
Algebraic integers

Padmavathi Srinivasan

Week 3

Recall that we defined the height of a point P = [x0 : x1 : . . . : xn] of Pn(Q) by first saying
that every point of Pn(Q) has a representative where the xi are in Z and gcd(x0, x1, . . . , xn) =
1, and defined H(P ) = max(|x0|, |x1|, . . . , |xn|). To extend this definition to points of Pn(K)
for a number field K, we first need an analogue of the integers inside a general number K.
We will continue using Matt Baker’s course notes as a reference – we encourage the interested
reader to take a look at his book for proofs.

Definition 1. Let K be a number field. An algebraic integer in K is an element whose
minimal polynomial f(x) := a0x

n + a1x
n−1 + . . . + an ∈ Z[x] has a0 = 1 (i.e. f is a monic

integral polynomial). The collection of all algebraic integers in K is denoted OK and is called
the ring of integers of K.

As a sanity check, we first observe that an algebraic integer in Q is just an integer in Z
– this follows because the minimal polynomial of a rational number a/b written in lowest
form with b > 0 is bx− a, which is monic precisely when a/b is an integer. More generally,
the minimal polynomial of an algebraic number α with conjugates α1, α2, . . . , αn in C is a
multiple of the polynomial (x − α1)(x − α2) . . . (x − αn) ∈ Q[x]. This easily lets us test if
a given algebraic number is an algebraic integer. For instance, if d is a squarefree integer,
then one can compute that the minimal polynomial fα of α := (1 +

√
d)/2 in Q(

√
d) is

fα(x) =


x2 − x+ 1−d

4
if d ≡ 1 mod 4

2x2 − 2x+ 1−d
2

if d ≡ 3 mod 4

4x2 − 4x+ 1− d if d ≡ 2 mod 4

(1)

This means (1 +
√
d)/2 is an algebraic integer precisely when d ≡ 1 mod 4.

Suggested exercises 2. Prove that for every element algebraic number α, there is a nonzero
integer m ∈ Z such that mα is an algebraic integer.

Fact 1. [Bak22, Chapter 1, Corollary 1.11] The set OK is a subring of K.

This tells us that we can generate more algebraic integers from known ones by taking
sums and products. For example if K = Q(

√
7,
√
10), then

√
7 +

√
10 is also an algebraic

integer – we don’t have to write down its minimal polynomial explicitly and check that it is
monic! In fact, this tells us that

{a+ b(
√
7 +

√
10) + c(

√
7 +

√
10)2 + d(

√
7 +

√
10)3 : a, b, c, d ∈ Z} ⊂ OK .
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In particular OK is a torsion-free abelian group. We can now ask for the structure of OK

as an abelian group – is it finitely generated, and if so, what is its rank?

Fact 2. [Bak22, Chapter 1, Theorem 1.18] As an abelian group OK is isomorphic to Zn,
where n = [K : Q].

Definition 3. A basis for OK as a free Z-module is called an integral basis of K.

Suggested exercises 4.

(a) Prove that if I is a nonzero ideal of OK , then there is a nonzero integer m in I ∩ Z.

(b) Show that every nonzero ideal I is a sublattice of OK of maximal rank, i.e. I has finite
index in OK , and is isomorphic to Zn as an abelian group.

Visualizing the ring of integers

Minkowski introduced beautiful lattice theoretic techniques (colloquially known as geometry
of numbers) for understanding the structure of the ring of integers of a number field. If K
is a degree n number field, it is possible to view OK as an n-dimensional lattice embedded
inside n-dimensional Euclidean space Rn. Concretely, we may achieve this by studying the
factorization of the minimal polynomial f ∈ Z[x] of a primitive element α for K over R.
We already saw that over C, the polynomial f splits into n distinct linear factors over C.
Suppose that the irreducible polynomial f factors in R[x] into r linear factors and s quadratic
irreducible factors. Then r+ s = 2n, and the n-embeddings of K into C naturally split into
r real embeddings σ1, σ2, . . . , σr : K → R and s pairs (τ1, τ1), (τ2, τ2), . . . , (τs, τs) of complex
conjugate embeddings K → C. (Here for each i between 1 and s, the embedding τi is the
one obtained by composing the embedding τi : K → C with complex conjugation.)

