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What are Abelian Varieties?

I Why are they interesting?

I Why are they useful?

That’s going to be the theme of my lectures!

as well as a discussion of recent work, recent conjectures,
recent questions—regarding uniformity and statistics (i.e.,
average values) of the Diophantine behavior of Abelian
varieties.



We’ll begin by talking about Abelian Varieties of

dimension 1

—AKA elliptic curves—

defined over a field K , these being representable as plane cubic
curves with coefficients in K .



Starting in the spirit of Weierstrass

Given a lattice Λ ⊂ C

— i.e., a discrete subgroup free of rank 2, in C —

Weierstrass (1849) defined the rather amazing doubly periodic
function that bears his name:

P(z ,Λ) := 1
z2

+
∑

λ∈Λ\{0}

(
1

(z−λ)2
− 1

λ2

)



where the mapping

z
φ→

(
P(z),P ′(z)

)
∈ C2

parametrizes the affine cubic curve:

Y 2 = 4X 3 − g2X − g3

g2 := 60
∑

0 6=λ∈Λ

λ−4

g3 := 140
∑

06=λ∈Λ

λ−6



Since

P ′2(z) = 4P3(z)− g2P(z)− g3

giving C/Λ an algebraic structure.



Leading the theory in two directions:

I To complex tori. I.e.,
Compact Complex Analytic Abelian Lie groups
these being of the form

Cg/Λ

where Λ ⊂ Cg is a discrete free abelian subgroup of
(maximal) rank 2g .

and

I To Abelian varieties—or, at least at first, to cubic plane
algebraic curves with an inherited abelian group structure
coming from the quotient C/Λ, and to the more modern:



Spirit of Poincaré

Although there were hints of this in the work of Jacobi before,
it was in Poincaré‘s 1901 paper:
Sur les propriétés arithmétiques des courbes algébriques
where elliptic curves—i.e., 1-dimensional abelian varieties—got
started:



Points rationnels des cubiques:

Étudions d’abord la distribution des points rationnels
sur ces courbes. J’observe que la connaissance de
deux points rationnels sur une cubique rationnelle suf-
fit pour en faire connaître un troisième.

“Rational points on cubics: Let’s first study the
distribution of rational points on these curves. I note
that knowledge of two rational points on a rational
cubic is sufficient to get us to know a third.



P + Q + R = 0



Without stating this explicitly, Poincaré views the set of
rational points on an elliptic curve as an abelian group

—and with no proofs getting in the way—

he defines the rank of an elliptic curve to be the number of
points playing the role of P and Q needed to get all the
rational points on the curve; in effect, anticipating:

Mordell’s Theorem proved over two decades later.
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The spirit of Mordell

If a non-singular rational plane cubic curve has a ratio-
nal point, then the group of rational points is finitely
generated.

L. J. Mordell, On the rational solutions of the indeterminate
equations of the third and fourth degrees Proc. Camb. Philos.
Soc. 21, 179-192 (1922)



‘Descent’ as Mordell’s method of proof:

If A is the elliptic curve over Q defined by one of those

“indeterminate equations of the third or fourth degree”

and A(Q) is its (commutative!) group of rational points then
Mordell’s proof has two parts that play off one on the other:



“Weak Mordell-Weil” and “Controlling by

Height”

1. (“Weak M-W”:) The group A(Q)/2A(Q) is finite,

and

2. (“Controlling by Height ”) Multiplication by 2 increases
the height of a Q-rational point (essentially) by a factor
of 4.

By (2) it follows that a rational point of nonzero (Néron-Tate)
height cannot be divisible by 2n for n indefinitely large. Given
(1), a simple further argument proves that A(Q) is finitely
generated.
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The surprising computability of upper bounds for

the “Weak Mordell-Weil” quotient groups

A(K )/2A(K )

—Or more generally, of the quotient groups—

A(K )/nA(K )

is the strength of Mordell’s original proof.



This is echoed by all the later proofs of the more general
Mordell-Weil Theorem, making use of:

The fundamental short exact sequence:

0→ A[n]→ A
n−→ A→ 0

that gives rise to:



the basic “weak-MW-framework”:

0 −→ A(K )/nA(K ) −→ H1(K ,A[n]) −→ H1(K ,A)[n] −→ 0

which doesn’t quite get you where you want since H1(K ,A[n])
is very likely of infinite rank over Z/nZ.
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Local Conditions

But once you impose local conditions at primes v :

0 // A(K )/nA(K ) //

��

H1(K ,A[n])

��
0 // A(Kv )/nA(Kv ) // H1(Kv ,A[n])

satisfied by global rational points you cut out Selmer
subgroups within H1(K ,A[n]) obtaining finiteness



0 //A(K )/nA(K ) //H1(K ,A[n])

0 //A(K )/nA(K ) //

=
OO

Selmern(A; K)

local conditions

OO

0

OO

These Selmer groups Selmern(A;K ) are finite (and
computable!) so it follows that

A(K )/n · A(K ) is finite

(with a computable upper bound). This is how you prove
“Weak MW.”



