
Prime ideals, places, and heights on projective spaces

Padmavathi Srinivasan

Week 4

Last time we defined the ring of algebraic integers OK inside a number field K. We
saw that unique factorization can fail in these more general number rings. For example, we
showed that the element 6 in the ring of integers Z[

√
−5] of Q(

√
−5) admits two different

factorizations into irreducible elements. However, we have Kummer’s theorem [Bak22, Chap-
ter 1, Theorem 1.25, Theorem 1.27] that tells us every nonzero ideal factors uniquely into
a product of prime ideals. We say that OK admits unique factorization of ideals. In today’s
lecture, we will learn to explicitly write down prime ideals of OK , and learn how to use them
to define a height function for points on Pn(K).

1 Prime ideals in the ring of integers

Let p be a prime number. Our first goal is to explicitly describe the prime factorization
pOK = pe11 . . . perr of the ideal pOK .

Definition 1. The exponent ei of the prime ideal pi appearing in the factorization of pOK

is called the ramification index of pi over p, and is also denoted e(pi|p).

Fact 1. [Bak22, Chapter 2, Corollary 2.20] The only prime numbers p such that they have
a prime ideal p appearing in the factorization of pOK with e(p|p) > 1 (also known as the
collection of ramified primes in the extension K) are the primes p dividing the discriminant
∆K of K.

Fact 2. [Bak22, Chapter 3, Corollary 3.14][Minkowski] For any number field K ̸= Q, we
have |∆K | > 1. In particular, if K ̸= Q, the collection of ramified primes in K is nonempty
and finite.

Let K be a number field. Suppose α is an algebraic integer that is a primitive element of
the number field K. Let f be the minimal polynomial of α, and let p be a prime that does
not divide the index [OK : Z[α]]. Suppose f factors as

f(x) ≡ f1(x)
e1 . . . fr(x)

er mod p,

where fi(x) ∈ Z[x] such that fi(x) mod p are pairwise distinct irreducible polynomials.

Suggested exercises 2. Let pi := (p, fi(α)) for each i. Verify that pi is a prime ideal.
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Theorem 3. [Bak22, Theorem 2.16][Kummer’s factorization theorem] Let pi := (p, fi(α))
for each i. Then pi is a prime ideal of OK with ramification index ei, and we have the
factorization

pOK = pe11 . . . perr .

In particular, Kummer’s factorization theorem applies to all primes p if OK = Z[α].
However, there are examples where it does not suffice. For example, we stated (without
proof) last time that 3 divides the index [OK : Z[α]] for any algebraic integer α in the
ring of integers of the biquadratic field Q(

√
7,
√
10). Nevertheless, it applies to most primes

in any given number field. For example, when K = Q(
√
−5), then OK = Z[

√
−5], and

x2 + 5 ≡ (x + 1)2 mod 2, and x2 + 5 ≡ (x + 1)(x− 1) mod 3, explaining where the prime
ideal factorizations

2OK = (2,
√
−5 + 1)2 3OK = (3,

√
−5 + 1)(3,

√
−5− 1)

come from.

Example 4. Let K = Q(
√
d) for d a squarefree integer, and p be a prime number. Assume

further that p is odd if d ≡ 1 mod 4. From our lecture last time, we know that the index
[OK : Z[

√
d]] is 1 or 2, depending on whether d ≡ 2, 3 mod 4 or d ≡ 1 mod 4. In particular,

Kummer’s factorization theorem with α =
√
d applies to any odd prime p, and also applies

to the prime 2 if d ≡ 2, 3 mod 4.
If p divides d, since x2 − d ≡ x2 mod p, Kummer’s factorization theorem then tells us

that pOK = p2 for the prime ideal p := (p, α) of OK .
If p ∤ d and d ≡ a2 mod p for some integer a, then x2 − d ≡ (x − a)(x + a) mod p,

and correspondingly, we have that pOK = p1p2 for two distinct prime ideals defined by
p1 := (p,

√
d− a) and p2 := (p,

√
d+ a).

If d is not a square modulo p, then pOK is itself a prime ideal.
It is not too hard to test if d is a square modulo p by computing the corresponding

Legendre symbol
(

d
p

)
. For a given d, one can list the collection of split primes p (those that

split into 2 linear factors) and the collection of inert primes p (those that generate a prime

ideal of OK) by using quadratic reciprocity to relate the Legendre symbol
(

d
p

)
to
(
p
d

)
. The

next example carries this out for d = −1.

