. Let C be a curve over K of genus g and gonality δ.

Then for any n < δ, the set of K-rational points of Symmn(C) lie in the union
of:

• a finite set and
• finitely many ‘translates of abelian subvarieties that lie in Symmn(C) ↪→
JC .

This leads to a challenging computational project!

36. “Non-nearly elliptic curves”

To give a sense of the strength of Faltings Theorem, call a curve C non-nearly
elliptic if C is of gonality > 2 and Symm2(C) contains no elliptic curve (say:
even over Kalg).

(In particular, C is neither hyperelliptic nor bielliptic.)
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Proposition 11. A curve C is non-nearly elliptic if and only if there is no bielliptic
curve that covers it (i.e., maps onto it by a finite flat morphism).

Proof: We’re working over the algebraically closed field Kalg. If X → C is a
finite flat morphism of irreducible curves then (for any n > 0) the induced morphism
of Symmn(X)→ Symmn(C) is also finite flat.

First, note that if X is bielliptic, there is an elliptic curve in Symm2(X) by the

following construction: let X
π→ E be the degree two mapping onto an elliptic curve

E given by the ‘bielliptic structure’ ofX and consider the mapping E
φ→ Symm2(X)

defined by x 7→ {π−1(x)} ∈ Symm2(X). So if the curve C admits a finite flat cover,
X → C, with X bielliptic, the image of any elliptic curve in Symm2(X) projects
onto an elliptic curve in Symm2(C).

Going in the other direction, if there is an elliptic curve E ⊂ Symm2(C) = C2/S2

define X to be the inverse image of E in C × C:

X
(p1,p2) //

π

��

C × C

��
E // C2/S2 = Symm2(C)

It follows that X is a cover of C (via, say, p1) and X
π→ E exhibits X as bielliptic:

X
p1 //

π

��

C

π

��
E // C2/S2 = Symm2(C).

Falting’s theorem then implies that if C is non nearly elliptic then C has only
finitely many quadratic points over any number field over which it is defined!

Question: Are the modular curves X0(N) non nearly elliptic for N � 0?

37. Small Mordell-Weil rank in the jacobian of C can yield precise
upper bounds for the number of rational points!

The classical method of Chabauty for proving finiteness of rank—it doesn’t pro-
vide explicit upper bounds (yet):

Consider the topological completion Γp of the Mordell-Weil group of JC in the
p-adic analytic group JC(Qp);

this is a p-adic analytic group of dimension ≤ the Mordell-Weil rank of JC , which
we assume is strictly less than the dimension of JC .
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38. We get C(Qp) ∩ Γp, a finite set of p-adic points that captures all
rational points:

Since, under the ‘Chabauty hypothesis’ that the rank of Mordell-Weil is less than
the genus of C, the group Γp is of positive codimension in JC(Qp),

and since C(Qp) is a p-adic analytic curve that generates the group JC(Qp),

the intersection C(Qp) ∩ Γp is finite.

Since we have the inclusion C(Q) ↪→ C(Qp) ∩ Γp we get that C(Q) is finite as
well.

39. Robert Coleman reframed the Chabauty approach

to define an explicit p-adic analytic function whose zeroes are precisely C(Qp)∩
Γp . . . making it possible to get explicit upper bounds for C(Qp)∩Γp, and therefore
for C(Q) as well.

Take Hyperelliptic curves as an example.

A Hyperelliptic curve over K is a curve of the form

C : y2 = f(x)

of genus gC > 1 whose projective completion we assume to be smooth. Its gonality
is (visibly) 2.

This class of curves provides a wonderful testing ground for diophantine ques-
tions, and has been extensively studied, theoretically and computationally. Assum-
ing that C has a K-rational point e, we have our embedding

C ↪→ JC .
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Let gC be its genus

and

rC := rank{J(C)(K)},

i.e., the Mordell-Weil rank (over K) of its jacobian.

Assume that rC is small, and here is what you get:

40. A striking upper bound on the number of K-rational points

Michael Stoll: Hyperelliptic curves of genus g that are of MW-rank r over a
number field K with

r ≤ g − 3

have no more than

8r · g + 33(g − 1) + 1

K-rational points.

E.g.: if the genus of the curve C is three, then C has no more than 67 points over
any number field K for which the jacobian JC has only finitely many K-rational
points.

41. Infinitely many (hyperelliptic) curves with few points

A consequence the previous result of Stoll and a recent result of Myungjun Yu:

For any number field K and genus g > 4 there are infinitely many hyperelliptic

curves over K of genus g that have some, but no more than

41g − 32

K-rational points.

42. A (hyperelliptic) curve with lots of points

But things are different if r > g − 3 (as is necessarily the case when g = 2, for
example.)

. . . describe the format of Chabauty-Coleman-Kim!. . .
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43. The world’s record for curves of genus two with lots of points

is held by this example discovered by Michael Stoll in 2008:

y2 =

= 82342800x6 − 470135160x5 + 52485681x4+

+2396040466x3 + 567207969x2 − 985905640x+ 247747600

that has at least 642 Q-rational points. Here are a few of the x-coordinates of
rational points on this curve:

0, −1, 1/3, 4, −4, . . . − 3898675687/2462651894

44. Most odd degree hyperelliptic curves over Q have ’no’ points

Poonen-Stoll:

• A positive fraction of hyperelliptic curves

C : y2 = f(x) where f(x) is of odd degree ≥ 3 with integral coefficients

have only one Q-rational point: the point at infinity.

• There exists a lower bound on this fraction that tends to 1 as the genus of
C goes to infinity.