Minimal polynomial Number field Degree Number of real Number of pairs
embeddings of complex conjugate

embeddings
bx− a Q 1 1 0
x2 + 1 Q[i] 2 0 1

x2 − 2 Q[
√
2] 2 2 0

x3 − 2 Q[ 3
√
2] 3 1 1

φp(x), p ≥ 3 prime Q[ζp] p− 1 0 (p− 1)/2
For a complex number z = a + ib, let Re(z) = a denote its real part, and Im(z) = b

denote its imaginary part. The Minkowski embedding K → Rn is given by

K → Rr × Cs ∼= Rr+2s

α 7→ (σ1(α), . . . , σr(α),Re(τ1(α)), Im(τ1(α)), . . . ,Re(τs(α)), Im(τs(α))),

Fact 3. [Bak22, Chapter 3, Proposition 3.1] The image of OK under the Minkowski embed-
ding is a rank n lattice in Rn.
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Visualizing the ring of integers
of Q(

√
−1) as a lattice

Visualizing the ring of integers
of Q(

√
2) as a lattice

Suggested exercises 5. Verify that
√
2 + 1 is a unit in the ring Z[

√
2]. Show that it has

infinite order in the group of units of Z[
√
2].1

1 Computing an integral basis

It is natural to wonder if there is an analogue of the primitive element theorem for the
ring of integers of a degree n number field, i.e. if there is an algebraic integer α in K with
minimal polynomial f such that OK = Z[α] := Z[x]/(f(x)), or equivalently that there is
an integral basis of the form {1, α, α2, . . . , αn−1} for some α ∈ OK (a “power basis”). For
example, we can show that the powers of the element α :=

√
7 +

√
10 span the biquadratic

field K := Q(
√
7,
√
10) as a Q vector space – one can ask if it is also true that the Z span

of the powers of α equals OK? Unfortunately, the answer is no. Even worse, we have the
following statement.

Example 6 ([Bak22][Chapter 4, Theorem 4.41). ] The ring of integers of the biquadratic field
K := Q(

√
7,
√
10) does not have a power basis, i.e., there is no algebraic integer α in this

degree 4 number field such that {1, α, α2, α3} is an integral basis. In fact, one can prove
that if α is any algebraic integer in K such that K = Q(α), then the index of Z[α] in OK is
divisible by 3.2

If OK has a power basis, then we say that the number field K is monogenic. As the
example above illustrates, not all number fields are monogenic – one of the indications that

1It turns out that the group of units of Z[
√
2] is isomorphic to Z × {±1} as an abelian group, and the

element
√
2 + 1 is a generator for the free part. One can use the Minkowski embedding to prove this,

by observing how multiplication in the unit group of OK slides lattice points along on the hyperbolas
x2 − 2y2 = ±1. More generally, Pell’s equation x2 − dy2 = ±1 for squarefree d are amongst the earliest
Diophantine problems to be studied, and various approaches to solve them have been well-documented.
Solutions to Pell’s equation were used to find good rational approximations to the irrational number

√
d.

The generator for the unit group (the fundamental unit) has a formula in terms of the continued fraction
expansion of

√
d. (See [Bak22, Section 2.4].) and these notes by Keith Conrad.

2One can explain the lack of a power basis in this example by studying ramification of prime ideals in OK

– a topic covered in a first course in algebraic number theory. Quantifying the proportion of non monogenic
number fields of a given degree is an active area of research today!
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the ring of integers are more subtle than number fields. Nevertheless, there are computational
tools for writing down an integral basis.

It is easy to generate a finite index subgroup of OK – we can multiply a primitive element
for K by a suitable integer and make a new primitive element that is also an algebraic integer
(do exercise 2!). The subring of OK generated by this element has rank [K : Q] and by Fact 1
has finite index in OK . In the examples below, let f(x) be a monic irreducible polynomial
in Z[x] with root α and let K = Q(α). Let m be the index of the finite index subgroup Z[α]
of OK .

