
Height functions and the Mordell-Weil theorem

Padmavathi Srinivasan

Week 5

Starting from today’s lecture, we will exclusively work with logarithmic heights.

Theorem 1 (Mordell-Weil). Let E/K be an elliptic curve defined over a number field K.
Then E(K) is a finitely generated abelian group. In other words, staring with a finite set
of points in E(K), and iterating the construction using secant and tangent lines, one can
generate all points in E(K).

There are two key steps in the proof of the Mordell-Weil theorem. The first step, com-
monly referred to as the Weak Mordell-Weil theorem is to show E(K)/2E(K) is finite. Note
that this step alone is not enough since there are abelian groups A that are not finitely
generated for which A/2A is finite, for example A = Q. The second step is deducing the
Mordell-Weil theorem from its weak version and is commonly referred to as the “descent”
step for reasons that will become apparent below. The descent step crucially uses the theory
of heights of points on elliptic curves. Defining the canonical height function ĥE : E(K) → R
and understanding how it interacts with the group structure of E(K) is the main goal of
today’s lecture.

Definition 2. The Weil height function of an elliptic curve E defined over a number field K
is the function1

hE : E(Q) → R
P 7→ h(x(P ))

Lemma 3. Northcott property The number of points of E(Q) of bounded height and bounded
degree is finite.

Proof. This is an immediate consequence of the Northcott property of heights of algebraic
numbers, since for each value of the x-coordinate on E, there are at most two values of y-
coordinate, so once the possibilities for the x-coordinate are bounded, so are the possibilities
for the y-coordinate.

We would like to understand how the height function defined above interacts with the
group law on the elliptic curve. We will first introduce the big-O notation for comparing
real-valued functions on a set whose difference is bounded. This will be used throughout the
rest of this lecture.

1One can replace the function x below by an arbitrary element of K(x) and define an analogous height
function. The new height function one obtains this way is closely related to the one corresponding to the
one above, so we stick to the height function x for simplicity.
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Heights on Abelian Varieties

The Quadratic Growth of the Height on Abelian Varieties

We illustrate with the elliptic curve and point

E : y2 = x3 + x + 1 and P = (0, 1).

Here is a table of H(x(nP )) for n = 1, 2, . . . , 25.
1 1

2 2

3 13

4 36

5 685

6 7082

7 196249

8 9781441

9 645430801

10 54088691834

11 23545957758733

12 3348618159624516

13 3438505996705270765

14 2389279734043328028530

15 3568842156502352911081681

16 9147174028201584695660404993

17 40437302897155037003168469209281

18 144041052884595077187155035625188225

19 4077551427539061268365818617070082487981

20 29247742836717181569573123126609380958628633

21 1644662183623605030943992459758717959368038089933

22 76795559807444450146033952048248025474377706486132570

23 6037390795706541540397642739132383429233648456214266105001

24 816297679393916005694837838808362431503501229559444925278681793

25 242513738949178952234806483689465816559631390124939658301320990605073

26 47803232530993255659471421491008524334965293857886857075847338386784976289

27 67559659782039617237841184516992302782851604142385500859648938761010393239431661

28 32014345486637038681521545788678891610665676156825092102996356573331436095404542962201

29 75366079100860358183774143789438882594269554344230013075428451465317687946832468865183904333

30 235596097713466330738098972552422422374156906907547045290688341377958875910979032848694872594995042

31 949929776724866709094954536710367778326401614961417743163923974793524931042092311077415673676701373662241

32 6939337780803547166840419022721964472182663632045063388197164628060008767530358928827755424306465309623700644865

33 138560009627230805680861712729089150246171433367872626810509092219015283874452951868081163892328387927559567336088640513

34 1470496183658794212496122961743692131111461785062102204982019653166220314029845380022856443720777836633186409902489575338782721

35 107010592458999940561955702180302050658481740392774624430340775789803872514791716886258854994198364978765941985457904860326401460918221

Notice the parabolic shape,
reflecting the quadratic growth
in the number of digits.

An Introduction to Height Functions – 14–

Definition 4. Suppose S is a set and f, g are two functions S → R. We write f = g+O(1)
if there are constants C1, C2 such that for all s ∈ S, we have

C1 ≤ f(s)− g(s) ≤ C2.

