
Quadraticity of height functions

Padmavathi Srinivasan

Week 6

Last time we defined the Weil height function of an elliptic curve E defined over a number
field K as the function

hE : E(Q) → R
P 7→ h(x(P ))

We reduced the proof of the descent step of deducing the Mordell-Weil theorem from its
weak version to the following almost parallelogram law for the function hE.

Theorem 1. [Sil09, Chapter 8, Theorem 6.2] Let E be an elliptic curve over a number field
K. Then for all P,Q ∈ E(Q), we have

hE(P +Q) + hE(P −Q) = 2hE(P ) + 2hE(Q) +O(1), (1)

where the implied constants in O(1) depend on E, but are independent of the points P,Q.

For the proof of the Weak Mordell-Weil theorem, we refer the reader to [Sil09, Chapter 8,
Section 1]. Today we will prove the almost parallelogram law. The proof involves some
explicit algebra using formulas for the group law of the elliptic curve. The third main feature
of height functions (after the Northcott property and the existence of local decompositions)
that is crucial in this proof is the

“functoriality of heights under morphisms of projective spaces.”

1 Functoriality of heights and the Weil height machine

Proposition 2. [Sil09, Chapter 8, Theorem 5.6] Suppose F : PN → PM is a morphism of
degree d over a number field K, i.e.

F (P ) = [f0(P ) : . . . : fM(P )],

where the fi are homogeneous polynomials of degree d in N +1 variables with coefficients in

the field K. Assume that the fi have no common zeroes in QN+1 \ (0, 0, . . . , 0). Then there
are constants C1, C2 depending only on F and not on P such that

dh(P ) + C1 ≤ h(F (P )) ≤ dh(P ) + C2.
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Proof. Let MK be the collection of normalized absolute values on a number field K1, and
define

nv :=

{
2 if v is an Archimedean place corresponding to a pair of complex conjugate embeddings

1 otherwise.

Recall that if P = [x0 : . . . : xN ] ∈ PN(K), then

h(P ) =
1

[K : Q]

∑
v∈MK

logmax(|x0|nv
v , . . . , |xN |nv

v ).

Using the triangle inequality and multiplicativity of absolute values, we will show that for
each v ∈MK , we have

logmax(|f0(P )|v, . . . , |fM(P )|v) = d logmax(|x0|v, . . . , |xN |v) +O(1),

where the implied constants in O(1) depend only the morphism F , and not on the place v
or the point P . Define

ϵv :=

{
1 if v is Archimedean

0 otherwise.

Step 1: Observe that each fi is a homogeneous polynomial of degree d in N +1 variables,
and is therefore a sum of at most

(
N+d
d

)
monomials. Fix v ∈MK . Let

|F |v = max{|a|v : a is a coefficient of some fi}.

Multiplicativity and the triangle inequality for absolute values implies that for each i in
{0, 1, . . . ,M}, we have

|fi(P )|v ≤
(
N + d

d

)ϵv

|F |v(max(|x0|v, . . . , |xN |v))d. (2)

Step 2: Take the logarithm of both sides of (2), scale by nv and sum over all places and
use

∑
v∈MK

ϵvnv = [K : Q] to get

h(F (P )) ≤ dh(P ) + C2,

for a constant C2 that only depends on N, d, F and is independent of P . Observe that Steps

1 and 2 do not need the assumption that the fi have no common zeroes in QN+1\(0, 0, . . . , 0).
Step 3: One way to obtain an inequality in the other direction would be if we could

express the coordinates of the input point P , or at least some power of the coordinates of P
in terms of the coordinates of F (P ). For example, in the case of the morphism

F : P1 → P2

[x0 : x1] 7→ [x21 − x20 : 2x0x1 : x
2
0 + x21]

1Our definition of nv below is different from the one in Silverman’s book because we defined normalized
our absolute values slightly differently from the book.
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parametrizing Pythagorean triples, we can explicitly see that

x20 =
1

2
(f0(P ) + f2(P ))

x21 =
1

2
(f0(P ) + f2(P ))

The Hilbert Nullstellensatz asserts that this is always possible from the assumption that the

fi have non common zeroes in QN+1 \ (0, 0, . . . , 0), namely that the assumption guarantees
that 2 there is an exponent e and that there are polynomials gij ∈ K[x0, . . . , xN ] for i ∈
{0, 1, . . . , N}, j ∈ {0, 1, . . . ,M} such that for every i, we have

xei =
M∑
j=0

gijfj. (3)

Note that the gij have degree e− d. Fix v ∈MK . Let

|G|v = max{|b|v : b is a coefficient of some gij}.