1.1 Index bounds using the discriminant

Our first tool, the discriminant, helps us give explicit upper bounds for the index of a subgroup
of OK . Let σ1, σ2, . . . , σn be the n embeddings of the degree n number field K in C.

Definition 7. Let β1, β2, . . . , βn be n algebraic integers of OK . Let M be the n× n matrix
whose ij-th entry is σi(βj). Define the associated discriminant by

∆(β1, β2, . . . , βn) := det(M)2 = det(σi(βj))
2.

Fact 4. [Bak22, Lemma 2.2]

(a) The discriminant attached to any n algebraic integers of OK is an integer.

(b) Any two integral bases for OK have the same discriminant.

Definition 8. The discriminant attached to any integral basis is called the discriminant ∆K

of the number field K.

The discriminant of a number field has a geometric interpretation. Recall that every rank
n lattice in Rn with Z-basis v1, v2, . . . , vn has an associated fundamental domain, which is
the region {∑

i

mivi : 0 ≤ mi ≤ 1 for all i.

}
Suggested exercises 9. Prove that the volume of a fundamental domain for the rank n lat-
tice spanned by the images of β1, β2, . . . , βn under the Minkowski embedding is 2−s

√
|∆(β1, β2, . . . , βn)|.

Suggested exercises 10.

(a) If α is an algebraic integer with minimal polynomial f of degree n, prove that the
discriminant of the power basis generated by α is precisely the discriminant of the

polynomial f , and we have ∆(α) := ∆(1, α, . . . , αn−1) = (−1)(
n
2)
∏n

i=1 f
′(αi). In par-

ticular, if f(x) = x2 + ax + b, then the corresponding discriminant is b2 − 4a and if
f(x) = x3 + ax+ b, then the corresponding discriminant is −4a3 − 27b2.

(b) Let p be a prime and let φp be the p-th cyclotomic polynomial. Show that the dis-
criminant of the power basis generated by a primitive p-th root of unity ζp is pp−1.
(Hint: Use the equality φp(x)(x − 1) = xp − 1 and the product rule of differentiation
to simplify φ′

p(ζp).)

4



Tool 1. [Bak22, Lemma 2.3] Let β1, β2, . . . , βn be n algebraic integers that generate a sub-
group of index m of OK. Then

∆(β1, β2, . . . , βn) = m2∆K .

In particular, if ∆(β1, β2, . . . , βn) is squarefree, then {β1, β2, . . . , βn} is an integral basis.

This result can be derived from the geometric interpretation of the discriminant as in
Exercise 9. We will now use this tool to give some explicit upper bounds on the index in
various examples.

Example 11. Let f(x) = x2 − d. Then

∆(1,
√
d) = det

(
1 1√
d −

√
d

)2

= 4d.

Since m2 divides ∆(1,
√
d) = 4d and d is squarefree, this tells us m is either 1 or 2. We

already saw that when d is ≡ 1 mod 4, the element (1 +
√
d)/2 is an algebraic integer and

we have the inclusions

Z[
√
d] ⊊ Z[

1 +
√
d

2
] ⊂ OK .

Since the only subgroups of the quotient group OK/Z[
√
d] ∼= Z/2Z are the trivial group and

the whole group, this tells us Z[1+
√
d

2
] = OK when d ≡ 1 mod 4.

Example 12. Let f(x) = x3 − 2x+3. Using exercise 10, we compute the discriminant of the
power basis corresponding to α to be −4(−2)3 − 27 · 32 = −211. Since −211 is prime, we
conclude that Z[α] = OK .

Example 13. Let f(x) = x3−2. Using exercise 10, we compute the discriminant of the power
basis corresponding to α to be −4 · 03 − 27 · (−2)2 = −108 = −2233. Since m2 divides −108,
we conclude that the index m of Z[α] in OK is one of 1, 2, 3, 6.

Example 14. Let f(x) = xp−1+xp−2+ . . .+1 be the p-th cyclotomic polynomial for a prime
p. Using exercice 10, the discriminant of the power basis corresponding to α is pp−1, and we
conclude that the index of Z[α] in OK is one of 1, p, . . . , p(p−1)/2.

