HEIGHTS PROBLEM SET 2

Below you will find some problems to work on for Week 2! There are three categories: beginner, intermediate and advanced.

Beginner problems

Question 1. Suppose that the minimal polynomial \(f \in \mathbb{Z}[x] \) of \(\alpha \) factors as
\[
f(x) = a_0x^n + \ldots + a_n = a_0(x - \alpha_1) \cdots (x - \alpha_n)
\]
over \(\mathbb{C} \). Then prove that for every \(i \) between 0 and \(n \), we have
\[
a_i/a_0 = (-1)^i \sum_{1 \leq s_1 < s_2 < \ldots < s_i \leq n} \alpha_{s_1} \alpha_{s_2} \cdots \alpha_{s_i}.
\]

Question 2. In this problem, you will show that \(H(\alpha^{-1}) = H(\alpha) \).
(a) If \(\alpha \) is a nonzero algebraic number with minimal polynomial \(f(x) := a_0x^n + a_1x^{n-1} + \ldots + a_n \), then verify that \(1/\alpha \) is also an algebraic number with minimal polynomial
\[
f^{\text{rev}}(x) := x^nf(1/x) = a_0 + a_1x + \ldots + a_nx^n
\]
if \(a_n > 0 \), and minimal polynomial \(-f^{\text{rev}}(x)\) if \(a_n < 0 \).
(b) Describe the roots of \(f^{\text{rev}}(x) \) in terms of the roots of \(f(x) \).
(c) Show that \(H(\alpha^{-1}) = H(\alpha) \). \text{\textit{Hint: use Question 1.}}

Question 3. This question will introduce you to splitting fields and get you more comfortable computing with number fields. Recall the table from Padma’s notes:

<table>
<thead>
<tr>
<th>Algebraic number</th>
<th>Minimal polynomial</th>
<th>Number field</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a/b \in \mathbb{Q})
\text{gcd}(a, b) = 1, \ b > 0 | (bx - a) | (\mathbb{Q}) | 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) | (x^2 + 1) | (\mathbb{Q}(i) \cong \mathbb{Q}[x]/(x^2 + 1)) | 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sqrt{2} + 1) | ((x - 1)^2 - 2) | (\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[x]/(x^2 - 2)) | 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sqrt{2}) | (x^2 - 2) | (\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[x]/(x^2 - 2)) | 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\zeta_p), a primitive (p)-th root of unity for a prime (p) | (\varphi_p(x) := x^{p-1}) | (\mathbb{Q}(\zeta_p) \cong \mathbb{Q}[x]/(\varphi_p(x))) | (p - 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) For each of the rows of the table, do the following.
- Find all of the roots of the minimal polynomial over the number field. How many roots do you find?
- Factor the minimal polynomial over the number field.
(c) Answer the same questions for the polynomial \(f(x) := x^3 - 2 \) over \(S := \mathbb{Q}[x]/(x^6 - 108) \). You should only get linear factors. We call the number field \(S \) the splitting field of \(f(x) \): the smallest field extension of the base field over which \(f(x) \) \textit{splits} (decomposes into linear factors).

Intermediate problems

Question 4. Prove Gauss’ lemma: a polynomial \(f := a_0x^n + a_1x^{n-1} + \ldots + a_n \) in \(\mathbb{Z}[x] \) is irreducible if and only if it is irreducible in \(\mathbb{Q}[x] \) and \(\text{gcd}(a_0, \ldots, a_n) = 1 \).

Question 5. Prove that any irreducible polynomial of degree \(n \) in \(\mathbb{Q}[x] \) has \(n \) distinct roots in \(\mathbb{C} \).
Question 6. There is also a third definition of a height function H_3, in terms of the house $\hat{\alpha}$ and denominator den of an algebraic number α (See also [Wal00]§ 3.4):

$$\hat{\alpha}(\alpha) := \sqrt[n]{\max_{j=1}^{\infty} |\alpha_j|}$$

$$\text{den}(\alpha) := \min\{D \in \mathbb{Z} : D > 0, \ D\alpha \text{ has a monic minimal polynomial in } \mathbb{Z}[x]\}$$

$$H_3(\alpha) := \text{den}(\alpha) \max\left(1, \hat{\alpha}(\alpha)\right).$$

Prove that $\text{den}(\alpha)$ is well-defined and divides the leading coefficient a_0 of the minimal polynomial $a_0x^n + \ldots + a_n$ of α. Prove explicit inequalities relating $H(\alpha), H_2(\alpha)$ and $H_3(\alpha)$.

Question 7. Fix $m \geq 1$. Consider the polynomial g defined by

$$g(x) := a_0^m (x - \alpha_1^m) \cdots (x - \alpha_n^m).$$

Show that $g(x) \in \mathbb{Z}[x]$ and that it is a power of the minimal polynomial of α^m.

Question 8. Consider an algebraic number α with minimal polynomial $f(x) = a_0x^n + \ldots + a_n \in \mathbb{Z}[x]$, and conjugates $\alpha_1, \ldots, \alpha_n$. Let

$$\text{Disc}(f) = a_0^{2n-2} \prod_{i>j} (\alpha_i - \alpha_j)^2$$

be the discriminant of f. Show that

$$\frac{1}{n} \log |\text{Disc}(f)| \leq \log n + (2n - 2)h(\alpha).$$

Advanced problems

Question 9.

(a) Prove Liouville’s inequality, namely that if α is an algebraic irrational number of degree $n \geq 2$, then there is a constant C (depending on α), such that for any rational number a/b with $b > 0$, we have

$$|\alpha - \frac{a}{b}| \geq \frac{C}{b^n}.$$

(Hint: Let f be the minimal polynomial of α. Combine a lower bound on the nonzero rational number $f(a/b)$ and an upper bound for $|f(\alpha) - f(a/b)|/(\alpha - (a/b))$ using the Mean Value Theorem.)

(b) A Liouville number is a real number x with the property that for any integer n, there is a rational number a/b with $b > 1$ such that

$$0 < |x - (a/b)| < 1/b^n.$$

Prove that Liouville numbers are transcendental and that Liouville’s constant $\sum_{k=1}^{\infty} \frac{1}{10^k}$ is a Liouville number.

References