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1. INTRODUCTION

These exercises were written for the 2024 Arizona Winter School on
Abelian varieties. They are intended as an introduction to moduli spaces,
with a focus on the moduli space of curves, the moduli space of abelian
varieties, and the Torelli map relating them.

1



2 AARON LANDESMAN

1.1. How to use these exercises. These exercises are not written in a linear
order. In particular, many of the exercises at the beginning may be more
challenging and assume more background than what you are interested in
learning. I suggest you that skip around and find a part of the exercises you
are interested in, and start working there.

1.2. Assumed background. I have also tried to indicate in the title of an ex-
ercise when it involves additional background beyond thorough familiarity
with material in an introductory algebraic geometry book, such as [Har77] or
[Vak]. We also assume basic familiarity with the theory of Abelian varieties.
Certainly thorough knowledge of Mumford’s book [Mum08] will be more
than sufficient, but we will only require knowledge of a small portion of that,
and try to point out when we do use things from there.

We first have some exercises on the moduli space of curves in § 2, we
then have exercises on the moduli space of abelian varieties in §3, and then
exercises on the torelli map relating these two in § 4. Finally, we include
some exercises on modui spaces in general in § 5, with a particular focus
on moduli spaces of divisors and finite covers. These are examples of some
moduli spaces which are simpler than the moduli space of curves and abelian
varieties.

2. THE MODULI SPACE OF CURVES

2.1. Defining the moduli stack of curves.

Remark 2.1.1. Before even getting started, we are about to state a definition
that involves the words “stack” and “groupoid.“ If you haven’t seen these,
please don’t dispair. We won’t be working too seriously with technicalities,
and for the purposes of these exercises, you can just think that a stack is like
a variety, which keeps track of extra automorphisms associated to each point.
A groupoid is a set where each element of the set has a group associated
to it. I.e., we can think of elements of the set as having a correpsonding
automorphism group.

Definition 2.1.2. The moduli stack of curves of genus g Mg is defined as the
algebraic stack whose S points are the groupoid of smooth proper f : C → S
of relative dimension 1 with geometrically connected fibers of genus g. The
groupoid structure is given by letting isomorphisms from [C, f ] → [C′, f ′]
be commutative triangles

(2.1)
C C′

S

ϕ

f

f ′



EXERCISES ON THE MODULI SPACES AND THE TORELLI MAP 3

where ϕ is an isomorphism.
More generally, Mg,n has S points given by smooth proper f : C → S of

relative dimension 1 with geometrically connected fibers of genus g, together
with n disjoint sections σ1, . . . , σn : S → C. An isomorphisms of S points
[C, f , σ1, . . . , σn] to [C′, f ′, σ′1, . . . , σ′n] be given by commutative triangles above
so that σ′i = ϕ ◦ σi for all i.

Note that above S may be any scheme, so we may equivalently consider S
as a scheme over Spec Z.

Notation 2.1.3. As a convention, unless otherwise stated, throughout these
exercises, we will simply use curve to mean a smooth proper curve with
geometrically connected fibers.

Exercise 2.1.4. Show Mg is nonempty by exhibiting a curve of genus g for
every g ≥ 0.

Exercise 2.1.5. (1) Show Mg is not a scheme for any g ≥ 0. 1

(2) Show that Mg ×Spec Z Spec C is not a scheme. 2

2.2. Examples of Mg for small g.

Exercise 2.2.1. Show that M0,3 ≃ Spec Z. 3

Exercise 2.2.2. Show M0,4 ≃ P1
Z − {0, 1, ∞}. 4

Exercise 2.2.3 (Assumes background with stable genus 0 curves). There is a
notion of the moduli stack of stable genus g curves with (ordered) marked
points, M g,n. Assuming familiarity with this, show M 0,4 ≃ P1.

Exercise 2.2.4 (genus 2 curves). Show that every genus 2 curve C over any
field k is hyperelliptic, meaning that there is a degree 2 map C → P1. 5

Exercise 2.2.5. Show that every genus 3 curve over an algebraically closed
field is either a plane curve or hyperelliptic. 6 Can you give a similar
description of every genus 3 curve over an arbitrary field?

1Hint: If Mg were a scheme there would be an injection Mg(K)→Mg(K) for any field K.
Take K = Q and consider curves of the form y2 = f (x) and 2y2 = f (x).

2Hint: One can adapt the trick suggested in the hint to Exercise 2.1.5(1) to answer this
question.

3Hint: It may be helpful to show that over the complex numbers, M0,3 ×Spec Z Spec C ≃
Spec C. To this end, what automorphisms of P1 fix three ordered points?

4Hint: M0,4 is the universal punctured curve over M0,3.
5Hint: What line bundle induces this map?
6Hint: Consider the map induced by the canonical bundle. When is this an embedding?

If it is an embedding, study the exact sequence associated to the ideal sheaf of the curve on
cohomology.
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Exercise 2.2.6. Show that every genus 4 curve over an algebraically closed
field is an intersection of a cubic and quadric in P3 or is hyperelliptic.

Exercise 2.2.7. Show that any genus 5 curve over an algebraically closed field
is either a complete intersection of three quadrics, is trigonal (has a degree 3
map to P1) or is hyperelliptic.

2.3. Deformation theory. Readers less comfortable with algebraic geometry
may be advised to skip this subsection, and jump to the next one, as it
assumes a fair amount of mathematical maturity. You may assume the facts
from deformation theory that for X a scheme:

(1) H0(X, TX) parameterizes infinitesimal automorphisms of X,
(2) H1(X, TX) parameterizes deformations of X,
(3) and H2(X, TX) parameterizes obstructions to deformations of X.

Exercise 2.3.1. Assume X is a curve. Show H2(X, TX) = 0. Deformation
theory then implies the moduli stack of such X, Mg is smooth and its di-
mension is equal to its tangent space, (assuming Mg is Deligne-Mumford,
see Exercise 2.3.3,) which can be identified with H1(X, TX). Compute this
dimension.

Definition 2.3.2. An algebraic stack is Deligne-Mumford if its automorphism
group schemes at any point are étale.

Exercise 2.3.3. Show that for any [X] ∈ Mg, H0(X, TX) = 0 if g ≥ 2 and
conclude that Mg is Deligne-Mumford if g ≥ 2.