1.2 Ruling out prime divisors of the index

Tool 2. [Bak22, Proposition 2.9] If f is Eisenstein at p (i.e. if f(x) = xn+a1x
n−1+. . .+an ∈

Z[x] then p divides ai for every i, but p2 ∤ an), then p does not divide the index [OK : Z[α]].

Example 15 (Revisiting Example 13). Since the polynomial f(x) = x3− 2 is Eisenstein at 2,
this tells us that 2 does not divide the index m of Z[ 3

√
2] in OK . Since we already showed that

the only possibilities for m are 1, 2, 3, 6 in Example 13, the only remaining possibilities are
m = 1 and m = 3. In fact, by instead working with the algebraic integer β := α−2 = 3

√
2−2,

which generates the same subring as 3
√
2, i.e. Z[α] = Z[β], we can also rule outm = 3. Indeed,

the element β has minimal polynomial (x+2)3− 2 = x3+6x2+12x+6, which is Eisenstein
at both 2 and 3, so neither 2 nor 3 can divide the index of Z[β] in OK .
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Example 16 (Revisiting Example 14). Let f(x) = xp−1 + xp−2 + . . . + 1 with root α. The
element β = α − 1 generates the same subring as α, but has minimal polynomial that is
Eisenstein at p. So p cannot divide the index of Z[β] in OK . Since Z[β] = Z[α] and we
already showed in Example 14 that the index of Z[α] in OK is a power of p, it follows that
m = 1, i.e. that OK = Z[α].

1.3 Enlarging the subgroup

Tool 3. [Bak22, Lemma 2.5(b)] If α1, α2, . . . , αn is a collection of algebraic integers gener-
ating an index m subgroup of OK and m ̸= 1, then OK contains an element of the form

m1
α1

m
+ · · ·+mn

αn

n
,

with 0 ≤ mi ≤ m− 1 and not all mi equal to 0.

This tells us that we can iteratively enlarge our finite index subgroup to be the full ring
of integers by testing if one of the mn − 1 algebraic numbers in the set above is an algebraic
integer.

Example 17. [Revisiting Example 11] Let d be a squarefree integer. We showed in Example 11
that the index of Z[

√
d] in OK for the number field K = Q(

√
d) is either 1 or 2. If the index

is 2, the fact above tells us that one of the three numbers in the set

{1/2,
√
d/2, (1 +

√
d)/2}

must be an algebraic integer. We already showed in Example 11 that if d ≡ 1 mod 4, then
Z[
√
d] has index 2 in OK = Z[(1 +

√
d)/2]. If d is 2 or 3 modulo 4, then none of these three

numbers is an algebraic integer, as is evident from their minimal polynomials 2x− 1, 4x2− d
and 1, and it follows that Z[

√
d] = OK .

1.4 Algorithm for computing OK

An algorithm for computing OK for an arbitrary number field K now goes as follows. Choose
a primitive element α for K. Multiply α by a suitable nonzero integer m to make a new
primitive element that is also an algebraic integer (Exercise 2). The powers of mα now
generate a finite index subgroup of OK . Compute ∆(mα) to get a bound on the index
[OK : Z[mα]] using Tool 1 (narrow down the possibilities for the index further using 2 if
possible). Enlarge your finite index subgroup to all of OK by iteratively using Tool 3.

Suggested exercises 18. Let K = Q(
√
7,
√
−2). Enlarge the finite index subgroup of OK

spanned by 1,
√
7,
√
−2,

√
−14 to a Z-basis for OK .
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Number field Restrictions Ring of integers
Q Z

Q(
√
d) d ∼= 2, 3 mod 4 Z[

√
d]

squarefree

Q(
√
d) d ∼= 1 mod 4 Z[(1 +

√
d)/2]

squarefree

Q( 3
√
2) Z[ 3

√
2]