By arguing similarly to Step 1 using multiplicativity and the triangle inequality we get that
there is a constant C such that for every i, we have

|xi|ev ≤ Cϵv

(
M

max
j=0

|gij(P )|v
)
|F (P )|v

Combining this with the inequality

|gij(P )|v ≤
(
N + e− d

e− d

)ϵv

|G|v(max(|x0|v, . . . , |xN |v))e−d,

and taking the maximum over all i yields the inequality

|P |ev ≤ (C ′)ϵv |P |e−dv |F (P )|v,

where C ′ is a constant depending on N, d, F but is independent of the point P . Upon
rearranging, we get

|P |dv ≤ (C ′)ϵv |F (P )|v. (4)

Step 4: Take logs of both sides of (4), scale by nv and sum over all places and use∑
v∈MK

ϵvnv = [K : Q] to get
dh(P ) + C1 ≤ h(F (P )),

for some constant C1 that depends on N, d, F , but is independent of the point P .

Suggested exercises 3. Fill in the missing details in the proof above, for example in Steps
2, 3 and 4.

2It is clear that if there is an exponent e and polynomials gij such that (3) holds for every i, then the only
common zero of the fi is (0, . . . , 0). The Nullstellensatz asserts the converse. The name “Null-stellen-satz”
translates to “zero-locus-theorem”.
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Remark 4. The left inequality in Proposition 2 can fail without the assumption that the fi
have no common zero apart from the origin. For example, the degree 2 rational map

F : P2 → P2

[x : y : z] 7→ [x2 : xy : z2]

is not defined (i.e. the fi have a common zero) at exactly one point in P2, namely [0 : 1 : 0].
One can show there are infinitely many points P in P2(Q) (necessarily of larger and larger
height by the Northcott property) such that

h(F (P )) = h(P ).

In particular, there is no constant C1 such that for all P in P2(Q) we have

2h(P ) + C1 ≤ h(F (P )).

Suggested exercises 5. Prove the claim above, namely that there are infinitely many
points P in P2(Q) such that h(F (P )) = h(P ) for the F in Remark 4.

Remark 6. There is a way to intrinsically characterize all embeddings of an abstract varietyX
into projective space using the notion of line bundles on X. There is even a group structure
on the collection of line bundles and the corresponding group is called the Picard group
Pic(X) of X. (The exercise from Week 1 on Segre embeddings is related to how you add two
embeddings, and shows that the height function corresponding to the sum of two embeddings
is the sum of the two height functions, up to bounded functions.) Weil came up with a way
to systematically package all the different height functions on X together into what is now
called the Weil height machine. He showed that the various height functions are uniquely
determined (up to bounded functions) if we normalize and fix the height on projective space
to be the one that we have defined, and further demand that the assignment be functorial in
morphisms. More precisely, he showed the following.

Theorem 7. [Sil94, Chapter 3, Section 10, Theorem 10.1, Remark 10.1.1] For every variety
V defined over Q, there is a unique homomorphism

hV : Pic(V ) → {functions V (Q) → R}
{bounded functions V (Q) → R}

,

such that the height with respect to the line bundle O(1) on Pr is the height function we have
defined, and such that hV,ψ∗D = hW,D ◦ ψ for every morphism ψ : V → W .

We have all the ingredients for proving this theorem in these notes and exercises (for
example, the one on the Segre embeddings and the functoriality statement we proved above),
and essentially done most of the necessary work already. We refer the reader to [Sil94]
for details on how to assemble the ingredients together. For an elegant alternate proof of
functoriality of heights that does not use the Nullstellensatz, see [Ser89, Section 2.3].
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2 The almost parallelogram law for height functions

For the almost parallelogram law, we will also need the following proposition, which is a
generalization of the comparison inequality between two different height functions for an
algebraic number that we proved in Lecture 2. Let α1, . . . , αn be any n algebraic numbers
(not necessarily conjugate). Define

f(x) = a0(x− α1) . . . (x− αn) = a0x
n + a1x

n−1 + . . .+ an.