That’s what got our subject started

Milestones. . .

The elliptic curve with the highest rank found so far is:

y2 + xy + y = x3 − x2−

20067762415575526585033208209338542750930230312178956502x+

3448161179503055646703298569039072037485594435931 ∼

∼ 9180361266008296291939448732243429

which has rank at least 28.

‘Noam Elkies’ Elliptic Curve’



Uniformity of Mordell-Weil rank

And here’s a fairly recent conjecture1 suggested by
computations that depend on the random matrix heuristic. It
is striking in its precision, and in how close it is to the data
accumulated so far.

Conjecture
(Park, Poonen, Voight, Wood) There are only finitely many
elliptic curves over K = Q of Mordell-Weil rank greater than
21.

1A heuristic for boundedness of ranks of elliptic curves, Jennifer Park,
Bjorn Poonen, John Voight, Melanie Matchett Wood
https://arxiv.org/abs/1602.01431

https://arxiv.org/abs/1602.01431


Average Mordell-Weil rank

There is an immense literature on this, both in terms of what
is proved, and what is conjectured, but the simplest to state
qualiitative conjecture still outstanding is that

roughly ‘half’ of the elliptic curves over Q have Mordell-Weil
rank 0 and half have rank 1, and those with higher rank
amount to 0% of the total number of elliptic curves over Q.



This would imply that the average rank of the Mordell-Weil
group of an elliptic curve over Q is 1

2
.

It is known2 that arranging elliptic curves E over Q by a
natural “naive” height—the average size of Sel2(E ) is 3 and
Sel3(E ) is 4. The latter result alone implies that

the average Mordell-Weil rank of elliptic curves over Q is ≤ 7
6

2See, for example,

I M. Bhargava and A. Shankar, Binary quartic forms having bounded
invariants, and the boundedness of the average rank of elliptic
curves, Annals of Mathematics 181 (2015), 191-242;

I Bjorn Poonen’s Bourbaki Seminar article arXiv:1203.0809v2

I M. Bhargava and W. Ho, On average sizes of Selmer groups and
ranks in families of elliptic curves having marked points
arXiv:2207.03309v2

arXiv:1203.0809v2
 arXiv:2207.03309v2


Now for Abelian Varieties in general

Curiously, you need very few axioms to define this notion.

Definition
(Quite a sparce definition!) Let K be a field and A/K a
smooth projective variety, and e ∈ A(K ) a K -rational point.
Suppose that A is endowed with a morphism

A× A
m−→ A

defined over K (that, for the moment, we view as
‘multiplication’ writing m(x , y) = x · y) and relative to which
e is an ‘identity element.’ That is,

x · e = x = e · x .

Then A is called an abelian variety over K .



Basic Theorems

Theorem
Abelian varieties are in fact abelian algebraic groups;
“multiplication” is a commutative group law. And so,
naturally, multiplication is written as ‘addition’ (+).

There are some (different) neat proofs of this—
two in David Mumford’s book Abelian Varieties.



For example, to see that such a multiplication morphism m
has inverses, consider the mapping

A× A
φ→ A× A

that sends
(x , y) 7→ (xy , x).

Visibly the inverse of (e, e) is nothing more than the point
(e, e). I.e., the fiber of φ over (e, e) is one point. Therefore by
a standard dimension theorem, we have that φ is surjective, so
for any x ∈ A, there’s a y ∈ A such that xy = e.

Arguments of a similar nature give that the multiplication law
m is commutative, and associative.



The spirit of André Weil

Although the Mordell-Weil theorem—the result that generalize
Mordell’s Theorem—is usually stated this way:

Theorem
(Mordell-Weil) Let K be a number field and A/K an abelian
variety, then the ‘Mordell-Weil group’ of A over K ; i.e., the
group A(K ) of K -rational points of A is a finitely generated
abelian group.



Weil proved it specifically for Abelian varieties that

are Jacobians of curves

He stated it this way:

“One finds that all rational systems of points on a
curve are derived from a finite number of them by
addition and subtraction.”



