Height functions and the Mordell-Weil theorem
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Week 5

Starting from today’s lecture, we will exclusively work with logarithmic heights.

Theorem 1 (Mordell-Weil). Let E/K be an elliptic curve defined over a number field K.
Then E(K) is a finitely generated abelian group. In other words, staring with a finite set
of points in E(K), and iterating the construction using secant and tangent lines, one can
generate all points in E(K).

There are two key steps in the proof of the Mordell-Weil theorem. The first step, com-
monly referred to as the Weak Mordell-Weil theorem is to show E(K)/2E(K) is finite. Note
that this step alone is not enough since there are abelian groups A that are not finitely
generated for which A/2A is finite, for example A = Q. The second step is deducing the
Mordell-Weil theorem from its weak version and is commonly referred to as the “descent”
step for reasons that will become apparent below. The descent step crucially uses the theory
of heights of points on elliptic curves. Defining the canonical height function hp: E(K)—R
and understanding how it interacts with the group structure of E(K) is the main goal of
today’s lecture.

Definition 2. The Weil height function of an elliptic curve E defined over a number field K
is the functionl]

P — h(z(P))

Lemma 3. Northcott property The number of points of E(Q) of bounded height and bounded
degree is finite.

Proof. This is an immediate consequence of the Northcott property of heights of algebraic
numbers, since for each value of the z-coordinate on E, there are at most two values of y-
coordinate, so once the possibilities for the xz-coordinate are bounded, so are the possibilities
for the y-coordinate. O]

We would like to understand how the height function defined above interacts with the
group law on the elliptic curve. We will first introduce the big-O notation for comparing
real-valued functions on a set whose difference is bounded. This will be used throughout the
rest of this lecture.

1One can replace the function x below by an arbitrary element of K (x) and define an analogous height
function. The new height function one obtains this way is closely related to the one corresponding to the
one above, so we stick to the height function = for simplicity.



The Quadratic Growth of the Height on Abelian Varieties

We illustrate with the elliptic curve and point
E:y’=2’42+1 and P=(0,1).

Here is a table of H(xz(nP)) forn=1,2,...,25.

Notice the parabolic shape,
reflecting the quadratic growth
in the number of digits.

Definition 4. Suppose S is a set and f, g are two functions S — R. We write f = g+ O(1)
if there are constants C7, Csy such that for all s € S, we have

C1 < f(s) —g(s) < Cs.

The main theorem connecting the height function hg and the group law on FE is the
following almost parallelogram law.

Theorem 5. [Sil09, Chapter 8, Theorem 6.2] Let E be an elliptic curve over a number field

K. Then for all P,Q € E(Q), we have
he(P+ Q)+ hg(P — Q) = 2hg(P) + 2hg(Q) + O(1), (1)

where the implied constants in O(1) depend on E, but are independent of the pair of points
P, Q. In particular, it follows that for any integer m € Z, we have

where the implied constants in the O(1) notation depend only on E and m and not on the
point P.

Suggested exercises 6. Deduce [2| from

The exponent 2 in the expression hg(mP) = m?hg(P) + O(1) is illustrated in the
parabolic shape of the heights of z-coordinates above. (This graph is from [Sil06].) We
temporarily postpone the proof of this theorem and will first show how one can carry out
the descent step in the proof of the Mordell-Weil theorem from the theorem above. The de-
scent step is even easier using the theory of canonical heights of elliptic curves, which obeys
an exact parallelogram law instead of an almost parallelogram law.


https://www.msri.org/attachments/workshops/301/HtSurveyMSRIJan06.pdf

Definition 7. (Tate) The canonical or Néron-Tate height on an elliptic curve E over a number
field K is the function?

hg: E(Q) —» R

. hp(2VP)
P lim —r—s

Proposition 8. [Sil09, Chapter 8, Proposition 9.1] The canonical height function is well-
defined, i.e., the limit in the definition of the canonical height function exists.

Proof. We will show that the sequence 4=~ hg (2" P) is Cauchy. Theorem [5|with m = 2 tells
us that there is a constant C' such that for any @ in E(Q),

he(2Q) — 4hp(Q)| < C.

Let N > M > 0. We will repeatedly use the inequality above applied to the sequence of
points Q = 2M P 2M+1p 9N-1P helow to show

4 Nhp(2NP) — 4 Mhp(2MP)| < 47MC. (3)

We have
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Theorem 9. The canonical height function hp: E(Q) — R satisfies the following properties:

(a) (Northcott) |2hg — hy| is a bounded function on E(Q). Hence, the set of points of E(Q)
with bounded canonical height is finite.

