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Diophantine geometry is the study of rational (Q) or integral (Z) solutions
to a system of polynomial equations whose coefficients are in the integers. It is named after
the Greek mathematician Diophantus who lived around 250 AD, but the subject as such
is even older with some of the earliest records going as far back as 1800 BC. Historically
famous examples include the study of the equation x2 + y2 = z2 whose integer solutions are
exactly the Pythagorean triples (x, y, z) = (3, 4, 5), (5, 12, 13) etc. (integer side lengths of
right triangles), the equation xn+ yn = zn with n ≥ 3 (the “Fermat curves” of Fermat’s last
theorem fame) with solutions (x, y, z) = (1, 0, 1), (0, 3, 3) etc. A more recent example from
2019 that made a major newsplash with headlines such as “The answer to life, the universe,
and everything” is a solution to the equation x3 + y3 + z3 = 42.1

Identifying which integers can be written as a sum of three other integer cubes is an
old challenge posed by Mordell in 1954.2 By listing all the congruence classes of cubes of
integers modulo 9, one immediately sees that 0,±1 mod 9 are the only congruence classes
containing cubes of integers, and therefore integers that are congruent to ±4 mod 9 can
never be written as a sum of three cubes. For integers in the remaining congruence classes
such as the number 42, one might imagine searching for solutions by carrying out out a grid
search – i.e., by plugging in small integer values for x, y and z (both positive and negative)
and seeing if their cubes sum to 42, and slowly increasing the sizes of these integers. Such a
search immediately yields a reasonably small solution for the similar equation x3+y3+z3 = 43
(for e.g. 33 + 23 + 23 = 43) that one may quickly find by hand, but I strongly recommend
not attempting to solve x3 + y3 + z3 = 42 the same way! Although a solution exists, such a
search would take too long to finish even with the help of a computer without any additional
insight to narrow the search space – the smallest solution found by Booker and Sutherland
found in 2019 using massive parallel computations has 17 digits for each of x, y and z!

42 = (−80538738812075974)3 + 804357581458175153 + 126021232973356313. (1)

It is still not known whether there are even more integer solutions to this equation out there
– even if there are any, they are certainly very sparsely distributed and outside the range of
values computers can access today. For example, it may very well be that the next solution
has twice the number of digits!

1See also these Quanta articles – 33 and 42.
2See this Numberphile youtube playlist for a historical overview of the sum of three cubes problem and

known methods and challenges.
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The main driving questions in this area are the following. Given a system of polynomial
equations over Q,

1. How many integral/rational solutions does it have?

2. Is there a systematic and practical way to generate all the solutions?

For example,

Equation Some integral solutions Number of solutions
x2 + y2 + z2 = 0 (x, y, z) = (0, 0, 0) One
x2 + y2 = z2 (x, y, z) = (0, 0, 0), (3, 4, 5), (5, 12, 13), · · · Infinitely many
xn + yn = zn, n ≥ 3 (x, y, z) = (0, 0, 0), (1, 0, 1), (0, 3, 3), · · · Infinitely many, but,

every solution has
at least one entry that is 0

x3 + y3 + z3 = 42 See 1 Unknown!

Of particular interest in this course, are the polynomial equations that define “elliptic
curves”.

Definition 1 ([Sil09][p.42,§ III.I). ] An elliptic curve E over Q is a curve defined by an
equation of the form

y2 = x3 + Ax+B,

where A and B are in Q, and such that the number ∆ := −16(4A3 + 27B2) is nonzero.

The equation y2 = x3 + Ax + B is called a Weierstrass equation for the elliptic curve
E. The associated number ∆ := −16(4A3 + 27B2) is called the discriminant of the Weier-
strass equation. The discriminant is the analogue of the quantity b2 − 4ac for the quadratic
polynomial ax2 + bx + c – the quantity −16(4A3 + 27B2) is zero precisely when the cubic
x3 + Ax + B has repeated roots. There is a wonderful online database of these curves in
the LMFDB (L-functions and modular forms database) that I strongly encourage you all to
explore as you familiarize yourself with these objects! (The database has helpful clickable
definitions of interesting invariants associated to these curves, so is particularly user-friendly
for beginners!) Here are some examples of elliptic curves and some of their rational solutions
from the LMFDB.