2.4. Automorphism groups of generic curves. In the following sequence of
exercises, we do a dimension count to show that a generic curve of genus
g ≥ 3 has trivial automorphism group.

Exercise 2.4.1. Suppose C is a genus g curve with automorphism group G
over C. Show that the set of genus g curves with automorphism group G
can be partitioned into a disjoint union of classes described by surjections
ϕ : π1(Σh,n) → G where Σh,n is an n-times punctured genus h topological
surface, where C/G has genus h and C → C/G has n branch points in C/G.

Call Mϕ the space of genus g curves with automorphism group of type ϕ,
as in the previous exercise.

Exercise 2.4.2. With notation as above and as in the previous exercise, show
that the dimension of Mϕ is 3h− 3 + n. 7

7Hint: How many G covers are there of a fixed curve branched at a fixed set of points?
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Exercise 2.4.3 (exercise assuming background with stacks). Show that Mϕ is
in fact a gerbe for the center of G over a finite étale cover of Mh,n/Sn, where
Sn acts by permuting the marked points.

Exercise 2.4.4. Show that if g ≥ 3, the dimension of every such Mϕ associated
to nontrivial groups G has dimension strictly less than 3g− 3. What goes
wrong with this argument when g = 2?

2.5. Hyperelliptic curves. By definition a hyperelliptic curve is a genus g
curve with a degree 2 finite locally free map to a genus 0 curve.

Exercise 2.5.1 (Assumes more background with stacks). In this exercise, we
construct the moduli stack of hyperelliptic curves.

(1) For g ≥ 2, construct a moduli stack Hg of hyperelliptic curves of
genus g over Z[1/2] as a global quotient stack of an open in affine
space by a group action. 8 From the description you give, conclude
this stack is smooth. Show that it indeed parameterizes hyperelliptic
curves.

(2) Show the moduli space of hyperelliptic curves has relative dimension
2g− 1 over Spec Z[1/2].

(3) Construct a moduli stack of hyperelliptic curves over Z.

Exercise 2.5.2. In this exercise, we generalize Exercise 2.2.4 to hyperelliptic
curves.

(1) Show that a genus 0 curve over k with a k point is isomorphic to P1. 9

(2) More generally, show that a genus 0 curve with an odd degree divisor
is isomorphic to P1. 10

(3) Show that a hyperelliptic curve over an algebraically closed field of
genus g has a map to P1.

(4) Show that a hyperelliptic curve of even genus g has a map to P1. 11

(5) For any odd genus g, show there exists a field k and a hyperelliptic
curve over k which has no degree 2 map to P1. 12

8Hint: Every genus g hyperelliptic curve in characteristic not 2 can be written as
y2 = f (x, z) for some polynomial f of degree 2g + 2. This expression is unique up to
automorphisms of the base P1 and scaling the polynomial f . Be careful with the fact that
when one scales the x and z coordinates by a factor of c, the y coordinate must be scaled by
a factor of cg+1 to preserve the equation.

9Hint: Use the point to obtain a degree 1 line bundle which induces an isomorphism to
P1.

10Hint: What is the canonical bundle on P1?
11Hint: What is the degree of the image of the curve under the canonical map?
12Hint: Start with a genus 0 curve which is not P1 and take a double cover. How do you

know this has no maps to P1 of degree 2?
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(6) Specifically can you do the above exercise in the case k = R? What
about the case k = Fq? Can you characterize which fields have this
property?

(7) (trickier) Show the genus 0 curve must be P1 in the case k is separably
closed (but not necessarily algebraically closed). 13

Thanks to Bjorn Poonen for suggesting the following exercise.

Exercise 2.5.3 (trickier exercise, assumes some background with stacks and
gerbes). In this exercise, we investigate the relation between hyperelliptic
curves of genus g and genus 0 curves with 2g + 2 unordered marked points.

(1) To understand better what is going on in Exercise 2.2.4, construct
a map from the moduli space of hyperelliptic curves to the moduli
space of genus 0 curves with 2g + 2 unordered marked points. Show
that this map is a so-called Z/2Z gerbe, which loosely means it is a
bijection on geometric points, but each point of the source has twice
as many automorphisms as each point of the target. That is, each
geometric fiber is B(Z/2Z).

(2) Construct a PGL2 bundle over the space of genus 0 curves with 2g+ 2
unordered marked points and show that the genus 0 curve is P1 if
and only if this bundle is trivial.

(3) Use this and Exercise 2.5.2 to show that the µ2 gerbe mentioned in
the first part of this exercise is trivial whenever the genus is even and
nontrivial whenever the genus is odd. It may be helpful to use that
µ2 gerbes over B are classified by H2(B, µ2) and the exact sequence

(2.2) 0 µ2 SL2 PGL2 0

yields a map H1(B, PGL2)→ H2(B, µ2) sending the PGL2 torsor from
the previous part to the corresponding µ2 gerbe.

3. THE MODULI SPACE OF POLARIZED ABELIAN VARIETIES

Given an abelian scheme A over a base S, recall that the dual abelian
scheme A∨ := Pic0

A/S is the identity component of the scheme parameter-
izing line bundles on A. There is a universal Poincaré line bundle PA on
A × A∨ whose fiber over a point of A∨ is the corresponding line bundle
on A. A polarization is a map ϕ : A → A∨ is a symmetric isogeny so that
(id, ϕ)∗PA is an ample line bundle on A; here, symmetric means the the

13Possible hint: Show the genus 0 curve is P1 if and only if a certain class in H1(k, PGL2)
or H2(k, µ2) vanishes, and use that this is invariant under inseparable base extension.
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composition A→ (A∨)∨
ϕ̂−→ A∨ agrees with ϕ, for A→ (A∨)∨ the canonical

map.

Definition 3.0.1. Fix an integer ν. The moduli stack of polarized abelian
abelian schemes over Z with polarization of degree ν assigns to a scheme S
the groupoid parameterizing abelian schemes f : A→ S (meaning a smooth
proper group scheme) together with a polarization ϕ : A→ A∨ of degree ν.
An isomorphism morphism in this category between [A, f , ϕ] and [A′, f ′, ϕ′]
is a commutative triangle

(3.1)
A A′

S

h

f

f ′

where h is an isomorphism and so that

(3.2)
A A′

A∨ (A′)∨.

h

ϕ ϕ′

h∨

commutes.
In the case ν = 1, we call the polarization a principal polarization.