(b) (Parallelogram law) Let P, R € E(Q) be any two points of E(Q). Then, we have
hi(P + R) + hg(P — R) = 2hg(P) + 2hp(R). (4)

In particular, for any positive integer m, we have

~

hg(mP) = m*hg(P)  (canonicity), (5)

and ) R )
he(P + R) < 2hu(P) + 2h5(R). (6)
2For the height h ¢ associated to an arbitrary even rational function f € K (z), the expression on the right

hand side gets replaced by dc’z 8‘) Z% The limiting value can be shown to be independent of choice of f.
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(¢) (Uniqueness) Any function I E@Q) —R satz’sfyz'ng@ and Equation@for any one integer
m > 2 is equal to hg.

Proof. Taking M = 0 and letting N — oo in Equation [3] proves part [a] Part [b] can be
deduced from Theorem [5| and Definition [7| as follows. Replace P and @) in Theorem [5] by
2V P and 2V Q, divide both sides by 2-4" and take the limit as N — oo — this gets rid of the
implied constants coming from the O(1) term and converts the almost parallelogram law to
an exact parallelogram law. The equality h mP) = mZiLE(P) can be proved by induction
on m. Inequality (6] follows from the equality 4| since hg(P — R) > 0.

For part , consider the function g = W — hp. We want to show that g is identically
0. On the one hand, since both A’ and hg satisfy @, it follows that their difference g is a
bounded function on E(Q). On the other hand, if there is a point P such that g(P) # 0,
then subtracting equation [5| for 2’ and kg tells us that g(mP) = m2g(P), and hence g is an
unbounded function if m > 2, which is a contradiction. Hence g must be identically zero, or
equivalently, that i/ = hzp. ]

Whenever we have a canonical height function on a group (i.e. a height function that
plays well with the group law and obeys an equation like [5[ ), we get a corresponding nice
characterization of points of lowest height —

Corollary 10. Let P € E(Q). Then hg(P) > 0. Furthermore hg(P) = 0 if and only if P
18 a torsion point.

Proof. iLE(P) is a limit of non-negative values and is therefore also non-negative. If P
is a torsion point, then the set of values hp(2VP) as N varies is bounded, and therefore
hi(P) = im0 274" Nhp(2NP) = 0. If hg(P) = 0 and P is defined over a finite extension
L of K, then the set of points {P,2P,3P,...} is a set of points of bounded height (since
hi(mP) = m2hg(P) = 0 for any integer m by canonicity) and bounded degree (all multiples
of P are defined over the same number field L), and by the Northcott property is finite. This
means there are N > M > 0 such that NP = M P, or in other words (N — M)P =0. [O

Remark 11. Given Corollary [10] one may wonder if there is an analogous Lehmer type
conjectural lower bound on the height of a non-torsion point on an elliptic curve E. See
[Si109, Chapter 8, Conjecture 9.9] for such a conjectural statement, where the shape of
the lower bound of the height of a nontorsion point depends on some naturally associated
invariants measuring the complexity of the elliptic curve E, such as the height of the j-
invariant and the valuation of the minimal discriminant of E. (See Silverman’s book for the
definitions of these invariants.)

Theorem 12 (Descent). Assume that E(K)/2E(K) is finite, and let Py, Ps,..., P, be a
finite set of coset representatives for E(K)/2E(K). Then Theorem[q implies that the set

S:={Re B(K) : hp(R) <maxhp(P)},

is finite and that it generates E(K).



Proof. The set S is finite by the Northcott property for hp in Theorem @ Now let GG be the
subgroup of E(K') generated by the set S. We want to show that G = F(K). Suppose this
is not true. Let P in E(K) be an element of smallest height that is outside G. We will use
the properties of hg from Theorem [9] to produce an element R in E(K) outside G of even
smaller height, which will be a contradiction. (This explains the name “descent” for this

step.)

Since Py, Ps, ..., P, is a complete set of coset representatives for F(K)/2E(K), we may
write P = P; + 2R for some i between 1 and 7 and for some R in E(K). Using the
parallelogram law for hAg in Theorem @ we compute

4hg(R) = hg(2R)
= hg(P - PB)
< 2hp(P) + 2hp(P;)
< 4hg(P) since P, € S and P ¢ S. O
We now return to the proof of the almost parallelogram law. The proof involves some

explicit algebra using formulas for the group law of the elliptic curve. The third main feature
of height functions that is crucial in this proof is the

“functoriality of heights under morphisms of projective spaces.”

Proposition 13. [Sil09, Chapter 8, Theorem 5.6] Suppose F :: PY — PM is a morphism of
degree d over a number field K, i.e.