Clickable equation Some rational solutions Number of solutions
y2 = x3 + 4 (x, y) = (0,±2) Two
y2 = x3 − x2 + x (x, y) = (0, 0), (1,±1) Three
y2 = x3 − 108 None
y2 = x3 − x+ 1 (x, y) = (0,±1), (1,±1), (−1,±1), . . . Infinitely many
y2 = x3 + x+ 1 (x, y) = (0,±1), (1

4
,±−9

8
), (72,±611) . . . Infinitely many

y2 = x3 − 7x+ 10 (x, y) = (1,±2), (3,±4) . . . Infinitely many

2

https://www.lmfdb.org/EllipticCurve/Q/
https://www.lmfdb.org/EllipticCurve/Q/108/a/2
https://www.lmfdb.org/EllipticCurve/Q/24/a/5
https://www.lmfdb.org/EllipticCurve/Q/108/a/1
https://www.lmfdb.org/EllipticCurve/Q/92/a/1
https://www.lmfdb.org/EllipticCurve/Q/496/a/1
https://www.lmfdb.org/EllipticCurve/Q/664/a/1


3 As a warmup to showing how we may generate more rational solutions to an elliptic
curve starting from a small number of solutions, we will first illustrate how we can system-
atically generate all Pythagorean triples starting from the single triple (−1, 0, 1) using some
geometry.

1 Generating Pythagorean triples – using geometry!

The only solution in Z3 to x2 + y2 = z2 with z = 0 is (x, y, z) = (0, 0, 0). From now on,
we will focus on finding solutions where z ̸= 0. Also note that if (x, y, z) is a solution to
x2 + y2 = z2, then so is (cx, cy, cz) for any integer c. So from now on we will further focus
on finding solutions where the greatest common divisor of x, y and z is 1.

Observation 1: There is a bijection of sets:

{(x, y, z) ∈ Z3 | x2 + y2 = z2, z ̸= 0, gcd(x, y, z) = 1} ←→ {(u, v) ∈ Q2 | u2 + v2 = 1}.
(x, y, z)→ (x/z, y/z)

(uz, yz, z)← (u, v),

where z is the least common multiple of the denominators of u and v. So Pythagorean triples
correspond to points on the unit circle where both coordinates are in Q. For example, the
triple (x, y, z) = (3, 4, 5) corresponds to the point on the unit circle (u, v) = (3/5, 4/5).

Observation 2: Let P0 be the point corresponding to (u, v) = (−1, 0). The line joining
P0 and any other point P on the unit circle with rational coordinates has rational slope.

Point P Slope of line joining P0 and P
(1, 0) 0
(0, 1) 1
(0,−1) −1

(3/5, 4/5) 1/2

Observation 3: Conversely, we will show that any line through P0 with rational slope t
intersects the unit circle at one other point P , which also has rational coordinates. We will

3Note that all elliptic curves possess the symmetry (x, y) 7→ (x,−y), i.e. if (x, y) is a solution to y2 =
x3 + Ax + B, so is (x,−y). So the rational solutions with y ̸= 0 come in pairs. The curves y2 = x3 + 4
and y2 = x3 − 108 are special since they possess additional symmetries, given by (x, y) 7→ (ωx, y) where
ω is a cube root of unity in C. Elliptic curves possessing such additional symmetries are called CM elliptic
curves (CM = Complex Multiplication). These are the “special points” described in some of the AWS course
outlines!
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show using a direct computation that

P =

(
1− t2

1 + t2
,

2t

1 + t2

)
,

and hence also has rational coordinates when t is rational. The line through P0 with slope
t in the (u, v)-plane is given by v = t(u + 1). The two points of intersection of this line
with the unit circle can be obtained by substituting v = t(u + 1) back into the equation
u2 + v2 = 1 and solving for u. Carrying this out, we get the quadratic equation

u2 + t2(u+ 1)2 = 1,

which on rearranging becomes the following quadratic equation in the variable u:

(t2 + 1)u2 + 2t2u+ t2 − 1.

Note that u = −1 is a root of this quadratic equation (since the point P0 = (−1, 0) is in the
intersection of the line and the unit circle!), and the sum of the two roots is −2t2/(t2 + 1),
and hence the other root is

u =
−2t2

t2 + 1
− 1 =

1− t2

1 + t2
.

The corresponding v-coordinate is obtained by plugging this value of u back into v = t(u+1)
and this gives v = 2t

1+t2
and the formula above for P .

We can now generate more rational points on the unit circle by plugging in our favourite
rational value of t into this formula for P . For example, plugging in t = −1/2 gives us the
point (3/5,−4/5). Going back to the original problem of generating Pythagorean triples,
writing t = a/b for integers a and b, we see this value of t corresponds to the infinite set of
Pythagorean triples that can be obtained from the triple (b2− a2, 2ab, b2 + a2) by scaling all
three coordinates by the same integer.

Take away: We can generate all points on the unit circle with rational coordinates
(and hence all Pythagorean triples) starting from the single rational point P0 = (−1, 0) and
computing the intersection of a line through P0 with rational slope with the unit circle.