45. Immediate Diophantine Consequences for larger gonalities

Let C/K be a projective smooth curve.

If 1 ≤ d < δC := the Kalg-gonality of C,

we get that Symmd(C)(K) and SC(K; d) are finite sets;

i.e., the set of all algebraic points on C of degree < δC (over K)is finite

as long as:

• Symmd(C) contains no translates of abelian varieties, or
• the Mordell-Weil rank of JC over K is zero.

Taking d = 1 in the first bullet implies Mordell’s Conjecture for C over K—i.e.,
that C(K) is finite.

46. The rarity of algebraic points of small degree!

Discuss X1(31) again, and Symm2(X1(31))
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47. Diophantine Stability

Definition 12. For L/K an extension of fields, and V an algebraic variety defined
over K denote by V (K) the set of K-rational points of V . Say that V is diophan-
tine stable for L/K, or L/K is diophantine stable for V if
“V acquires no new rational points when one changes the base from K to L.”

That is, if the inclusion V (K) ↪→ V (L) is an isomorphism.

Note that the property of “Diophantine Stability” of V for any given L/K is
inherited by subvarieties of V defined over K.

48. The Ubiquity of Diophantine Stability

It follows directly from our discussion that:

Theorem 13. If JC has Mordell-Weil rank zero over K then C is diophantine
stable for all but finitely many field extensions L/K of degree d < δC .

This is also true—thanks to Faltings’ Theorem— if, for example, Symmd(C)
contains no translates of abelian varieties—or, at least, none with positive MW-
rank.

49. More uniformity regarding Diophantine Stability

Karl Rubin and I defined the notion of `-diophantine stability for ` a prime
number:

A variety V over K is `−diophantine stable over K if for every positive
integer n and finite set of primes S of K,

there are infinitely many cyclic extensions L/K of degree `n completely split
at all primes v ∈ S, such that V is diophantine stable for L/K; i.e., such that
V (L) = V (K).

50. How often is an abelian variety `-diophantine stable?

Karl and I proved:

Theorem 14. If A is a simple abelian variety over K and all K̄−endomorphisms
of A are defined over K, then A is `−diophantine stable over K for a set of rational
primes ` with positive density.

Question: Is the above true for any abelian variety over any number field and
for a set of primes ` of density 1?
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51. Comment about how such uniformity comes about:

Let A/K satisfy the hypothesis of the theorem, and L/K be cyclic of prime order
`.

A(L) has the same rank as A(K) as long as a certain ‘relative Selmer group’

Sel(L/K,A[`]) ⊂ H1(K,A[`])

vanishes, and the ‘statistics’ for the local conditions required for Sel(L/K,A[`]) to
vanish is nicely controllable.

52. Uniformity—over the range of elliptic curves—regarding
`-Diophantine Stability for a fixed prime `

Recently, Anwesh Ray and Tom Weston have proved5

Theorem 15. For ` ≥ 5 a prime number, the set of elliptic curves E/Q that are
`-diophantine stable over K has density 1.

53. Open Questions

Let K be any number field.

Do we expect—even in this broader framework—that the average Mordell-Weil
rank for elliptic curves over K is 1/2?

We might ask, as is suggested in the paper of Park, Poonen, Voight, and Wood,
that—ranging over all elliptic curves over K with j-invariant a primitive element
for the field K—and defining

BK

to be the smallest number such that there are only finitely many such elliptic curves
of Mordell-Weil rank > BK ,

is it true that:

BK is finite, uniformly bounded with a bound independent of K?

54. Back to Abelian varieties

We could ask similar such Mordell-Weil uniformity-type questions for abelian
varieties of any fixed dimension. Might we hope for a broad extension of the LMFDB
data-base to include such data, as well as data about curves of higher genus—this
has already been started as the entries regarding

• genus 2 curves over Q
• higher genus families
• and abelian varieties over Fq.

I learned in this Winter School!—from Drew Sutherland, Shiva Chidambaram,
Eran Assaf, and Tayler Dupuy—that things are moving rapidly— See, for example,

5Diophantine stability for elliptic curves on average, arXiv:2304.09742v1



21

• the archive note arXiv:2003.05380v2: Isogeny Classes of Abelian Varieties
over Finite Fields in the LMFDB by Taylor Dupuy, Kiran Kedlaya, David
Roe, and Christelle Vincent,

55. Regarding torsion points on higher dimensional abelian varieties

See Shiva Chidambaram’s talk at JMM 2023 The Galois images of Picard curves
that describes his work with P. Goodman computing Galois action on torsion points
in genus 3 curves.

Regarding abelian surfaces:

56. Known torsion subgroups of abelian surfaces over Q
(geometrically simple)

Andrew Sutherland sent this to me last night:
There are (at least) 63 torsion subgroups known to arise for geometrically simple
abelian surfaces defined over Q, including:

Cn for 1 ≤ n ≤ 30, 32, 33, 34, 36, 39, 40

C2 × C2n for 1 ≤ n ≤ 9, 11, 13, 14

C2 × C2 × C2n for 1 ≤ n ≤ 7

C2 × C2 × C2 × C2n for 1 ≤ n ≤ 3, 5

C3 × C3n for 1 ≤ n ≤ 3

C4 × C4

57. Back to Abelian varieties ‘themselves’

How should one organize them appropriately for their role in arithmetic statis-
tics?

• As Eran Asaf mentioned:

A fundamental question to ask when g ≥ 4 over Q is how to
enumerate abelian varieties when they are no longer isomorphic
(or even isogenous) to Jacobians?

I learned loads in this Winter School. Thanks AWS!