The main theorem connecting the height function hE and the group law on E is the
following almost parallelogram law.

Theorem 5. [Sil09, Chapter 8, Theorem 6.2] Let E be an elliptic curve over a number field
K. Then for all P,Q ∈ E(Q), we have

hE(P +Q) + hE(P −Q) = 2hE(P ) + 2hE(Q) +O(1), (1)

where the implied constants in O(1) depend on E, but are independent of the pair of points
P,Q. In particular, it follows that for any integer m ∈ Z, we have

hE(mP ) = m2hE(P ) +O(1), (2)

where the implied constants in the O(1) notation depend only on E and m and not on the
point P .

Suggested exercises 6. Deduce 2 from 1.
The exponent 2 in the expression hE(mP ) = m2hE(P ) + O(1) is illustrated in the

parabolic shape of the heights of x-coordinates above. (This graph is from [Sil06].) We
temporarily postpone the proof of this theorem and will first show how one can carry out
the descent step in the proof of the Mordell-Weil theorem from the theorem above. The de-
scent step is even easier using the theory of canonical heights of elliptic curves, which obeys
an exact parallelogram law instead of an almost parallelogram law.
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Definition 7. (Tate) The canonical or Néron-Tate height on an elliptic curve E over a number
field K is the function2

ĥE : E(Q) → R

P 7→ lim
N→∞

hE(2
NP )

2 · 4N

Proposition 8. [Sil09, Chapter 8, Proposition 9.1] The canonical height function is well-
defined, i.e., the limit in the definition of the canonical height function exists.

Proof. We will show that the sequence 4−NhE(2
NP ) is Cauchy. Theorem 5 with m = 2 tells

us that there is a constant C such that for any Q in E(Q),

|hE(2Q)− 4hE(Q)| ≤ C.

Let N ≥ M ≥ 0. We will repeatedly use the inequality above applied to the sequence of
points Q = 2MP, 2M+1P, . . . , 2N−1P below to show

|4−NhE(2
NP )− 4−MhE(2

MP )| ≤ 4−MC. (3)

We have

|4−NhE(2
NP )− 4−MhE(2

MP )| =

∣∣∣∣∣
N−1∑
n=M

(4−n−1hE(2
n+1P )− 4−nhE(2

nP ))

∣∣∣∣∣
≤

N−1∑
n=M

(4−n−1|hE(2
n+1P )− 4hE(2

nP ))|

≤
N−1∑
n=M

4−n−1C

≤ 4−MC.

Theorem 9. The canonical height function ĥE : E(Q) → R satisfies the following properties:

(a) (Northcott) |2ĥE −hE| is a bounded function on E(Q). Hence, the set of points of E(Q)
with bounded canonical height is finite.

(b) (Parallelogram law) Let P,R ∈ E(Q) be any two points of E(Q). Then, we have

ĥE(P +R) + ĥE(P −R) = 2ĥE(P ) + 2ĥE(R). (4)

In particular, for any positive integer m, we have

ĥE(mP ) = m2ĥE(P ) (canonicity), (5)

and
ĥE(P +R) ≤ 2ĥE(P ) + 2ĥE(R). (6)

2For the height hf associated to an arbitrary even rational function f ∈ K(x), the expression on the right

hand side gets replaced by hE(2NP )
deg(f)·4N . The limiting value can be shown to be independent of choice of f .
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(c) (Uniqueness) Any function ĥ′ : E(Q) → R satisfying a and Equation 5 for any one integer
m ≥ 2 is equal to ĥE.

Proof. Taking M = 0 and letting N → ∞ in Equation 3 proves part a. Part b can be
deduced from Theorem 5 and Definition 7 as follows. Replace P and Q in Theorem 5 by
2NP and 2NQ, divide both sides by 2 ·4N and take the limit as N → ∞ – this gets rid of the
implied constants coming from the O(1) term and converts the almost parallelogram law to
an exact parallelogram law. The equality ĥE(mP ) = m2ĥE(P ) can be proved by induction
on m. Inequality 6 follows from the equality 4 since ĥE(P −R) ≥ 0.