Example 5. Let K = Q(
√
−1). Then OK = Z[i]. This is a special case of the previous

example and Kummer’s factorization theorem applies to all primes p. We know that −1 is
a square modulo p if and only if p ≡ 1 mod 4, so this tells us that

pOK =


(1 + i)2 if p = 2

p1p2 if p ≡ 1 mod 4

is prime if p ≡ 3 mod 4.

Given Kummer’s factorization theorem, it is now natural to ask if every prime ideal of
OK appears in the factorization of the principal ideal pOK for some prime number p. The
answer is yes, and for proving this we will need to combine a few more consequences of
unique factorization of ideals. We now state the necessary results. Recall that in a degree n
number field, the ring of integers OK is isomorphic to Zn as an abelian group.
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Suggested exercises 6.

(a) Show that if I is a nonzero ideal of OK , then I ∩Z is a nonzero ideal of Z. Use this to
show that I has finite index in OK .

(b) Show that if p is a prime ideal of OK , then p ∩ Z is a prime ideal of Z.

(c) Prove that every finite integral domain is a field. (Hint: To prove that a nonzero
element α has a multiplicative inverse, consider the set {α, α2, . . .}.)

(d) Combine the previous three parts to show that if p is a nonzero prime ideal of OK ,
then p is in fact a maximal ideal. If p is a generator for the ideal p ∩ Z, then OK/p is
a finite extension of the finite field Fp.

Let p be a nonzero prime ideal of OK , and let p be a generator for the ideal p∩Z. One of
the consequences of having unique factorization of ideals is the following very useful result
(stated here without proof). It is often summarized as “to contain is to divide”.

Fact 3. [Bak22, Lemma 1.39] If I and J are two ideals of OK, then I ⊂ J if and only if J
divides I, i.e. there exists another ideal I ′ such that I ′J = I.

If p is a nonzero prime ideal, then Exercise 6 4 tells us that p ∩ Z is a nonzero prime
ideal, say generated by the prime number p. Then pOK ⊂ p, and by applying Fact 3we get

Lemma 7. Every nonzero prime ideal appears in the factorization of pOK for some prime
number p.

Let pZ = p ∩ Z. Exercise 6 tells us that if p is a prime ideal, then OK/p is a finite field
that is an extension of the field Z/pZ.

Definition 8. The degree of the finite field extension Z/pZ ↪→ OK/p is called the inertial
degree or the residue degree of p over p, and is denoted f(p|p).

Definition 9. A prime p of Z is said to completely split in K if e(p|p) = f(p|p) = 1 for every
p above p.

Suggested exercises 10. For a prime p where Kummer’s factorization theorem 3 applies,
and pi is the prime ideal associated to the monic irreducible polynomial fi(x) mod p ap-
pearing in the factorization of f modulo p, then one can show that OK/p ∼= Fp[x]/(fi(x)),
so the inertial degree is simply the degree of the polynomial fi.

Example 11. Let K = Q( 3
√
2). Then we showed last time that OK = Z[ 3

√
2]. Since x3 − 2 ∼=

(x − 3)(x2 + 3x − 1) mod 5, using Exercise 10 it follows that 5OK = p1p2, with p1 =

(5, 3
√
2− 3), p2 = (5, ( 3

√
2
2
+ 3 3

√
2− 1)), e(p1|5) = e(p2|5) = 1, f(p1|5) = 1 and f(p2|5) = 2.

Suggested exercises 12. Let p be a prime ideal of OK . Show pi ̸= pi+1 for any integer i.
Let α ∈ pi \ pi+1. Show that the map of OK-modules OK/p → pi/pi+1 induced by sending 1
to α is an isomorphism. Verify that the dimension of OK/p

r as a Fp vector space is rf(p|p).
Since any two distinct maximal ideals generate the unit ideal, by combining the factor-

ization pOK = pe11 · · · perr with Exercise 6 4, we get

OK/pOK
∼= OK/p

e1
1 × · · · × OK/p

er
r .
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Combining this decomposition with Exercise 12 and comparing the dimensions of the two
sides as Fp vector spaces, we get the following useful numerical constraint:

Lemma 13. ∑
p|pOK

e(p|p)f(p|p) = [K : Q].