3.1. Elliptic curves. Abelian varieties of dimension 1 are called elliptic
curves.

Exercise 3.1.1. Show that every elliptic curve has a principal polarization. 14

Exercise 3.1.2 (Explicit description of elliptic curves). (1) Show that any
elliptic curve over a field k can be described as a plane cubic. 15

(2) Moreover, by choosing the point to lie at [0, 1, 0] ∈ P2 and specifying
the tangent space to this point show the equation may be taken to be
of the form zy2 + f (x, z)y + g(x, z) = 0 where f is quadratic and g is
cubic.

(3) When k has characteristic which is not 2, show that by completing the
square, one can arrange f = 0.

(4) When k has characteristic neither 2 nor 3, show that one can write the
equation in the form zy2 = x3 + Axz2 + Bz3 for A, B ∈ k, and that

14Hint: Consider the map sending a point p ∈ E to OE(p− e) for e the marked identity
point of the elliptic curve E.

15Hint: If e ∈ E is the marked point, use OE(3e) to embed the curve into projective space.
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this is uniquely determined up to replacing (A, B) by (c4A, c6B) for
c ∈ k×.

Exercise 3.1.3. Show that there is a bijection between elliptic curves over an
algebraically closed field k and elements of A1

k(k) = k. (It turns out A1
k is a

coarse moduli space for the moduli stack of elliptic curves.) 16

Exercise 3.1.4 (Fun, unimportant exercise). Show that every genus 1 curve
over a field k with a degree 2 line bundle can be described as a double cover
of P1

k, and can be described by an equation of the form y2 = f (x) for f (x)
a quartic equation. (In degenerate cases where the cover is branched over
infinity, it can be that f (x) is a cubic; for simplicity we will assume this is
not the case, but you can also try to figure out how to generalize this to that
case.)

When one learns about solving the quartic equation x4 + ax3 + bx2 + cx +
d, the method of solving this typically reduces to solving the resolvent cubic.
In the case the quartic is of the form (x− A)(x− B)(x−C)(x−D), the resol-
vent cubic is the cubic polynomial (x− (AB + CD))(x− (AC + BD))(x−
(AD + BC)). In general, the resolvent cubic is the unique polynomial over k
whose base change to k has the above property.

(1) Show that the resolvent cubic exists.
(2) Show that if C is the genus 1 curve y2 = f (x), then Pic0

C/k defines an
elliptic curve whose 2-torsion is the disjoint union of the identity point
and a degree 3 scheme. Show this degree 3 scheme is the resolvent
cubic of f (x).

(3) Suppose the quartic equation has Galois group S4 and interpret the
resolvent cubic as sitting inside the Galois closure of the S4 extension
defined by the quartic polynomial.

(4) Fixing a specified cubic polynomial h with S3 Galois group, show
there is a bijection between separable degree 2 extensions of the S3
extension of k corresponding to h and degree 4 extensions whose
resolvent cubic is h. This is a special case of the Recillas correspondence.

We now provide a sequence of exercises relating complex tori to elliptic
curves.

Definition 3.1.5. If V is a complex vector space, a lattice Λ ⊂ V is a discrete
subgroup so that Λ ⊗Z R ≃ V, i.e., Λ generates V as a R vector space
(viewing C as a 2-dimensional R vector space).

16Hint: If you haven’t seen it, look up the j-invariant of an elliptic curve.
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Concretely, if V = C, a lattice can be written in the form {av + bw : a, b ∈
Z} so long as neither of v and w are R multiples of the other. We can now
relate lattices to elliptic curves.

Exercise 3.1.6. Show that for any lattice Λ ⊂ C, one can make sense of the
quotient C/Λ as a Riemann surface. Show this quotient is a genus 1 Riemann
surface with a marked point.

Exercise 3.1.7. Let L denote the set of pairs (ω1, ω2) ∈ (C×)2 so that ω1, ω2
are not R multiples of each other. There is an action of SL2(Z) on R by
treating (ω1, ω2) as a length 2 vector and letting matrices act on these vectors.
Show there is a bijection between L/SL2(Z) and the set of lattices Λ ⊂ C. 17

Exercise 3.1.8 (Assumes some background in complex analysis). By Riemann
existence, every compact Riemann surface is algebraic, which means that
this genus 1 surface is actually the complex points of an algebraic variety.

We now outline a direct way to see this in the case that the Riemann surface
has genus 1. If you are less familiar with complex analysis, you may want to
skip this exercise. Define the Weierstrass ℘ function by

℘(z) :=
1
z2 + ∑

λ∈Λ−0

(
1

(z− λ)2 −
1

λ2

)
.

(1) Show that for any λ ∈ C,℘(z) = ℘(z + λ). Hence, ℘ defines a
function from C/Λ to C. Show the same is true for the derivative ℘′

of ℘.
(2) Show there are complex numbers g2 and g3 depending on Λ so that

(℘′(z))2 = 4℘3(z)− g2℘(z) + g3.

18

(3) Conclude that there is a map from C/Λ to P2
C sending any point

outside of the lattice z to [℘(z),℘′(z), 1] and sending a point in the
lattice to [0, 0, 1].

(4) Show that the above map is a surjection. 19

(5) Show the above map is an injection as well. 20

17Hint: Send (ω1, ω2) 7→ Zω1 ⊕Zω2.
18Hint: Find constants so that the difference of the two sides of the above equation is

Λ invariant and has no poles. Use Louiville’s theorem which says that an entire bounded
holomorphic function is constant.

19Hint: It is a nonconstant map between Riemann surfaces.
20Hint: The ℘ function itself is a degree 2 meromorphic function as it has a second order

pole at a point in the lattice.
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(6) Conclude that the map is a bijective map from a genus 1 Riemann sur-
face to a plane cubic, and use this to show it must be an isomorphism.

(7) Conclude that every 1-dimensional complex torus can be expressed
as the vanishing locus of a smooth plane cubic.

Definition 3.1.9. Let the upper half plane be H := {z ∈ C : z > 0}.
We consider two lattices Λ1, Λ2 in C isomorphic if there is some k ∈ C× so

that kΛ1 = Λ2.

Exercise 3.1.10. Show there is a bijection between H and the set of lattices
up to isomorphism. Specifically, show H is the quotient of L/SL2(Z) by the
scaling action of C× where k ∈ C× sends (ω1, ω2) 7→ (kω1, kω2).