F(P) = [fo(P): ... fu(P)],

where the f; are homogeneous polynomials of degree d in N + 1 variables with coefficients in
the field K that have no common zeroes in @NH \ (0,0,...,0). Then

h(F(P)) = dh(P) + O(1),
where the implied constants in the O(1) depend only on F' and not on P.

We will prove this proposition in the next lecture, but note that we already saw such
an instance of this functoriality when we compared two different definitions of the height
of a Pythagorean triple all the way back in Lecture 1! The relevant degree 2 morphism in
question was the parametrization map we used to make a complete list of all Pythagorean
triples —

F:P'—P?
p:d) = [¢® —p*: 2pq: ¢* +p7.

A dynamical analogue of an elliptic curve

Functoriality of heights under morphisms of projective spaces is also the key property that
lets one define a canonical height function in the dynamical setting of a self-map f : P* — P".
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In the dynamical setting, iteratively doubling a starting point P on an elliptic curve is
replaced by iteratively applying the morphism f to a point P in P". A good reference for
learning about the arithmetic of dynamical systems is [Sil07]. For an integer N > 1, let
foN . P* — P" be the morphism obtained by composing f with itself N times. If f has
degree d, then f°V has degree d".

Definition 14. Suppose f : P" — P" is a morphism of degree d > 2 defined over a number
field K as in Proposition The canonical dynamical height associated to f is the function

hy: PMQ) - R
P lim h(f;]jv(P))‘

Lemma 15. The dynamical canonical height is well-defined, i.e., the limit above exists.

Proof. The proof is identical to the proof of Proposition [§ Proposition [1§|[a] implies there is
a constant C' such that

[h(f(P)) = h(P)| <C

for all P in P*(Q). The replacement for the inequality (3| in Proposition [8 is the following
analogous inequality for N > M > 0 proved using a telescoping sum and geometric series
argument:

N dM | T (d—1)dM (75)

Suggested exercises 16. Prove the inequality (7| and conclude that the sequence 6] ()C;’V(P))
is Cauchy if d > 2 and hence converges.

The analogue of the torsion points on elliptic curves are the pre-periodic points for a
rational map. These are the points whose orbit under f eventually enters a cycle.

W (P)) h(f"M(P))’ e

Definition 17. Let f: P" — P" be a morphism defined over a number field K. A point
P in P*(Q) is a is periodic point for f if there exists N > 0 such that f°N(P) = P. A

point P in P*(Q) is a pre-periodic point for f, if there exist integers N > M > 0 such that
feN(P) = fH(P).

Theorem 18. Let f : P" — P™ be a morphism of degree d > 2.

(a) hy(P) = h(P)+ O(1), where the implied constants in O(1) are independent of the point

P in P*"(Q).
(b) (Canonicity) h;(f(P)) = dhs(P).
(¢) The function ilf 18 uniquely determined by pmpertz’es@ and @

(d) hs(P) >0 and hy(P) =0 if an only if P is a pre-periodic point for f.



Proof. Part [7]follows from the inequality [7] the same way that Theorem [9|[d] follows from the
inequality [3] Part [b] is immediate from the limiting definition:

o RUY(P))

N—o0 dN N—o0 dN+1

= dhy(P).

Part [d] applies the Northcott property and the canonicity analogous to the proof of Corol-
lary [0} We instead consider the set of points {f(P), f3(P), f**(P),...,}. Fill in the
details! ]

Suggested exercises 19. Fill in the details of the proof of Theorem [1§|

Remark 20. In fact, the canonical height on an elliptic curve (up to a constant multiple) is
equal to the canonical height of the z-coordinate for the corresponding Lattés map P! — P!
that expresses the xz-coordinate of 2P as a degree 4 rational function evaluated at the z-
coordinate at P.

Back to elliptic curves

For the almost parallelogram law, we will also need the following comparison, which is a
generalization of the comparison inequality between two different height functions for an
algebraic number that we proved in Lecture 2. Let ay,...,a, be any n algebraic numbers
(not necessarily conjugate). Define

fl@) =ao(z —a1)...(z — ay) = apr" + a12" 4 ..+ a,.
Then

Proposition 21. [Sil09, Chapter 8, Theorem 5.9

n

—nlog(2) + Z h(ow) < h(lao: ..t ay]) < (n—1)log(2) + > h(ay)

=1

Suggested exercises 22. Prove Proposition [21}

We will return to explicit algebra using formulas for the group law for the elliptic curve,
together with Proposition [13| and Proposition [21] to prove the almost parallelogram law for
hg in the next lecture.
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