One can also prove the following results using unique factorization of ideals, and I en-
courage you to try these exercises with your TAs!

Suggested exercises 14.

(a) Show that every ideal of OK is generated by at most two elements.

(b) Show that OK is a PID if and only if it is a UFD.

A useful analogy

There is a beautiful geometric “function field” analogue of the inclusion Z ↪→ OK , where the
base PID Z is replaced by the polynomial ring K[x] over a field K (the “ring of functions
on the affine line”). For example, the inclusion K[x] → K[x, y]/(y2 − f(x)) for a squarefree
polynomial f(x) in K[x] behaves in many ways like Z → Z[

√
d] = Z[y]/(y2 − d) for a

squarefree integer d. See [Poo, Section 2.6] for a table of the corresponding objects on the
two sides.

Some prime ideals in the coordinate ring
S := C[x, y]/(y2 − (x+ 1)(x+ 4)(x− 5)) of an affine elliptic curve

For example, if K = C, and f(x) = (x + 4)(x + 1)(x − 5) ∈ C[x], the nonzero prime
ideals of the ring S := C[x, y]/(y2 − f(x)) are maximal, and their intersection with C[x] is a
nonzero prime ideal of C[x], namely an ideal of the form (x− a) for some complex number
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a. If a ∈ {−4,−1, 5}, then (x − a)S = (y, x − a)2 and the ideal (x − a) ramifies in S. In
this case, the maximal ideal appearing in the factorization of (x − a) corresponding to the
unique point x = a, y = 0 on the elliptic curve with equation y2 = f(x) lying above the
point x = a in C. If a /∈ {−4,−1, 5), then (x − a)S = (x − a, y − b)(x − a, y + b), where
(y + b)(y − b) = y2 − f(a), so the ideal (x− a) completely splits in S. In this case, the two
distinct maximal ideals in the factorization of (x − a)S when a /∈ {−4,−1, 5} correspond
precisely to the two distinct points in C2 on the curve y2 = f(x) with x = a.

Structure theorems for the ring of integers

Let p be a nonzero prime ideal of Ok. Given x ∈ OK \ {0}, let νp(x) denote the exponent of
p in the factorization of the ideal xOK . Then νp extends uniquely to a group homomorphism
K∗ → Z (Verify this!), and is called the p-adic valuation on K.

Example 15. Let a/b be a nonzero rational number written in lowest form, so that gcd(a, b) =
1. Write down the prime factorizations of a and b as a = pl11 . . . plrr , b = qm1

1 . . . qms
s for

some collection of pairwise distinct prime numbers {p1, . . . , pr, q1, . . . , qs} and exponents
l1, . . . , lr,m1, . . . ,ms in Z≥0. Let p be an arbitrary prime number. Then

νp(a/b) =


li if p = pi for some i ∈ {1, 2, . . . , r}
−mi if p = qi for some i ∈ {1, 2, . . . , s}
0 otherwise.

Suggested exercises 16. Verify that νp extends to a group homomorphism K∗ → Z. Show
that if x ∈ K∗, then νp(x) = 0 for almost all nonzero prime ideals p of OK .

We now collect the νp for each of the nonzero prime ideals p into one homomorphism. Let
⊕pZ be the free abelian group on the collection of nonzero prime ideals. We have a group
homomorphism

ι : K∗ → ⊕pZ
x 7→ (νp(x))p

The kernel of ι is precisely the group of units O∗
K of OK , and the cokernel of ι (i.e. the

quotient ⊕pZ/(im (ι))) is an important invariant of the number field called the class group
Cl(OK). Since Cl(OK) is trivial exactly when all ideals of OK are principal, and since being
a UFD and being a PID are equivalent for OK (Exercise 14), the class group measures the
failure of unique factorization in OK . The two main theorems about number fields that one
usually learns in a first course in Algebraic Number Theory are the following. These can
both be proved using Geometry of Numbers techniques.

Fact 4.

(a) [Bak22, Chapter 3, Theorem 3.19] (Dirichlet’s Unit Theorem) The group O∗
K of units of

OK is a finitely generated abelian group of rank r + s − 1 where r, s are the number of
real and pairs of complex conjugate embeddings of the number field K.