In our more modern terminology

rational systems of points ↔ Divisors on the curve

and

“derived from” ↔ “linearly equivalent to”

—leading us to:



The particular class of abelian varieties that are

Jacobians of curves

but happily:

Lemma
Any abelian variety over K is isogenous to a sub-abelian
variety of the Jacobian of some curve over K .

from which “The Mordell-Weil Theorem” then follows for all
abelian varieties—so let’s consider Jacobians.



Jacobians

From now on K will be a number field. Fix C be a smooth
projective curve of genus g ≥ 1 defined over K , and let e ∈ C
be a K -rational point. The abelian varieties we’ll focus on are:

I A := JC : The jacobian of such curves C

The jacobian, JC , of the curve C is the abelian variety over K
given in any of these ways:
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(1) Viewed in the spirit of Weierstrass, at least

when the base field is C:

By the lattice of periods!



(2) Or viewed concretely:

as having the property that for any field extension L/K , its
group of L-valued points, JC (L), is the quotient group:

{Divisors on C of degree zero defined over L} / {Principal Divisors}

DIV 0(C )/K (A)∗



(3) Or viewed more structurally:

Pic0(C )/K ,

the abelian group scheme representing the functor

K -scheme S 7→

{the group (under tensor product) of isomorphism classes of
line bundles of degree zero (relative to S) over C ×SpecK S}.



Note that
C 7→ Pic0(C )/K

is a contravariant functor—and is, sort of—

the motivic H1 of C .



(4) Or viewed straight functorially:

as “the smallest group scheme containing C .”

That is, consider the problem of mapping (C , e) (base changed
to any K -scheme S) to any abelian scheme A over S :

C
φ // A

e

OO

// 0

OO (1)



JC is the Albanese variety of (C , e) (over K ).

That is, C ↪→ Alb(C ) represents that universal problem:
Alb(C ) is an abelian variety over K together with a morphism
over K ,

that has the property that any morphism C → A such as (1)
above factors uniquely:

C // Alb(C )
φ // A

where Alb(C )
φ−→ A is a homomorphism of abelian varieties.



Note that
C 7→ Alb(C )

is a covariant functor—and is, sort of—

the motivic H1 of C .

Discuss duality and self-duality



(5) Or in a way, relevant to Diophantine issues that

we’ll be discussing, in terms of symmetric powers:

Definition

For n ≥ 1 let Sn be the symmetric group “on n letters” acting
on the n-th power of the curve C . Denote by

Symmn(C ) := C n/Sn,

the quotient n-dimensional projective variety.



The relation between Symmn(C ) and JC

For any n ≥ 1 there is a natural map, defined over L:

ι : Symmn(C ) −→ JC (2)

sending an unordered n-tuple

(e1, e2, . . . , en)

to the linear equivalence class of the divisor of degree zero in
C :

n∑
k=1

ek − n · e.




Symmn(C )

ι→ JC

(e1, e2, . . . , en)]
ι7→

[ ∑n
k=1 ek − n · e

] (3)

Theorem

I The fibers of the morphism ι are rational varieties.

I If n ≥ g , ι is surjective.

I If n < δC := the K alg-gonality of C , then

Symmn(C )
ι
↪→ JC

is injective.
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Gonality

Definition
The K -gonality of a curve is the smallest degree of any
nonconstant rational function on it–that is defined over K .

This notion (at least for K = C) was originally introduced by
Bernhard Riemann in Section V of his Theory of Abelian
Functions.



The connection between algebraic points on C

and rational points on JC

If α ∈ C (K alg) is an algebraic point on C and the set

{α1, α2, . . . , αν} ⊂ C (K alg)

consists of α and its conjugates over K , define j(α) ∈ JC (K )
to be the divisor class of

ν∑
i=1

αi − ν · e.



Let SC (K ; d) denote the set of K -conjugacy classes of
algebraic points on C of degree ≤ d . We have the natural
mapping

SC (K ; d)
j−→ JC (K )

End of Lecture 1



Recall our set-up:

I Let K be a number field, and C a smooth projective
curve over K (say of genus > 0) with e ∈ C a chosen
K -rational point;

I JC : the jacobian of C where we consider the injection
C ↪→ JC that sends the point x to the divisor class of
[x ]− [e];

I Symmn(C )
ι−→ JC the natural map of the n-th

symmetric power of C to JC ;

I δC the gonality of C ;

I SC (K ; d): the set of K -conjugacy classes of algebraic
points on C of degree ≤ d .
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‘Gonality’ as related to striking ‘Uniformity’

As mentioned yesterday:

Corollary
Let SC (K ; d) denote the set of K -conjugacy classes of
algebraic points on C of degree ≤ d . Then if d < δC , the
natural mapping

SC (K ; d)
j
↪→ JC (K )

is injective.