Exercise 3.1.11. Show that the bijection from Exercise 3.1.7 respects stabilizer
groups in the following sense: show that the stabilizer of the C× action on
L/SL2(Z) via scaling (whose quotient is H) is identified with the set of
automorphisms of a lattice. More specifically, show the following:

(1) Show that the hexagonal lattice (corresponding to ω1 = 1 and ω2 a
primitive 6th root of unity) has automorphism group Z/6Z.

(2) Show the square lattice (corresponding to ω1 = 1 and ω2 a primitive
4th root of unity has automorphism group Z/4Z).

(3) Show that all other lattices have automorphism group Z/2Z.
(4) Conclude using Exercise 3.1.8 that the above describes all automor-

phism groups of ellpitic curves over the complex numbers.

3.2. Higher dimensional abelian varieties.

Exercise 3.2.1 (Abel-Jacobi map). Given a curve C of genus g > 0 and a
point p ∈ C, define a map C → Pic0

C sending q 7→ O(q− p). Show this map
is injective. (It turns out this map is also injective on tangent vectors, and
hence is a closed immersion; this is trickier to prove and a proof is outlined
in Exercise 4.1.4.)

We next aim to describe all principally polarized abelian varieties in di-
mensions 2 and 3, in the next few exercises.

Definition 3.2.2. If C is a genus g curve with a point p ∈ C, the Theta divisor
is the subset Θp ⊂ Pic0

C/k of divisors on C of the form D− (g− 1)p where D
is an effective Cartier divisor of degree g− 1 divisor.

Later in Definition 4.2.1 will define the Theta divisor in families.

Fact 3.2.3. Recall that a stable curve of genus g ≥ 2 refers to a with at worst
nodal singularities so that every genus 0 component has at least 3 singular
points. (Equivalently, the curve has only finitely many automorphisms.) A
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curve is compact type if the dual graph of its irreducible components has no
loops. The Torelli map is the map sending a curve to its principally polarized
Jacobian, where the principal polarization is induced by the Theta divisor.
We give a detailed construction of this in §4.1. In particular, the Jacobian
of any compact type curve is an abelian variety. Concretely, if a compact
type curve over k has irreducible components C1, . . . , Cn the Jacobian of the
curve is Pic0

C1/k× · · · × Pic0
Cn/k. For the next few exercises, you may take for

granted that the Torelli map in g ≥ 2 extends to a proper map from the space
of compact type stable curves. The theta divisor associated to a compact
type curve C still corresponds to degree g− 1 effective Cartier divisors on
the curve, viewed as a subscheme of Picg

C/k, which is a torsor for its Jacobian
Pic0

C/k.

Exercise 3.2.4. For this exercise, it may be helpful to see Fact 3.2.3. Describe
explicitly the theta divisor on the following nodal curves:

(1) Two genus 1 curves meeting a node
(2) Three genus 1 curves meeting P1 at the points 0, 1, ∞.
(3) A genus 2 curve meeting a genus 1 curve at a node.
(4) A genus 1 curve meeting two other genus 1 curves at two distinct

points.
(5) In general, compute the number of components of the Theta divisor

associated to a curve in terms of discrete data associated to that curve.
(What discrete data you will need is left to you to figure out.)

Exercise 3.2.5. In Exercise 4.4.2, we will show that a general g dimensional
ppav is the Jacobian of a curve when g = 2 and g = 3. Assuming this, show
that the Torelli map is dominant when g = 2 and g = 3. Conclude using
Fact 3.2.3 that the extended Torelli map to compact type curves is surjective
when g = 2 and g = 3.

Exercise 3.2.6. Describe principally polarized abelian varieties (ppav’s) of
dimension 2 via the following classification: Show that every ppav of dimen-
sion 2 over an algebraically closed field is either the Jacobian of a genus 2
curve or a product of elliptic curves. 21

Classify what type of (possibly singular) genus 2 curve the abelian variety
is the Jacobian of in terms of whether the Theta divisor is reducible.

Exercise 3.2.7. Generalizing the above exercise, describe all points of A3 by
describing all compact type genus 3 curves, and describing ppav’s as the
Jacobian of a compact type genus 3 curve.

21Hint: Use Fact 3.2.3 and Exercise 3.2.5.
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Exercise 3.2.8. Construct a g-dimensional abelian variety for g > 1 which
does not have a principal polarization as follows:

(1) Show that if A is a g-dimensional ppav over C with endomorphism
group Z and G ⊂ A is a finite subgroup of order n, with n not a gth
power of an integer, then B = A/G has no principal polarization. 22

(2) You may assume that the Jacobian of a general hyperelliptic curve
over C has endomorphism group Z. Using this, for every g > 1,
show there exist examples of abelian varieties of dimension g with no
principal polarization.

4. THE TORELLI MAP

We will next examine the Torelli map relating the moduli space of curves
and abelian varieties.

4.1. Defining the Torelli map.

Definition 4.1.1. Let f : C → S be a smooth proper curve of genus at
least 1 with geometrically connected fibers. The Abel-Jacobi map is defined
functorially by

i : C → Pic1
C/S

x 7→ OC(x).

In the next few exercises, we will show that the Abel-Jacobi map is a closed
immersion.

Exercise 4.1.2. Let C be a curve over a field k. Show that the Abel-Jacobi
map C → Pic1

C/k induces an isomorphism H0(C, ΩC) ≃ H0(Pic1
C/k, ΩPic1

C/k
)

in the following steps.
(1) Show that both vector spaces are g dimensional, so reduce to showing

the map is injective.
(2) Show the following diagram is commutative.

(4.1)

C Pic1
C/k

Cg Picg
C/k

x 7→O(x)

x 7→(x,p,...,p) L 7→L⊗O((g−1)p)

(x1,...,xg) 7→O(x1+···+xg)

(3) Reduce to showing that the maps induced by the composite of the
left and lower maps on differentials in the above diagram is injective.

22Hint: If B did have a principal polarization, consider the degree of the composite map
A→ B→ B∨ → A∨.
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(4) Show that the lower map factors through Symg
C/k and hence reduce

to showing injectivity of the composite

H0(C, ΩC)← H0(Cg, ΩCg)← H0(Symg
C/k, Ω1

Symg
C/k

)← H0(Picg
C/k, ΩPicg

C/k
).