2 Measuring complexity of solutions: height functions

Now that we know how to systematically generate all points on the unit circle with rational
coordinates, we can ask more refined questions such as how many solutions there are of a
given “size/complexity”, and how points of a given “size” distribute on the unit circle. As
we saw in the example x3 + y3 + z3 = 42 earlier, even the smallest solution that is accessible
by a computer search to some equations can be quite complex i.e. have a large number of
digits, and even if this equation has more solutions, they might be sparse and spread apart.
Any natural notion of size should have the property that there are only finitely many points
of any given size – this is precisely what height functions are designed for. There is more
than one natural definition of a height function in the context of solutions to x2 + y2 = z2,
and we describe two such definitions below.
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2.1 Height of a rational number

Definition 2. The height H(a/b) of a rational number a/b written in lowest form is

H(a/b) := max(|a|, |b|).

The logarithmic height h(a/b) of a/b is h(a/b) := logH(a/b) = logmax(|a|, |b|).

The logarithmic height is roughly a measure of the number of digits to write down the
number a/b. We record the following easy, but extremely important feature of this definition.
(This is named after the mathematician Douglas Northcott who developed height functions
together with André Weil in the 1920s.)

Lemma 3. (Northcott property) There are only finitely many rational numbers of bounded
height.

Proof. More precisely, if H(a/b) ≤ N for some integer N , then −N ≤ a ≤ N and −N ≤
b ≤ N , so there are at most (2N + 1)2 possibilities of a/b.

In fact, there can be fewer than (2N + 1)2 rational numbers of height ≤ N due to
cancellations between the numerator and denominator. By estimating the probability that
two randomly chosen integers are coprime, one can show

#{a/b ∈ Q : h(a/b) ≤ N} ∼ 12

π2
N2 +O(N logN) as N →∞.

Extending this definition of height for rational numbers to more general “algebraic num-
bers” such as roots of unity, 3

√
2,
√
5 etc. will be the focus of the next couple of lectures.

One way to measure the size of the Pythagorean triple given by (b2− a2, 2ab, a2 + b2) for
some integers a and b is to simply take the height of the rational number a/b.

2.2 Height function on projective spaces

There is an alternate way to directly measure the size of a Pythagorean triple (x, y, z) without
first parameterizing, i.e. rewriting it in the form (b2 − a2, 2ab, a2 + b2). The definition we
give below naturally extends to arbitrary tuples of coprime integers.

Definition 4. (Projective spaces) Fix n ≥ 1. Define

Pn(Q) := {(x0, x1, . . . , xn) ∈ Qn+1 \ (0, 0, . . . , 0)}/ ∼,

where ∼ is the equivalence relation that identifies (x0, x1, . . . , xn) with (y0, y1, . . . , yn) if

(y0, y1, . . . , yn) = (ax0, ax1, . . . , axn)

for some nonzero element a in Q. We will denote the equivalence class of (x0, x1, . . . , xn) by
[x0 : x1 : . . . : xn].

One can analogously define the set Pn(K) for any field K, by replacing the field Q in the
definition above with the field K throughout.
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Suggested exercises 5. Using the unique factorization property of the integers, show that
every point P of Pn(Q) has a representative (x0, x1, . . . , xn) where xi ∈ Z for every i and
gcd(x0, x1, . . . , xn) = 1, and this representative is unique up to scaling by ±1.

Definition 6. Fix an integer n ≥ 1, and let (x0, x1, ..., xn) be a representative of a point P
of Pn(Q) such that xi ∈ Z for every i and gcd(x0, x1, . . . , xn) = 1. Define the height function
H : Pn(Q)→ R and the logarithmic height h : Pn(Q)→ R as follows.

H(x0 : x1 : . . . : xn) := max(|x0|, |x1|, . . . , |xn|).
h(x0 : x1 : . . . : xn) := logmax(|x0|, |x1|, . . . , |xn|).

Lemma 7. (Northcott property) Fix an integer n ≥ 1. There are only finitely many points
of Pn(Q) of bounded height.

Proof. More precisely, there are at most (2N + 1)n+1 points of Pn(Q) of height ≤ N .

The new height of a Pythagorean triple (x, y, z) is simply H([x : y : z]). This new
height function is an equally good way for measuring the complexity/size. 4 Systematically
packaging various different definitions of height functions for the same underlying set of
solutions, and understanding their relationship is achieved by the Weil height machine –
this is a topic that we will return to at the very end of this lecture series if we have time.
Estimating the number of rational solutions of bounded height for more general systems of
equations, and understanding how these estimates are related to the underlying geometry of
the solution sets is an active area of research today!