(b) [Bak22, Chapter 1, Theorem 1.62] The class group of a number field K is finite.
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2 Absolute values on number fields

We will need one more ingredient before defining H : Pn(K) → R for K a number field,
which is the classification of absolute values on K.

Definition 17. An absolute value on a field K is a function | · | : K → R such that for all
x, y ∈ K, we have

(a) |x| ≥ 0, and |x| = 0 if and only if x = 0. (non-negativity and positive-definiteness)

(b) |xy| = |x| · |y|. (multiplicativity)

(c) |x+ y| ≤ |x|+ |y|. (triangle inequality)

If an absolute value satifies the strong triangle inequality |x + y| ≤ max(|x|, |y|) (which
implies the weaker inequality 3), we say | · | is non-Archimedean (or ultrametric) absolute
value. Otherwise, | · | is called Archimedean.

Multiplicativity and positive definiteness of the absolute value imply that |1| = 1. The
name non-Archimedean comes from the observation that if | · | satisfies the strong triangle
inequality and n ≥ 1 an integer, then

|n| = |1 + 1 + . . .+ 1| ≤ max(|1|, |1|, . . . , |1|) = 1.

Example 18. The trivial absolute value on a field K is the absolute value such that |x| = 1
for all x ̸= 0, and |0| = 0.

Example 19. The usual complex absolute value function a+ bi 7→
√
a2 + b2 = |a+ bi|C is an

absolute value on C. Let σi : K → C be an embedding of a number field K into C. Then
x 7→ |σi(x)| is an Archimedean absolute value on the number field K.

Example 20. Let p be a nonzero prime ideal in a number field K, with pZ = p ∩ Z. Then
the function | · |p| defined by

| · |p : K∗ → R
0 7→ 0

x 7→ p−f(p|p)νp(x) if x ̸= 0

is a non-Archimedean absolute value on K, called the normalized p-adic absolute value on K.
Non-negativity, positive-definiteness and multiplicativity are immediate from the definition.
Using the “to contain is to divide” principle 3, we see that x ∈ pνp(x), y ∈ pνp(y) and so
x+ y ∈ pmin(νp(x),νp(y)), and the strong triangle inequality follows.

The following lemma is immediate from Example 15 and Example 20.

Lemma 21. [Product formula] If x ∈ Q∗, then |x|R
∏

primes p |x|p = 1.

Every absolute value on a field K gives K the structure of a metric space where

d(x, y) = |x− y|.
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Example 22. The trivial absolute value on K (Example 18) induces the discrete topology on
K.

Analogous of the construction of the real numbers from the rational numbers by adding
limits of all Cauchy sequences, one can analogously construct new fields Kp from a number
field K and a nonzero prime ideal p called the completion of K with respect to the associated
p-adic absolute value. These new fields have very different topology from the real numbers.
For example, one can show that they are totally disconnected, i.e., the only connected proper
subsets are singletons! If you are interested in learning more about the p-adic numbers Qp,
see Renee Bell’s lectures from last year’s PAWS (we will not use them).

Definition 23. We say that two absolute values are equivalent if they induce the same
topology on K. A place of K is an equivalence class of a nontrivial absolute value on K.
The collection of all places of a field K is denoted MK . Archimedean places are also called
infinite places, and non-Archimedean places are also called finite places.

Suggested exercises 24. Show that the two different embeddings K := Q(
√
2) → R

induce different topologies on K. (Hint: Can you construct a sequence of elements of K that
converges to 0 in one topology but does not converge in the other?)

If s > 0 is a real number and | · | is an absolute value, then | · |s is an equivalent absolute
value. We have the following classification theorem for all places of a number field K that
essentially says the only places are the examples we have already constructed. It was proved
for Q by Ostrowski in 1916.

Theorem 25. [Bak22, Chapter 5, Theorem 5.23]

• Every Archimedean absolute value on K is equivalent to the restriction to K of the
usual absolute value on C for some embedding of K into C.

• Every nontrivial non-Archimedean absolute value on K is equivalent to the p-adic ab-
solute value for some nonzero prime ideal p of OK.

More precisely, there are bijections.