This is one of the great uses of Mordell-Weil:

to control algebraic points on curves!



Examples of gonality

The modular curve Y1(N) is an affine smooth curve over Q
which K -rational points correspond to pairs (E ,P) where E is
an elliptic curve over K and P is a K -rational point of (finite)
order N . Here is a table3 of the Q-gonalities of Y1(N) for
11 ≤ N ≤ 30:

3taken from Gonality of the modular curve X1(N) by Maarten Derickx
and Mark van Hoeij (arXiv:1307.5719v3)

arXiv:1307.5719v3


An impressive example

Consider
C = X1(31),

the curve that classifies elliptic curves with a fixed torsion
point of order 31.

Its genus is 26 and, by the table, its gonality is 12.

So, over any number field K and any degree d < 12,

we have the inclusion:

SC (K ; d)
j
↪→ JC (K )



Gerd Faltings’ Theorem

Faltings’ theorem—is striking:

Any subvariety V defined over a number field K that is

I contained in an abelian variety A (over K ) and

I is such that V (K ) is Zariski-dense in V

is a finite union of translates of subabelian varieties defined
over K .

The proof is not constructive.



The beguiling character of Faltings’ proof is that it is
tantalizingly semi-effective.

That is, even when you take the
variety V to be the curve C sitting in its own
jacobian—noting that Faltings’ Theorem proves Mordell’s
Conjecture if the curve is of genus > 1—

I the proof doesn’t give an upper bound for the size (i.e.,
“height”) of rational points on C but

I it seems that it does—implicitly—offer a bound for the
number of rational points—with another “but”:

I that bound is likely to be very high.
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Uniformity consequence of Faltings Theorem:

Theorem

Let C be a curve over K of genus g and gonality δ.

Then for any n < δ, the set of K -rational points of Symmn(C )
lie in the union of:

I a finite set and

I finitely many ‘translates of abelian subvarieties that lie in
Symmn(C ) ↪→ JC .

This leads to a challenging computational project!



Uniformity consequence of Faltings Theorem:

Theorem

Let C be a curve over K of genus g and gonality δ.

Then for any n < δ, the set of K -rational points of Symmn(C )
lie in the union of:

I a finite set and

I finitely many ‘translates of abelian subvarieties that lie in
Symmn(C ) ↪→ JC .

This leads to a challenging computational project!



Uniformity consequence of Faltings Theorem:

Theorem

Let C be a curve over K of genus g and gonality δ.

Then for any n < δ, the set of K -rational points of Symmn(C )
lie in the union of:

I a finite set and

I finitely many ‘translates of abelian subvarieties that lie in
Symmn(C ) ↪→ JC .

This leads to a challenging computational project!



“Non-nearly elliptic curves”

To give a sense of the strength of Faltings Theorem, call a
curve C non-nearly elliptic if Symm2(C ) contains no elliptic
curve (say: even over K alg).

It follows that the gonality of C is > 2.

(In particular, C is neither hyperlliptic nor bielliptic.)

Falting’s theorem implies that C has only finitely many
quadratic points over any number field over which it is defined!



Small Mordell-Weil rank in the jacobian of C can

yield precise upper bounds for the number of

rational points!

The classical method of Chabauty for proving finiteness of
rank—it doesn’t provide explicit upper bounds (yet):

Consider the topological completion Γp of the Mordell-Weil
group of JC in the p-adic analytic group JC (Qp);

this is a p-adic analytic group of dimension ≤ the
Mordell-Weil rank of JC , which we assume is strictly less than
the dimension of JC .





We get C (Qp) ∩ Γp, a finite set of p-adic points

that captures all rational points:

Since, under the ‘Chabauty hypothesis’ that the rank of
Mordell-Weil is less than the genus of C , the group Γp is of
positive codimension in JC (Qp),

and since C (Qp) is a p-adic analytic curve that generates the
group JC (Qp),

the intersection C (Qp) ∩ Γp is finite.

Since we have the inclusion C (Q) ↪→ C (Qp) ∩ Γp we get that
C (Q) is finite as well.
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Robert Coleman reframed the Chabauty approach

to define an explicit p-adic analytic function whose zeroes are
precisely C (Qp) ∩ Γp . . . making it possible to get explicit
upper bounds for C (Qp) ∩ Γp, and therefore for C (Q) as well.