Proposition 8. [Sil09, Chapter 8, Theorem 5.9]

−n log(2) +
n∑
i=1

h(αi) ≤ h([a0 : . . . : an]) ≤ (n− 1) log(2) +
n∑
i=1

h(αi)

We leave the proof as an exercise to the reader, but only mention that it involves proving
“place by place” inequalities, similar to the proof of Proposition 2.

Corollary 9. Let s : P1 × P1 → P2 be the map s([α1 : β1], [α2 : β2]) = [β1β2 : α1β2 + α2β1 :
α1α2]. Then

h(s(P,Q)) = h(P ) + h(Q) +O(1).

Proof. If β1 = 0 or β2 = 0, then h(s([α1 : β1], [α2 : β2])) = h([α1 : β1]) + h([α2 : β2]). So we
may assume that β1 = β2 = 1 without any loss of generality. Now the corollary follows from
Proposition 8 with n = 2 since (x−α1)(x−α2) = x2− (α1+α2)x+α1α2 = x2+a1x+a2.

We are now finally ready to prove Theorem 1.

Proof of Theorem 1. Let G : E ×E → E ×E be the morphism defined by G(P,Q) := (P +
Q,P−Q), and let X : E×E → P1×P1 be the morphism defined by X(P,Q) := (x(P ), x(Q)).

The key to this proof is showing that there is a degree 2 morphism g : P2 → P2 that
makes the following diagram commute and then applying functoriality of heights to g.

E × E E × E

P1 × P1 P1 × P1

P2 P2

G

X X

s s

g

We will first show how to conclude the proof assuming the existence of such a g. Let
σ = s ◦X. Using the commutativity of the diagram, we have

h(σ(P +Q,P −Q)) = h(σ ◦G(P,Q))
= h(g ◦ σ(P,Q))
= 2h(σ(P,Q)) +O(1),

(5)
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where the last line follows from Proposition 2 applied to the degree 2 morphism g. Now,
Corollary 9 gives

h(σ(P,Q)) = h(s(x(P ), x(Q))) = h(x(P )) + h(x(Q)) +O(1) = hE(P ) + hE(Q) +O(1), (6)

and similarly also gives

h(σ(P +Q,P −Q)) = hE(P +Q) + hE(P −Q) +O(1). (7)

Combining (5),(6) and (7) proves the almost parallelogram law, namely that

hE(P +Q) + hE(P −Q) = 2hE(P ) + 2hE(Q) +O(1),

where the implied constants in the O(1) only depend on the elliptic curve E, and not on the
points P,Q. It remains to show the existence of the degree 2 morphism g as above.

Let y2 = x3 + Ax + B be the defining equation for the elliptic curve E, where A,B are
constants in K such that 4A3 + 27B2 ̸= 0. One can show using the explicit description
of the group law on E that if x(P ) = [x1 : 1], x(Q) = [x2 : 1], x(P + Q) = [x3 : 1] and
x(P −Q) = [x4 : 1] (where xi = ∞ if the corresponding point at infinity on P1), then

x3 + x4 =
2(x1 + x2)(A+ x1x2) + 4B

(x1 + x2)2 − 4x1x2

x3x4 =
(x1x2 − A)2 − 4B(x1 + x2)

(x1 + x2)2 − 4x1x2
.

(8)

The commutativity of the diagram forces

g([1 : x1 + x2 : x1x2]) = [1 : x3 + x4 : x3x4],

and setting x1 + x2 = (u/t), x1x2 = (v/t), this in turn forces the formula

g([t : u : v]) = [u2 − 4tv : 2u(At+ v) + 4Bt2 : (v − At)2 − 4Btu].

To show that g is a morphism, we need to show that the only common zero of the three
polynomials

g0(t, u, v) := u2 − 4tv,

g1(t, u, v) := 2u(At+ v) + 4Bt2,

g2(t, u, v) := (v − At)2 − 4Btu

(9)

is (0, 0, 0). This follows from the assumption that 4A3 + 27B2 ̸= 0 and exercise 11 below.
3

3A way to think of the morphism g without writing down explicit formulas is the following. One may
think of P2 as parametrizing unordered pairs of points on P1, and the map s : P1 × P1 → P2 is the map
that “forgets the ordering” by sending a pair of points on P1 to the coefficients of the polynomial which
has the two points as roots. Each unordered pair x(P ), x(Q) of points on P1 corresponds (generically) to
4 points on the elliptic curve E, namely (P,−P ), (Q,−Q), which naturally come in pairs. One may think
of the map g as the map that sends the collection of 4 points (P,−P ), (Q,−Q) on E to the collection of 4
points (P +Q,−P −Q), (P −Q,Q−P ) on E obtained by taking all possible pairwise sums of the points in
(P,−P ) with (Q,−Q).
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Suggested exercises 10. Prove the formulas in (8) above.