(5) Show that Symg
C/k → Picg

C/k is birational.
(6) Conclude that H0(Symg

C/k, Ω1
Symg

C/k
) ← H0(Picg

C/k, ΩPicg
C/k

) is an iso-

morphism. Reduce to showing H0(C, ΩC)← H0(Cg, ΩCg)← H0(Symg
C/k, Ω1

Symg
C/k

)

is injective.
(7) Let h : Cg → Symg

C/k denote the quotient. Show this is generically
separable to conclude that h∗ΩSymg

C/k
→ Ω1

Cg is an injection.

(8) Show the composite ΩSymg
C/k
→ h∗h∗ΩSymg

C/k
→ h∗Ω1

Cg is an injection
of sheaves.

(9) Deduce H0(Cg, ΩCg)← H0(Symg
C/k, Ω1

Symg
C/k

) is an injection.

(10) Show that the image of H0(Cg, ΩCg) ← H0(Symg
C/k, Ω1

Symg
C/k

) is in-

variant under the action of Sg, so the image factors through the Sg

invariants H0(Cg, ΩCg)Sg .
(11) Identify H0(Cg, ΩCg) ≃ ⊕g

i=1H0(C, ΩC) and conclude H0(Cg, ΩCg)Sg

corresponds to elements of ⊕g
i=1H0(C, ΩC) in the image of the diago-

nal.
(12) Show that under the above identification H0(Cg, ΩCg)Sg is sent injec-

tively to H0(C, ΩC) via the map C → Cg induced by x 7→ (x, p, . . . , p).
23

Exercise 4.1.3. Let C be a curve over a field k. Show that the Abel-Jacobi map
C → Pic1

C/k induces an isomorphism H1(Pic1
C/k, OPic1

C/k
) ≃ H1(C, OC). 24

We next wish to show that the Abel-Jacobi map is a closed immersion.

Exercise 4.1.4. (1) Show the Abel Jacobi map is proper.
(2) Reduce to showing the Abel-Jacobi map is injective on points and

injective on tangent vectors. 25

23Hint: Show the induced map on differentials ⊕g
i=1H0(C, ΩC)→ H0(C, ΩC) is given by

sending (ω1, . . . , ωg) 7→ ω1, using that the C → Cg, x 7→ (x, p, . . . , p) is the identity in the
first coordinate and constant on all other coordinates.

24Hint: Use Exercise 4.1.2, Serre duality, an identification of H1(Pic, O) with the tangent
space to Pic∨ and an identification of H0(Pic, Ω) with the cotangent space to Pic.

25Hint: A proper map which is injective on points and injective on tangent vectors is a
closed immersion.
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(3) Show it is enough the verify the previous part in the case S = Spec k
for k a field.

(4) Reduce further to the case that k is algebraically closed.
(5) Verify the abel Jacobi map is injective on points, using that the genus

of C is at least 1. (What goes wrong if the genus is 0?)
(6) It remains to show the Abel-Jacobi map is injective on tangent vectors

when S = Spec k. This is the trickiest part. Rephrase this as showing
that i∗ΩPic1

C/k
→ ΩC is surjective.

(7) Show i∗ΩPic1
C/k
≃ H0(Pic1

C/k, ΩPic1
C/k

)⊗k OC.
(8) Use the adjunction associated to f : C → S to produce the commuta-

tive square

(4.2)

H0(Pic1
C/k, ΩPic1

C/k /k)⊗OC H0(C, ΩC/k)⊗OC

H0(Pic1
C/k, Ω1

Pic1
C/k /k

)⊗OC ≃ i∗ΩPic1
C/k

ΩC

(9) Show the bottom map in the previous part is surjective by showing
the top and right map are surjective. 26

(10) Deduce that the Abel-Jacobi map is an immersion so long as C has
genus at least 1.

4.2. Constructing the principal polarization over an algebraically closed
field. Having constructed the Abel-Jacobi map, our next goal is to construct
the Torelli map.

Definition 4.2.1. Suppose we have a curve C → S with a section p : S→ C.
Let Cg−1 := C×S · · · ×S C denote the g− 1 fold fiber product of C over S.
Define the Theta divisor relative to p, Θp, as the image

Cg−1 → Pic0
C/S

(p1, . . . , pg−1) 7→ OC

((
g−1

∑
i=1

pi

)
− (g− 1) · p

)
.

We next wish to show that Θp defines a principal polarization. The Torelli
map will then be the map which sends C to Pic0

C/S along with this principal
polarization. We will first outline in exercises how to show Θp defines a
principal polarization over an algebraically closed field, and then show that

26Hint: For the right map, show ΩC/k is globally generated using Serre duality and that
C has genus at least 1. Show the top map is an isomorphism by Exercise 4.1.2.
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Θp is independent of the choice of p, and can in fact be defined over a general
base S when C → S has no sections.

The following is a standard result in the theory of abelian varieties, which
are a bit tricky to prove directly, but are contained, for example, in Mumford’s
book on abelian varieties. It will allow us to verify that Θp is a principal
polarization.

Proposition 4.2.2. Suppose A is an abelian variety over an algebraically closed
field k, and L = OA(D) for an effective Cartier divisor D. Let tx : A→ A denote
translation by x ∈ A(k). If t∗xL ̸≃ L for every x ̸= e in A(k) and h0(A, L ) = 1
then ϕL is a principal polarization.

Exercise 4.2.3. Suppose Pic0
C/k is an abelian variety over a field and L is

the theta divisor Θp. Supposing we know h0(Pic0
C/k, Θp) = 1, conclude

t∗xL ̸≃ L for any x ∈ Pic0
C/k.

Exercise 4.2.4 (Easy exercise, given the above). In order to show Θp is a
principal polarization over a field, show that it suffices to prove h0(A, Θp) =
1.

We next aim to prove h0(A, Θp) = 1.

Exercise 4.2.5 (Easy exercise). Show h0(A, Θp) ≥ 1.

Define the map

iD : C → Pic0
C/k

x 7→ KC − D + x.

Exercise 4.2.6. Show iD is an immersion. 27

Exercise 4.2.7. Show that a general divisor D on C of degree g satisfies
h0(C, D) = 1.