Take Hyperelliptic curves as an example.

A Hyperelliptic curve over K is a curve of the form

C : y 2 = f (x)

of genus gC > 1 whose projective completion we assume to be
smooth. Its gonality is (visibly) 2.

This class of curves provides a wonderful testing ground for
diophantine questions, and has been extensively studied,
theoretically and computationally.



Robert Coleman reframed the Chabauty approach

to define an explicit p-adic analytic function whose zeroes are
precisely C (Qp) ∩ Γp . . . making it possible to get explicit
upper bounds for C (Qp) ∩ Γp, and therefore for C (Q) as well.

Take Hyperelliptic curves as an example.

A Hyperelliptic curve over K is a curve of the form

C : y 2 = f (x)

of genus gC > 1 whose projective completion we assume to be
smooth. Its gonality is (visibly) 2.

This class of curves provides a wonderful testing ground for
diophantine questions, and has been extensively studied,
theoretically and computationally.



Assuming that C has a K -rational point e, we have our
embedding

C ↪→ JC .

Let gC be its genus

and
rC := rank{J(C )(K )},

i.e., the Mordell-Weil rank (over K ) of its jacobian.

Assume that rC is small, and here is what you get:



A striking upper bound on the number of

K -rational points

Michael Stoll: Hyperelliptic curves of genus g that are of
MW-rank r over a number field K with

r ≤ g − 3

have no more than

8r · g + 33(g − 1) + 1

K -rational points.

E.g.: if the genus of the curve C is three, then C has no more
than 67 points over any number field K for which the
jacobian JC has only finitely many K -rational points.



A striking upper bound on the number of

K -rational points

Michael Stoll: Hyperelliptic curves of genus g that are of
MW-rank r over a number field K with

r ≤ g − 3

have no more than

8r · g + 33(g − 1) + 1

K -rational points.

E.g.: if the genus of the curve C is three, then C has no more
than 67 points over any number field K for which the
jacobian JC has only finitely many K -rational points.



Infinitely many (hyperelliptic) curves with few

points

A consequence the previous result of Stoll and a recent result
of Myungjun Yu:

For any number field K and genus g > 4 there are infinitely

many hyperelliptic curves over K of genus g that have some,

but no more than

41g − 32
K -rational points.



A (hyperelliptic) curve with lots of points

But things are different if r > g − 3 (as is necessarily the case
when g = 2, for example.)

. . . describe the format of Chabauty-Coleman-Kim!. . .
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The world’s record for curves of genus two with

lots of points

is held by this example discovered by Michael Stoll in 2008:

y 2 =

= 82342800x6 − 470135160x5 + 52485681x4+

+2396040466x3 + 567207969x2 − 985905640x + 247747600

that has at least 642 Q-rational points. Here are a few of the
x-coordinates of rational points on this curve:

0, −1, 1/3, 4, −4, . . . − 3898675687/2462651894
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Most odd degree hyperelliptic curves over Q have

’no’ points

Poonen-Stoll:

I A positive fraction of hyperelliptic curves

C : y 2 = f (x) where f (x) is of odd degree ≥ 3 with
integral coefficients

have only one Q-rational point: the point at infinity.

I There exists a lower bound on this fraction that tends to
1 as the genus of C goes to infinity.



Immediate Diophantine Consequences for larger

gonalities

Let C/K be a projective smooth curve.

If 1 ≤ d < δC := the K alg-gonality of C ,

we get that Symmd(C )(K ) and SC (K ; d) are finite sets;

i.e., the set of all algebraic points on C of degree < δC (over
K )is finite

as long as:



I Symmd(C ) contains no translates of abelian varieties, or

I the Mordell-Weil rank of JC over K is zero.

Taking d = 1 in the first bullet implies Mordell’s Conjecture
for C over K—i.e., that C (K ) is finite.



The rarity of algebraic points of small degree!

Discuss X1(31) again, and Symm2(X1(31))



Diophantine Stability

Definition

For L/K an extension of fields, and V an algebraic variety
defined over K denote by V (K ) the set of K -rational points of
V . Say that V is diophantine stable for L/K , or L/K is
diophantine stable for V if
“V acquires no new rational points when one changes the
base from K to L.”

That is, if the inclusion V (K ) ↪→ V (L) is an isomorphism.

Note that the property of “Diophantine Stability” of V for any
given L/K is inherited by subvarieties of V defined over K .