{non-Archimedean places of K} ↔{nonzero prime ideals of OK}
{Archimedean places of K} ↔{real embeddings K → R}

∪ {conjugate pairs of complex embeddings K → C}.

Let MSpec(OK) denote the collection of nonzero prime ideals of OK (the notation MSpec
stands for maximal spectrum, the collection of maximal ideals). Let σ1, . . . , σr : K → R be
the collection of real embeddings of OK , and let τ1, τ1, . . . , τs, τs be the collection of pairs of
complex conjugate embeddings.

Lemma 26. [Product formula for number fields] Let x ∈ K∗. Then ∏
p∈MSpec(OK)

|x|p

( r∏
i=1

|σi(x)|R

)(
s∏

j=1

|τj(x)|2C

)
= 1.
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Suggested exercises 27. Prove Lemma 26. (Hint: Let x ∈ OK \ {0}. Compute the size
of OK/xOK in two ways: (1) Show that it equals the product of the terms coming from the
Archimedean places. (2) Show that if xOK = pe11 . . . perr and pi ∩ Z = piZ with pi > 0, then
#OK/xOK =

∏
peifii (this is analogous to the proof of Lemma 13.)

3 Heights on projective spaces

Definition 28. Let K be a number field. Define the height function H : Pn(K) → R as
follows. Let P ∈ Pn(K) be a point with a representative [x0 : x1 : . . . : xn] with xi ∈ K,
not all zero (i.e. homogeneous coordinates for P ). The relative height of P (relative to K)
HK(P ) is defined to be the product

∏
p∈MSpec(OK)

max(|x0|p, . . . , |xn|p)

(
r∏

i=1

max(|σi(x0)|R, . . . , |σi(xn)|R)

)(
s∏

j=1

max(|τj(x0)|2C, . . . , |τj(xn)|2C)

)
.

The absolute height of P is
H(P ) := HK(P )1/[K:Q].

Proposition 29. [Sil09, Proposition 5.4] Let K be a number field, and P ∈ Pn(K) a point.

(a) The height HK(P ) is well-defined, independent of the choice of homogeneous coordinates
for P .

(b) HK(P ) ≥ 1.

(c) Let L/K be a finite extension of number fields. Then

HL(P ) = HK(P )[L:K].

In particular, H(P ) is independent of the choice of number field K such that P ∈ Pn(K).

Proof. The seemingly infinite product in the definition is actually a finite product, since
almost all the terms in the product are 1. (See Exercise 16.) Part a follows from the product
formula for number fields 26, because if we scale all coordinates of a chosen representative
by a nonzero scalar x in K, then the resulting expression changes by the left hand side of
the product formula. Since the right hand side of the product formula is 1, the resulting
expression is unchanged. Part b follows because we can change representatives for the point
P by suitably scaling the chosen representative to make one of the homogeneous coordinates
equal to 1. Then each of the factors in the product defining HK(P ) is at least 1, so their
product HK(P ) and in turn H(P ) are also at least 1. We skip the proof of Part c, and refer
the interested reader to [Sil09, Proposition 5.4].

Suggested exercises 30. Prove that if α ∈ K, then H(α) = H([α : 1]).

Suggested exercises 31. Prove that the definition above agrees with the previous definition
for heights of points in Pn(Q).
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Suggested exercises 32. Prove that if P ∈ Pn(K) with homogeneous coordinates [x0 : x1 :
. . . : xn] with all the xi in K and one of the coordinates equal to 1, then

H(P ) ≥

(
n∏

i=0

H(xi)

)1/n

.

Theorem 33. [Sil09, Theorem 5.11] (Northcott property) There are only finitely many points
P of Pn(Q) of bounded absolute height and bounded degree.

Proof. This follows from Exercise 32 and the Northcott property for algebraic numbers,
namely that there are finitely many algebraic numbers of bounded height and bounded
degree.

This definition illustrates the second main feature common to various height functions
that are used in Diophantine Geometry, namely that

“Height functions come with local decompositions”.

(Here local indicates that there is one term for each place of the number field.) The main
feature that we look for in height functions is that they have a Northcott property, namely
that there are finitely many points of bounded height and bounded degree. Next lecture we
will learn how height functions on projective spaces are used in the proof of the Mordell-Weil
theorem.
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