3 Generating rational points on elliptic curves

We are now interested in seeing if a similar geometric construction would help us system-
atically generate all rational solutions to an elliptic curve starting from a small number of
known solutions. For example, if we take the elliptic curve E from the earlier table with
defining equation y2 = x3 − x+ 1, if we now draw a line between two of the known rational
points P0 = (1, 1) and P1 = (0,−1) on E, i.e. the line with equation y = 2x − 1, and
compute where it intersects the curve y2 = x3 − x + 1 by substituting for y in terms of x
as before, we get the equation (2x − 1)2 = x3 − x + 1 and we see that this line intersects
the curve at three distinct points. This time we end up having to solve the cubic equation
x3− 4x2 +3x = 0, with two known solutions 0 and 1 (corresponding to the x-coordinates of
P1 and P0). Since the sum of the three roots of the cubic is 4 (minus the coefficient of x2),
the third root is x = 4− (0+1) = 3, and the corresponding y-coordinate is y = 2 · 3− 1 = 5,
giving us the new solution P3 = (3, 5). Using the symmetry of the defining equation, under
(x, y) 7→ (x,−y) we see that P4 = (3,−5) is also a solution.

4It is possible to estimate the number of rational solutions of bounded height using this new definition of
a height function. The new estimate for points of height at most N turns out to be of the order of a constant
times N up to a lower order error term. Although this estimate differs from the earlier estimate of 12

π2N
2,

it is not altogether surprising – one can explain the difference from the “squares” in the parameterization
(q2 − p2, 2pq, p2 + q2) – your homework will help you prove these!
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Figure 1: Some rational points on the elliptic curve y2 = x3 − x+ 1

In fact, we can even obtain the point P1 from P0 by iterating a similar construction
starting with the single point P0! (See figure 3.) We begin by computing the tangent
line to the elliptic curve at P0. This line has slope 1 (which we can compute by implicit
differentiation), and so has equation y = x. It intersects the elliptic curve E at one more
point P5. To find P5, this time we will have to solve the cubic polynomial x2 = x3 − x + 1,
with 1 as a repeated root with multiplicity 2 and sum of three roots equal to 1 – this gives
the point P5 = (−1,−1). Using the symmetry again gives us the point P6 = (−1, 1) on E.
The horizontal line joining (−1, 1) and the original point P0 meets E also at P7 = (0, 1).
Using the symmetry once again gives the point P1 = (0,−1).

More generally, one can show that this geometric construction gives the set of rational
points on any elliptic curve the structure of an abelian group, where

P1 + P2 + P3 is the identity⇔ P1, P2, P3 lie on a line,

for any three rational points P1, P2, P3 on E, not necessarily distinct. For instance, associa-
tivity of the group law does not follow immediately from the description above and takes
some work. For a proof, see [Sil09][Chapter 3, Proposition 2.2]. To see what the identity

7



element is for this group, we need to “re-homogenize” the equation y2 = x3 + Ax + B to
a cubic equation in the three variables X, Y, Z where each monomial has degree 3. For-
mally, we substitute x = X/Z, y = Y/Z analogously to the change of variables we made to
pass from Pythagorean triples to points on the unit circle. Clearing denominators to get
Y 2Z = X3 + AX2Z + BZ3. This time we see there are many solutions to this “rehomoge-
nized” equation with Z = 0: they can all be obtained from the solution (X, Y, Z) = (0, 1, 0)
by scaling by an integer. We formally view this additional solution (unique up to scaling) as
giving us a point O “at infinity” on this elliptic curve, and understand that this point lies
on every vertical line in the (x, y) plane. So a line joining an arbitrary point P with O is a
vertical line through P . At this point, it might be instructive to verify that O satisfies the
axioms to qualify as the identity element, and that the inverse of a point P = (x, y) is the
symmetric point (x,−y)!

We can reinterpret the calculations above with the example y2 = x3 − x + 1 discussed
above as saying:

P1 + P2 + P3 = O

P3 + P4 = 0

2P0 + P5 = O

P5 + P6 = O

P6 + P7 + P0 = O

P7 + P1 = O.

On simplifying this sequence of equalities, we see that this P1 = 3P0.
Given an elliptic curve E with defining equation y2 = x3 + Ax + B, define the group

E(Q) of rational points by

E(Q) := {(x, y) ∈ Q2 : y2 = x3 + Ax+B} ∪ {O}.

Suggested exercises 8. Verify that (1, 1) is a point of order 4 on the elliptic curve E1 :
y2 = x3 − x2 + x, and that (0, 2) is a point of order 3 on the elliptic curve E2 : y2 = x3 + 4.