Exercise 4.2.8. If h0(Pic0
C/k, Θp) = r + 1 and D has degree d with h0(C, D) =

1, show i−1
D (Θp) = D as a divisor on C.

Exercise 4.2.9. With notation as in the previous exercise, show that the
subspace of sections of H0(Pic0

C/k, Θp) which vanish on iD(C) has dimension
r. 28

27Hint: Use that the Abel-Jacobi map is an immersion.
28Hint: Consider the map on H0 induced by the map iD.
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Exercise 4.2.10. Consider the incidence correspondence
(4.3)

Φ :=
{
(E, Ψ) : E ∈ Symg

C/k, Ψ ∈ PH0(Pic0
C/k, Θp, iE(C) ⊂ Ψ

}

Picg
C/k PH0(Pic0

C/k, Θp).
π1

π2

(1) Assuming r > 0 as in Exercise 4.2.8, show dim Φ = r + g− 1 and
conclude the generic fiber of π2 has dimension g− 1.

(2) We want to show r = 0, so it remains to deduce a contradiction. Show
it suffices to prove the fiber of π2 over the point corresponding to Θp
has dimension at most g− 2.

(3) Reduce to showing that the set of [E] ∈ Symg
C/k with h0(C, E) > 1 are

constrained in a subscheme of Symg
C/k of codimension at least 2.

(4) Show the set of [E] ∈ Symg
C/k with h0(C, E) > 1 does have codimen-

sion 2 by identifying this set with the subset of Symg
C/k where the

fiber dimension of Symg
C/k → Picg

C/k is positive. Use that this is a
birational map of irreducible varieties to conclude this subset has
codimension at least 2.

(5) Conclude h0(Pic0
C/k, Θp) = 1. Conclude that Θp induces a principal

polarization ϕO(Θp).

4.3. Constructing Θ over a general base.

Exercise 4.3.1. Show that for any p : S→ C, Θp is an effective relative Cartier
divisor. 29

An important construction in the theory of abelian varieties is the map ϕL

defined as follows. Let A → S be an abelian scheme and L an invertible
sheaf on A. Define

ϕL A→ A∨

x 7→ t∗xL ⊗L ∨.

Exercise 4.3.2. Show that if A and B are two abelian schemes over S, HomS(A, B)
is unramified by showing it is formally unramified. 30

29Possible hint: Being a relative effective Cartier divisor is equivalent to being a Cartier
divisor and each fiber being a Cartier divisor; check this by pulling back from the moduli
space of curves, which is regular, so Cartier and Weil divisors coincide.

30Hint: Use the rigidity lemma.
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Exercise 4.3.3. Show that if p, q : S→ C are two sections, the induced maps
ϕO(Θp) and ϕO(Θq) from (Pic0

C/S)
∨ → ((Pic0

C/S)
∨)∨ ≃ Pic0

C/S coincide. 31

Exercise 4.3.4 (Assumes knowledge of descent). Show that for any smooth
proper relative curve C → S with geometrically connected fibers, there is

a unique map ϕθ :
(

Pic0
C/S

)∨
→ Pic0

C/S such that for any flat T → S with

section p : T → CT, the base change of ϕΘ to T agrees with ϕO(Θp).
32

Exercise 4.3.5. For C → S a smooth proper curve with geometrically con-

nected fibers, we have defined a map ϕΘ :
(

Pic0
C/S

)∨
→ Pic0

C/S in Exer-

cise 4.3.4. Show that ϕΘ is a principal polarization. 33

Finally, we can define the Torelli map!

Definition 4.3.6. For g ≥ 0, the Torelli map is the map Mg → Ag given by
sending C → S to the principally polarized abelian scheme (Pic0

C/S, ϕΘ).

4.4. The infinitesimal Torelli theorem. For g ≥ 2, we have a map τg :
Mg → Ag sending a curve to its principally polarized Jacobian. Recall the
usual Torelli theorem for curves says this is injective on geometric points.

Exercise 4.4.1. Show that for g ≥ 3, the Torelli map is generically 2 : 1, so it
is not an generically immersion on stacks. 34

Even ignoring this 2 : 1 issue, it turns out the Torelli map is ramified along
the hyperelliptic locus. We next present a series of exercises to explain this.
You may take for granted the following deformation theory facts:

(1) The tangent space to Mg at [C] is identified with H1(C, TC) for C a
genus g curve.

(2) Let Sym2 V denote the kernel of the map V⊗2 → ∧2V. The tangent
space to Ag at [A, ϕ] is identified with Sym2 H1(A, OA) ⊂ H1(A, OA)

⊗2 ≃
H1(A, OA)⊗H0(A, ΩA)

∨ ≃ H1(A, Ω∨A) ≃ H1(A, TA) where H1(A, TA)
parameterizes deformations of the abstract abelian variety A and
Sym2 H1(A, OA) parameterizes deformations of the polarized abelian
variety. See [OS79, Theorem 2.6] for a proof.

31Hint: Use the previous exercise and the rigidity lemma to reduce to the case that
S = Spec k is an algebraically closed field. In this case, use that a map from a curve to an
unramified scheme over a field is constant.

32Hint: This is an application of fppf descent.
33Hint: Reduce to checking it defines an isomorphism on fibers over S and use Exer-

cise 4.2.10.
34Hint: Generic curves have no automorphisms, but abelian varieties all have at least 2

automorphisms.
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Exercise 4.4.2. Compute the dimension of the tangent space to Ag at a point.
Assuming that Ag is smooth, use this and the Torelli theorem to give another
proof that the Torelli maps is dominant in genus 2 and 3.

Exercise 4.4.3. (1) Show that a general 4-dimensional ppav is not the
Jacobian of a curve. 35

(2) Given a genus 5 curve C, and a connected finite étale double cover
D → C show that Pic0

D / Pic0
C is a 4-dimensional ppav. This is called

a Prym abelian variety.
(3) Make a dimension count which makes it plausible that a general 4-

dimensional ppav is obtained from such a Prym construction. (This
is in fact true, prove it as a bonus.)

(4) Make a dimension count which makes it plausible that a general
5-dimensional ppav is also obtained from such a Prym construction.
(This is in fact true, prove it as a bonus.)

(5) Show that a general 6-dimensional ppav is not obtained from such a
Prym construction.