The Ubiquity of Diophantine Stability

It follows directly from our discussion that:

Theorem

If JC has Mordell-Weil rank zero over K then C is diophantine
stable for all but finitely many field extensions L/K of degree
d < δC .

This is also true—thanks to Faltings’ Theorem— if, for
example, Symmd(C ) contains no translates of abelian
varieties—or, at least, none with positive MW- rank.



More uniformity regarding Diophantine Stability

Karl Rubin and I defined the notion of `-diophantine
stability for ` a prime number:

A variety V over K is `−diophantine stable over K if for
every positive integer n and finite set of primes S of K ,

there are infinitely many cyclic extensions L/K of degree `n

completely split at all primes v ∈ S , such that V is
diophantine stable for L/K ; i.e., such that V (L) = V (K ).



How often is an abelian variety `-diophantine

stable?

Karl and I proved:

Theorem

If A is a simple abelian variety over K and all
K̄−endomorphisms of A are defined over K , then A is
`−diophantine stable over K for a set of rational primes ` with
positive density.

Question: Is the above true for any abelian variety over any
number field and for a set of primes ` of density 1?



Comment about how such uniformity comes about:

Let A/K satisfy the hypothesis of the theorem, and L/K be
cyclic of prime order `.

A(L) has the same rank as AK ) as long as a certain ‘relative
Selmer group’

Sel(L/K ,A[`]) ⊂ H1(K ,A[`])

vanishes, and the ‘statistics’ for the local conditions required
for Sel(L/K ,A[`]) to vanish is nicely controllable.



Uniformity—over the range of elliptic

curves—regarding `-Diophantine Stability for a

fixed prime `

Recently, Anwesh Ray and Tom Weston have proved4

Theorem

For ` ≥ 5 a prime number, the set of elliptic curves E/Q that
are `-diophantine stable over K has density 1.

4Diophantine stability for elliptic curves on average,
arXiv:2304.09742v1

 arXiv:2304.09742v1


Open Questions

Let K be any number field.

Do we expect—even in this broader framework—that the
average Mordell-Weil rank for elliptic curves over K is 1/2?

We might ask, as is suggested in the paper of Park, Poonen,
Voight, and Wood, that—ranging over all elliptic curves over
K with j-invariant a primitive element for the field K—and
defining
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BK

to be the smallest number such that there are only finitely
many such elliptic curves of Mordell-Weil rank > BK ,

is it true that:

BK is finite, uniformly bounded with a bound independent of
K?



Back to Abelian varieties

We could ask similar such Mordell-Weil uniformity-type
questions for abelian varieties of any fixed dimension. Might
we hope for a broad extension of the LMFDB data-base to
include such data, as well as data about curves of higher
genus—this has already been started as the entries regarding

I genus 2 curves over Q
I higher genus families

I and abelian varieties over Fq.



I learned in this Winter School!—from Drew Sutherland, Shiva
Chidambaram, Eran Assaf, and Tayler Dupuy—that things are
moving rapidly— See, for example,

I the archive note arXiv:2003.05380v2: Isogeny Classes of
Abelian Varieties over Finite Fields in the LMFDB by
Taylor Dupuy, Kiran Kedlaya, David Roe, and Christelle
Vincent,



Regarding torsion points on higher dimensional

abelian varieties

See Shiva Chidambaram’s talk at JMM 2023 The Galois
images of Picard curves that describes his work with P.
Goodman computing Galois action on torsion points in genus
3 curves.

Regarding abelian surfaces:



Known torsion subgroups of abelian surfaces over

Q (geometrically simple)

Andrew Sutherland sent this to me last night:
There are (at least) 63 torsion subgroups known to arise for
geometrically simple abelian surfaces defined over Q, including:

Cn for 1 ≤ n ≤ 30, 32, 33, 34, 36, 39, 40

C2 × C2n for 1 ≤ n ≤ 9, 11, 13, 14

C2 × C2 × C2n for 1 ≤ n ≤ 7

C2 × C2 × C2 × C2n for 1 ≤ n ≤ 3, 5

C3 × C3n for 1 ≤ n ≤ 3

C4 × C4



Back to Abelian varieties ‘themselves’

How should one organize them appropriately for their role in
arithmetic statistics?

I As Eran Asaf mentioned:

A fundamental question to ask when g ≥ 4 over Q is
how to enumerate abelian varieties when they are no
longer isomorphic (or even isogenous) to Jacobians?

I learned loads in this Winter School. Thanks AWS!