For part c, consider the function g = ĥ′ − ĥE. We want to show that g is identically
0. On the one hand, since both ĥ′ and ĥE satisfy a, it follows that their difference g is a
bounded function on E(Q). On the other hand, if there is a point P such that g(P ) ̸= 0,
then subtracting equation 5 for ĥ′ and ĥE tells us that g(mP ) = m2g(P ), and hence g is an
unbounded function if m ≥ 2, which is a contradiction. Hence g must be identically zero, or
equivalently, that ĥ′ = ĥE.

Whenever we have a canonical height function on a group (i.e. a height function that
plays well with the group law and obeys an equation like 5 ), we get a corresponding nice
characterization of points of lowest height –

Corollary 10. Let P ∈ E(Q). Then ĥE(P ) ≥ 0. Furthermore ĥE(P ) = 0 if and only if P
is a torsion point.

Proof. ĥE(P ) is a limit of non-negative values and is therefore also non-negative. If P
is a torsion point, then the set of values hE(2

NP ) as N varies is bounded, and therefore
ĥE(P ) = limN→∞ 2−14−NhE(2

NP ) = 0. If ĥE(P ) = 0 and P is defined over a finite extension
L of K, then the set of points {P, 2P, 3P, . . .} is a set of points of bounded height (since
ĥE(mP ) = m2ĥE(P ) = 0 for any integer m by canonicity) and bounded degree (all multiples
of P are defined over the same number field L), and by the Northcott property is finite. This
means there are N > M ≥ 0 such that NP = MP , or in other words (N −M)P = O.

Remark 11. Given Corollary 10, one may wonder if there is an analogous Lehmer type
conjectural lower bound on the height of a non-torsion point on an elliptic curve E. See
[Sil09, Chapter 8, Conjecture 9.9] for such a conjectural statement, where the shape of
the lower bound of the height of a nontorsion point depends on some naturally associated
invariants measuring the complexity of the elliptic curve E, such as the height of the j-
invariant and the valuation of the minimal discriminant of E. (See Silverman’s book for the
definitions of these invariants.)

Theorem 12 (Descent). Assume that E(K)/2E(K) is finite, and let P1, P2, . . . , Pr be a
finite set of coset representatives for E(K)/2E(K). Then Theorem 9 implies that the set

S := {R ∈ E(K) : ĥE(R) ≤ max
i

ĥE(Pi)},

is finite and that it generates E(K).
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Proof. The set S is finite by the Northcott property for ĥE in Theorem 9. Now let G be the
subgroup of E(K) generated by the set S. We want to show that G = E(K). Suppose this
is not true. Let P in E(K) be an element of smallest height that is outside G. We will use
the properties of ĥE from Theorem 9 to produce an element R in E(K) outside G of even
smaller height, which will be a contradiction. (This explains the name “descent” for this
step.)

Since P1, P2, . . . , Pr is a complete set of coset representatives for E(K)/2E(K), we may
write P = Pi + 2R for some i between 1 and r and for some R in E(K). Using the
parallelogram law for ĥE in Theorem 9, we compute

4ĥE(R) = ĥE(2R)

= ĥE(P − Pi)

≤ 2ĥE(P ) + 2ĥE(Pi)

< 4ĥE(P ) since Pi ∈ S and P /∈ S.

We now return to the proof of the almost parallelogram law. The proof involves some
explicit algebra using formulas for the group law of the elliptic curve. The third main feature
of height functions that is crucial in this proof is the

“functoriality of heights under morphisms of projective spaces.”

Proposition 13. [Sil09, Chapter 8, Theorem 5.6] Suppose F : : PN → PM is a morphism of
degree d over a number field K, i.e.

F (P ) = [f0(P ) : . . . : fM(P )],

where the fi are homogeneous polynomials of degree d in N +1 variables with coefficients in

the field K that have no common zeroes in QN+1 \ (0, 0, . . . , 0). Then

h(F (P )) = dh(P ) +O(1),

where the implied constants in the O(1) depend only on F and not on P .

We will prove this proposition in the next lecture, but note that we already saw such
an instance of this functoriality when we compared two different definitions of the height
of a Pythagorean triple all the way back in Lecture 1! The relevant degree 2 morphism in
question was the parametrization map we used to make a complete list of all Pythagorean
triples –

F : P1 → P2

[p : q] 7→ [q2 − p2 : 2pq : q2 + p2].