Exercise 4.4.4. Let C be a curve and J be its principally polarized Jacobian.
(1) Identify the map on tangent spaces T[C]τg : T[C]Mg → T[J]Ag with a

map H1(C, TC)→ Sym2 H1(J, OJ).
(2) Using the identification H1(J, OJ) ≃ H1(C, OC) of Exercise 4.1.3 and

Serre duality, show the above map H1(C, TC) → H1(J, TJ) can be
re-expressed as a map Sym2 H0(C, ωC) → H0(C, ω⊗2

C ). This turns
out to agree with the multiplication map sending two sections to their
tensor product, see [Voi07, Lemma 10.19, Theorem 10.21, and Lemma
10.22] and also [Lan19] for a more algebraic proof.

(3) Show the Torelli map is injective on tangent vectors if and only if
Sym2 H0(C, ωC)→ H0(C, ω⊗2

C ) is surjective.

Exercise 4.4.5. For this exercise, we work over a field k of characteristic not 2.
(1) Show that if C is given by an equation of the form y2 = f , then a basis

for H0(C, ωC) is given by xi dx/y for 0 ≤ i ≤ g− 1.
(2) Show that if g ≥ 2, the image of Sym2 H0(C, ωC)→ H0(C, ω⊗2

C ) has
dimension 2g− 1.

(3) Conclude that if C is a hyperelliptic curve of genus g > 2, the map
µ : Sym2 H0(C, ωC)→ H0(C, ω⊗2

C ) is not surjective.
(4) Deduce that the Torelli map is not injective on tangent vectors along

the hyperelliptic locus.
(5) Compute an explicit basis for H0(C, ω⊗2

C ) of dimension 3g− 3.

35Hint: Do a dimension count. You may want to do Exercise 4.4.2 first.
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(6) Compute a basis for the kernel of µ : Sym2 H0(C, ωC)→ H0(C, ω⊗2
C ).

We can also extend the above exercise to work in characteristic 2. It is
possible to prove the map µ fails to be surjective in characteristic 2, although
here we will not prove this. Instead, we will content ourself with giving an
explicit description of the image of µ, while not computing the dimension of
the image.
Exercise 4.4.6 (Tricky exercise). Suppose k has characteristic 2.

(1) Show that any hyperelliptic curve can be written in the form sy2 +
hy + f = 0 for h a polynomial of degree g + 1 and f a polynomial of
degree 2g + 2 and s ∈ k×.

(2) Show that a general such curve can be written in the form y2 − y = f
for f ∈ k(x) of the form f = α0x + ∑

g
i=1

αi
x−ai

for αi, ai ∈ k. 36

(3) For C of the above form, show that the hyperelliptic map C → P1 is
ramified to order 2 at each of the points a1, . . . , ag, ∞.

(4) In the above setting, show that dx
x−ai

for 1 ≤ i ≤ g form a basis for
H0(C, ωC).

(5) Show that the image of µ is the span of the elements (dx)2

(x−ai)(x−aj)
. (It

turns out these span a 2g− 1 dimensional subspace, but we will not
prove this.)

Exercise 4.4.7. Recall that an abelian variety A in characteristic p over an
algebraically closed field k is ordinary if #A[p] = pg. Show that a hyperelliptic
curve which can be written in the form y2 − y = f for f of the form α0x +

∑
g
i=1

αi
x−ai

for αi, ai ∈ k is ordinary. 37

Remark 4.4.8. More generally, the Deuring-Shafarevich formula shows a
hyperelliptic curve in the above form is ordinary if and only if all the poles
of f have order 1. See [Sub75, Theorem 4.2].
Exercise 4.4.9. Show that a general hyperelliptic curve of genus g in charac-
teristic 2 can be written via an equation as in the previous exercise. Conclude
that a general hyperelliptic curve of genus g in characteristic 2 is ordinary.

A classic result of Max Noether says that if C is a curve of genus g ≥ 3,
then the multiplication map Sym2 H0(C, ωC)→ H0(C, ω⊗2

C ) is surjective if
C is not hyperelliptic.

36Hint: Reduce to the case s = 1 and replace y by by, and divide the result by b2 to obtain
an equation of the form y2− y = c/b2. Then, apply transformations of the form y 7→ y+1

(x−ai)
ri

where b = ∏(x− ai)
ri .

37Hint: Construct 2g many 2-torsion line bundles in terms of the preimages of x− ai on
the hyperelliptic curve.
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Exercise 4.4.10 (Easy exercise). Using Max Noether’s theorem mentioned
above, show that the Torelli map τg is injective on tangent vectors at any
non-hyperelliptic curve.

Exercise 4.4.11. Show that the one can put the structure of a ring on the
vector space⊕∞

i=0H0(C, ω⊗i
C ). This is called the canonical ring of C. Show that

the canonical ring is generated in degree 1 if and only if C is hyperelliptic.

The canonical ring as defined in the previous exercise is the subject of
Petri’s theorem.

Theorem 4.4.12 (Petri’s theorem). Suppose C is a nonhyperelliptic curve over an
algebraically closed field of genus g ≥ 4 and C is neither trigonal (has a degree 3
map to P1) nor a plane quintic. Then, the canonical ring is generated in degree 1
with relations in degree 2.

The following exercise is an infinitesimal version of Torelli’s theorem for
curves. While Torelli’s theorem says one can recover C from its Jacobian, the
infinitesimal Torelli theorem says one can recover C from the derivative of
the Torelli map.

Exercise 4.4.13 (Fun exercise). Using Petri’s theorem, show that if g ≥ 4 and
C is a curve with is not hyperelliptic, a plane quintic, or trigonal then one
can recover C from the linear map T[C]τg : Sym2 H0(C, ωC)→ H0(C, ω⊗2

C ).

We now include a few more exercises relating to canonical rings.

Exercise 4.4.14. Show that if C is trigonal the canonical ring has a relation in
degree 3.

Exercise 4.4.15. Show that no curves of genus 3 have canonical ring generated
in degree 1 with relations in degree 2.

Exercise 4.4.16. If C is a hyperelliptic curve of the form y2 = f , work out a
presentation of the canonical ring of C. 38

5. INTRODUCTION TO MODULI SPACES

The general idea of a moduli space is that its points should parameterize
isomorphism classes of a certain class of object of interest. For example, Mg,
the moduli space of curves, is a stack whose complex points parameterize
curves over C. The moduli space of principally polarized Abelian varieties,
Ag, is a stack whose complex points are in bijection with principally polarized
Abelian varieties. More generally, we would like moduli spaces so that, not

38Hint: One may write a basis of differentials for C in the form dx/y, . . . , xg−1dx/y.
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only do their C points parameterize objects of interest, but for any scheme S,
their S points parameterize relative objects over S.