Q(
√
d1,

√
d2) d1, d2 ∼= 1 mod 3, not monogenic, see [Wil70]

distinct, squarefree
Q(ζp) p prime ≥ 3 Z[ζp]

p-th cyclotomic field

2 Unique factorization in ring of integers, or lack thereof

The key property about Z that was used to justify the existence of a representative of
[x0 : x1 : . . . : xn] with xi ∈ Z and gcd(x0, x1, . . . , xn) = 1 was the unique factorization of the
integers – this was crucial for our definition of heights of points in Pn(Q). Unfortunately,
unique factorization can fail for general rings of algebraic integers, as the following example
illustrates. For example, when K = Q(

√
−5), by Example 17 we have OK = Z[

√
−5]. There

are two distinct factorizations of the element 6 into a product of irreducible elements:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Suggested exercises 19. Verify that 2, 3, 1+
√
−5, 1−

√
−5 are four mutually non-associate

irreducible elements in the ring Z[
√
−5] that are not prime.

Knowing unique factorization in number rings can have interesting Diophantine conse-
quences. The first section of [Bak22] shows how unique factorization in the ring of Gaussian
integers Z[i] can be used to prove that the only integral point (i.e. a solution in Z2) on the
elliptic curve y2 = x3 − 1 is (1, 0) – we strongly encourage the interested reader to read this
fun argument! Trying to adapt a similar argument to prove Fermat’s last theorem was one
of the main reasons that lead Kummer to study unique factorization in more general number
rings. For the application to Fermat’s last theorem, he needed to know if the ring of integers
of the cyclotomic field Z[ζp] is a unique factorization domain. He realized that it was hardly
every true. (Sadly Z[ζp] is a UFD only for p ≤ 19! This was proved after Kummer’s time.)

However, Kummer showed that unique factorization can be salvaged, and developed
several ideas in modern Algebraic number theory to establish many new cases of Fermat’s
last theorem. He showed that although every element does not factor uniquely into a product
of irreducible elements (up to units), every ideal does factor uniquely into a product of prime
ideals. In fact, the word ideal number was coined by Kummer as a substitute for numbers
in an ideal world, for example in rings of integers where unique factorization failed. The
concrete set theoretic definition of ideals that we learn today was developed by Dedekind.
Rings having unique factorization of ideals are nowadays called Dedekind domains.

Theorem 20. [Bak22, Chapter 1, Theorem 1.27] (Kummer) Every ideal of OK factors
uniquely into a product of powers of prime ideals.
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For example, in the example Z[
√
−5] above, we have the four prime ideals

p1 = (2, 1 +
√
−5), p2 = (2, 1−

√
−5),

p3 = (3, 1 +
√
−5), p4 = (3, 1 +

√
−5),

and the factorizations
(2) = p1p2,

(3) = p3p4,

(1 +
√
−5) = p1p3,

(1−
√
−5) = p4p4, and

(6) = (2) · (3) = (p1p2)(p3p4) = (p1p3)(p3p4) = (1 +
√
−5)(1−

√
−5).

Suggested exercises 21. Verify that the ideals p1, p2, p3, p4 as above are prime (and even
maximal) ideals.

It turns out that Fact 20 is sufficient for the purposes of defining a height function on
Pn(K) for K a number field. Our next goal is to understand how to explicitly write down
prime ideals of OK , and then how to use these prime ideals to build absolute values on
number fields. A classification of absolute values on K is one of the key inputs for defining
heights on Pn(K).

Suggested exercises 22. Consider the affine elliptic curve with equation y2−x3+x ∈ C[x, y]
and its associated affine coordinate ring S := C[x, y]/(y2 − x3 + x).

(a) Let a be a complex number. Prove that if a /∈ {−1, 0, 1}, then S/(x− a)S has exactly
two prime ideals, whose lifts p1, p2 to S satisfy (x− a)S = p1p2 (the “completely split”
case), and that if a ∈ {−1, 0, 1}, then S/(x − a)S has a unique prime ideal p and
(x− a)S = p2 (the “ramified” case).

(b) Show that every nonzero prime ideal of S is of the form (x−a, y− b) for some complex
numbers a and b. (Hint: Show that the intersection of a nonzero prime ideal of S with
C[x] is a nonzero prime ideal of C[x], and hence of the form (x− a) for some complex
number a.)
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