A dynamical analogue of an elliptic curve

Functoriality of heights under morphisms of projective spaces is also the key property that
lets one define a canonical height function in the dynamical setting of a self-map f : Pn → Pn.
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In the dynamical setting, iteratively doubling a starting point P on an elliptic curve is
replaced by iteratively applying the morphism f to a point P in Pn. A good reference for
learning about the arithmetic of dynamical systems is [Sil07]. For an integer N ≥ 1, let
f ◦N : Pn → Pn be the morphism obtained by composing f with itself N times. If f has
degree d, then f ◦N has degree dN .

Definition 14. Suppose f : Pn → Pn is a morphism of degree d ≥ 2 defined over a number
field K as in Proposition 13. The canonical dynamical height associated to f is the function

ĥf : Pn(Q) → R

P 7→ lim
N→∞

h(f ◦N(P ))

dN
.

Lemma 15. The dynamical canonical height is well-defined, i.e., the limit above exists.

Proof. The proof is identical to the proof of Proposition 8. Proposition 18 a implies there is
a constant C such that

|h(f(P ))− h(P )| ≤ C

for all P in Pn(Q). The replacement for the inequality 3 in Proposition 8 is the following
analogous inequality for N > M ≥ 0 proved using a telescoping sum and geometric series
argument: ∣∣∣∣h(f ◦N(P ))

dN
− h(f ◦M(P ))

dM

∣∣∣∣ ≤ C

(d− 1)dM
. (7)

Suggested exercises 16. Prove the inequality 7 and conclude that the sequence h(f◦N (P ))
dN

is Cauchy if d ≥ 2 and hence converges.
The analogue of the torsion points on elliptic curves are the pre-periodic points for a

rational map. These are the points whose orbit under f eventually enters a cycle.

Definition 17. Let f : Pn → Pn be a morphism defined over a number field K. A point
P in Pn(Q) is a is periodic point for f if there exists N > 0 such that f ◦N(P ) = P . A
point P in Pn(Q) is a pre-periodic point for f , if there exist integers N > M ≥ 0 such that
f ◦N(P ) = f ◦M(P ).

Theorem 18. Let f : Pn → Pn be a morphism of degree d ≥ 2.

(a) ĥf (P ) = h(P ) +O(1), where the implied constants in O(1) are independent of the point
P in Pn(Q).

(b) (Canonicity) ĥf (f(P )) = dĥf (P ).

(c) The function ĥf is uniquely determined by properties a and b.

(d) ĥf (P ) ≥ 0 and ĥf (P ) = 0 if an only if P is a pre-periodic point for f .
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Proof. Part 7 follows from the inequality 7 the same way that Theorem 9 a follows from the
inequality 3. Part b is immediate from the limiting definition:

ĥf (f(P )) = lim
N→∞

h(f ◦N(f(P )))

dN
= d lim

N→∞

h(f ◦N+1(P ))

dN+1
= dĥf (P ).

Part d applies the Northcott property and the canonicity analogous to the proof of Corol-
lary 10. We instead consider the set of points {f(P ), f ◦2(P ), f ◦3(P ), . . . , }. Fill in the
details!

Suggested exercises 19. Fill in the details of the proof of Theorem 18.

Remark 20. In fact, the canonical height on an elliptic curve (up to a constant multiple) is
equal to the canonical height of the x-coordinate for the corresponding Lattés map P1 → P1

that expresses the x-coordinate of 2P as a degree 4 rational function evaluated at the x-
coordinate at P .

Back to elliptic curves

For the almost parallelogram law, we will also need the following comparison, which is a
generalization of the comparison inequality between two different height functions for an
algebraic number that we proved in Lecture 2. Let α1, . . . , αn be any n algebraic numbers
(not necessarily conjugate). Define

f(x) = a0(x− α1) . . . (x− αn) = a0x
n + a1x

n−1 + . . .+ an.

Then

Proposition 21. [Sil09, Chapter 8, Theorem 5.9]

−n log(2) +
n∑

i=1

h(αi) ≤ h([a0 : . . . : an]) ≤ (n− 1) log(2) +
n∑

i=1

h(αi)

Suggested exercises 22. Prove Proposition 21.
We will return to explicit algebra using formulas for the group law for the elliptic curve,

together with Proposition 13 and Proposition 21 to prove the almost parallelogram law for
hE in the next lecture.
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