We start with a few examples of this to warm up before getting to the more
involved moduli spaces of curves and moduli space of principally polarized
Abelian varieties.

5.1. Moduli spaces of 0-cycles. We start with a few exercises relating to
moduli spaces of 0 dimensional subschemes of a given scheme.

Exercise 5.1.1 (Easy exercise; every scheme is a moduli space of its points).
Let B be a scheme and let f : X → B be a map of schemes.

(1) Explain why maps g : B→ X so that f ◦ g = id are in bijection with
B-points of X (over B).

(2) More generally, for h : S→ B a scheme, explain why maps g : S→ X
with h = f ◦ g are in bijection with S-points of X over B.

(3) Interpret the above as saying that X is a moduli space of points on X.
(4) Also interpret this as saying that X is a moduli space of degree 1

effective 0-cycles on X.
(5) In general, given a moduli space M parameterizing certain objects,

a universal family over M is a map f : X → M which in particular
satisfies the following property: if m ∈ M is the point corresponding
to a certain object Xm, then Xm = f−1(m). Describe a universal family
for the moduli space X described in the first part of this problem. 39

Exercise 5.1.2. In the setting of Exercise 5.1.1, show that Xn is a moduli space
for ordered tuples of n-points on X. Here Xn := X×B · · · ×B X︸ ︷︷ ︸

n times

. (Part of the

exercise is interpreting what this means in terms of S-points.) Construct a
finite locally free universal family Z → Xn, with Z ⊂ X ×B Xn, so that the
fiber of Z over a point t = (x1, . . . , xn) is the subscheme {x1, . . . , xn} ⊂ X. 40

Exercise 5.1.3 (Assumes familiarity with quotients by finite group actions).
In the setting of Exercise 5.1.1, show that Symn

X/B := Xn/Sn parameterizes
effective 0-cycles of degree n on X. Here, this denotes the quotient space of
Xn by the Sn action; you may assume X is quasi-projective so that this exists
as a scheme, but in general it exists as an algebraic space. (Part of the exercise
is interpreting what this means in terms of S-points). Construct a finite

39Hint: The fiber over x ∈ X should be the same point x ∈ X. What subscheme of X× X
does this correspond to?

40Hint: How can you construct the universal family in terms of the universal family from
the case n = 1.
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locally free universal family Z → Symn
X/B with Z ⊂ X ×B Symn

X/B whose
fiber over a 0 cycle z = {x1, . . . , xn} is the subscheme {x1, . . . , xn} ⊂ X. 41

Exercise 5.1.4. In the setting of Exercise 5.1.3, construct an open subscheme
Confn

X/B ⊂ Symn
X/B parameterizing degree n effective 0-cycles correspond-

ing to n distinct points. Describe the S-points of this space and construct a
universal family over Confn

X/B.

The space Confn
X/B from the above exercise is called the (unordered) con-

figuration space of n points of X over B.

Exercise 5.1.5. Suppose that in the setting of Exercise 5.1.3, X → B is a
smooth proper curve with geometrically connected fibers. Show that Symn

X/B
is also a moduli space for degree n effective divisors. Show also in this case
that Symn

X/B also parameterizes closed subschemes of degree n.

Exercise 5.1.6. For k a field, show that Symn
A1/k ≃ An.

Exercise 5.1.7. For k a field, Describe Confn
A1 ⊂ Symn

A1/k as an Sn quotient
of a complement of a union of hyperplanes in (A1)n.

Exercise 5.1.8. For k a field, show that Symn
P1/k ≃ Pn.

Exercise 5.1.9. Describe explicitly Conf2
P1/k as an open subscheme of P2 ≃

Sym2
P1/k. As a bonus, make sure your description also works in characteristic

2.

5.2. Moduli spaces of finite locally free algebras.

Exercise 5.2.1 (Assumes a willingness to believe in the existence of quotient
stacks, but not necessarily a familiarity with them). Fix a field k and construct
a moduli space of finite locally free degree d covers over k as follows.

(1) First, construct a moduli space of based finite locally free degree d cov-
ers, meaning a scheme whose Spec R points correspond to algebras
with underlying R-module structure of the form R⊕n. 42

(2) Construct a moduli space of covers by quotienting the space of based
algebras by the GLn action on the basis vectors.

41Hint: Use the universal family from the previous exercise and take the quotient by an
Sn action.

42Hint: Express this moduli space as a closed subscheme of An3
, where the An3

has
coordinates given by ai,j,k in the equations ei · ej = ∑k ai,j,kek, for ei the basis elements for
R⊕n. The closed subscheme we will take corresponds to imposing conditions that this be
an algebra. For example, we need to impose the conditions that it is commutative and
associative. Commutativity amounts to the constraints that ai,j,k = aj,i,k.
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Exercise 5.2.2. Explicitly work out the moduli stack constructed in Exer-
cise 5.2.1 in the cases d = 1 and d = 2. When d = 2 and 2 is invertible,
show this moduli stack is isomorphic to the quotient stack [A1/Gm], where
Gm acts on A1 by the weight 2 action given by t · x = t2x for t ∈ Gm(S)
and x ∈ A1(S). Over an arbitrary base, (including fields of characteristic 2,)
describe this as a quotient stack of A2 by a certain action of Gm ⋉ Ga. 43

Exercise 5.2.3 (Assumes background with stacks). Show that there is an open
substack of the moduli stack of degree d covers which parameterizes finite
étale covers of degree d. Show that this substack has isotropy group Sd.

Exercise 5.2.4. Fix a finite group G. Construct a moduli space of G covers
via a similar method to that of Exercise 5.2.1, where now the moduli space
has S points given by finite locally free covers X → S with a G-action on X
so that the schematic quotient X/G is S. 44

Exercise 5.2.5. Generalize the above exercises, starting with Exercise 5.2.1 to
work over a general base B instead of just over a field k.
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http://math.stanford.edu/~vakil/216blog/
http://math.stanford.edu/~vakil/216blog/
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