Suggested exercises 11. Let A,B be elements of K such that 4A3 + 27B2 ̸= 0. Let
g0, g1, g2 in K[t, u, v] be defined as in (9). Let (t, u, v) be a common zero of g0, g1 and g2.

(a) Show that if t = 0, then u = v = 0.

(b) Assume t ̸= 0. Define z := u/2t. Using g0 = 0, show that z2 = v/t.

(c) Define ψ(z) := 4z(A+z2)+4B and φ(z) := (z2−A)2−8Bz. Show that g1(t, u, v) = t2ψ(z)
and g2(t, u, v) = t2φ(z).

(d) Verify that (12z2 + 16A)φ(z)− (3z3 − 5Az − 27B)ψ(z) = 4(4A3 + 27B2).

(e) Conclude that ψ and φ cannot simultaneously vanish, and hence g0, g1, g2 have no com-
mon zero with t ̸= 0.

Conclude that if (t, u, v) is a common zero of g0, g1 and g2, then t = u = v = 0.

3 The arithmetic of higher genus curves

Having proven the Mordell-Weil theorem, one may ask what is known about the structure
of the set of rational points on other classes of varieties. In 1922, Mordell also conjectured
that a curve defined over a number field that is sufficiently geometrically complex has only
finitely many rational points. More precisely, we have the following landmark theorem of
Faltings proving Mordell’s conjecture.

Theorem 12. [Fal83] If X is a smooth projective geometrically connected curve of genus
g ≥ 2 defined over a number field K, then the set X(K) is finite.

The genus of X in the statement above is a topological invariant of the set of complex
points X(C) and is a measure of geometric complexity. The hypothesis that X is smooth
projective geometrically connected curve translates to X(C) being a compact connected 1
dimensional complex manifold, that is, a Riemann surface. By the classification theorem of
such manifolds, it follows that X(C) is a g-holed torus for some g. An elliptic curve has
genus 1, and more generally a hyperelliptic curve with defining equation y2 = f(x) with f
squarefree polynomial of degree 2g + 1 or 2g + 2 over C has genus g.

Although the set of rational points on curves of genus g ≥ 2 do not have a group
structure, there is a canonically associated g-dimensional group variety defined over K called
the Jacobian J . If X has a rational point defined over K, then there is an associated
Abel-Jacobi map X → J defined over K. For an elliptic curve, the Abel-Jacobi map is
an isomorphism. When K is a number field, the group of rational points J(K) on this
g-dimensional group variety is a finitely generated abelian group – this is also called the
Mordell-Weil theorem. Key to Faltings’s finiteness theorem is a comparison of two different
height functions on the space of all Jacobians. See this beautiful survey article [Maz86]
by Mazur summarizing the key ideas in the proof of Faltings’s theorem without assuming
substantial background. Faltings’s proof tantalizingly does not give an effective method to

7



A genus 1 curve

A genus 2 curve

A genus 3 curve

Images from the wikipedia page on genus g Riemann surfaces
https://en.wikipedia.org/wiki/Genus g surface

compute the finite set of points X(K). The quest for alternate effective proofs for Mordell’s
conjecture continues, and is an active area of research today.

One could alternately ask for bounds on the size of the set X(K). In the same article
referenced above, Mazur asks if there is a uniform bound on the cardinality of X(K), that
depends only on natural invariants associated to X, and not on X itself. This was very
recently answered by Dimitrov, Gao and Habbeger.

Theorem 13. [DGH21] Let X be a smooth projective geometrically integral curve of genus
g ≥ 2 defined over a number field K of degree d. Let r be the rank of the Mordell-Weil group
J(K) of the Jacobian J . Then, there is a constant C depending only on d and g (and not
on X), such that

#X(K) ≤ C1+r.

Key to this proof is an inequality involving height functions!
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