At this point, it is natural to wonder if we can generate all rational points on the elliptic
curve E : y2 = x3 − x + 1 starting from the single rational point (1, 1) and iterating this
construction of drawing tangent and secant lines and computing points of intersection with
E. Or in other words, is E(Q) ∼= Z with generator (1, 1)? Miraculously, it turns out the
answer is yes! The analogous finite generation statement for arbitrary elliptic curves over Q
is one of the foundational theorems of the subject:

Theorem 9 (Mordell-Weil). E(Q) is a finitely generated abelian group for any elliptic curve
E defined over Q. In other words, staring with a finite set of rational points, and iterating
the construction using secant and tangent lines, one can generate all points in E(Q).

The year 2022 marks the 100 year anniversary of this historic theorem. The theorem as
stated above should rightly be attributed to Mordell. In this thesis in 1928, Weil greatly
generalized Mordell’s theorem to points on elliptic curves defined over more general number
systems, and also to certain higher dimensional analogues of elliptic curves called “abelian
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varieties”. 5 Although Mordell’s theorem shows that the set of rational points is finitely
generated, it does not give an algorithm for finding an explicit set of generators – this
remains an important challenge in computational number theory today!

Here’s a table of some elliptic curves and their corresponding Mordell-Weil groups E(Q).

Clickable equation E(Q) Generators for E(Q)
y2 = x3 + 4 Z/3Z (0, 2)
y2 = x3 − x2 + x Z/4Z (1, 1)
y2 = x3 − 108 trivial O
y2 = x3 − x+ 1 Z (1, 1)
y2 = x3 + x+ 1 Z (0, 1)
y2 = x3 + x2 + 4 Z⊕ Z/2Z (0, 2), (−2, 0)
y2 = x3 − 7x+ 10 Z⊕ Z (1, 2), (3, 4)

There are algorithms to compute the torsion subgroup of E(Q). The behaviour of the
rank of the Mordell-Weil group as you vary over elliptic curves over Q remains relatively
mysterious – whether there is a “largest possible rank” for an elliptic curve defined over Q
is a topic of heated debate! The current record for largest rank is held by Noam Elkies who
found 28 independent points on the following elliptic curve

y2 + xy + y = x3 − x2 − 20067762415575526585033208209338542750930230312178956502x

+34481611795030556467032985690390720374855944359319180361266008296291939448732243429.

Proving that the average rank is bounded as you vary over all elliptic curves over Q is one
of the modern breakthroughs in the subject.

One of the key tools used in the proof of the Mordell-Weil theorem is the canonical height
function ĥE : E(Q)→ R. (At this point, you can try and come up with a reasonable definition
for a height function on E(Q)! Remember, any good definition must satisfy the Northcott
property.) Defining the canonical height function and understanding how it interacts with
the group structure of E(Q) is one of the main goals for this course.

Suggested exercises 10. Verify that the doubling map for the elliptic curve y2 = x3 +1 is
given by

P = (x, y) 7→ 2P =

(
x4 − 8x

4x3 + 4
,
2x6 + 40x3

8y3

)
.

Note that we cannot plug in the point (−1, 0) on the curve into the formula above – can you
explain why?

The map f(x) = x4−8x
4x3+4

is an example of a Lattès map. A Lattès map is a rational function
(i.e. a ratio of two polynomials) that describes the x-coordinate of the point 2P in terms of
the x-coordinate of P for some elliptic curve.

Suggested exercises 11. Compute the Lattès map corresponding to the elliptic curve
y2 = x3 + 2. Let P be the point (−1, 1) on this curve. Compute the formula for the x-
coordinates of the points 2P, 4P, 8P, 16P by iteratively plugging them into the Lattes map
for this curve – what do you observe about the growth of the number of digits in this
sequence?

5See the article “Mordell’s finite basis theorem revisited” by Cassels for a nice historical overview.
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Suggested exercises 12. Try this exercise if you have access to one of the computing
softwares Magma/Pari GP/SAGE. (Your wonderful TAs can help you run these experiments
at office hours!) Open up the webpage of your favourite elliptic curve from this list of curves
from the LMFDB of elliptic curves E over Q with E(Q) ∼= Z. Using the “Show command”
option on the top right of the webpage you opened up, learn how to enter the elliptic curve
and a generator P for the Mordell-Weil group into your chosen platform. Also compute the
points 2P, 4P, 8P, 16P etc. using your chosen platform – what do you observe about the
heights of the x-coordinates of these points? Repeat this experiment with a different elliptic
curve from the list.
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