MODEL THEORY PROBLEM SET 6

Beginner problems

Question 1: Let $F \models RCF$ and $A \subseteq F^n$ be semialgebraic. Show that the closure (in the Euclidean topology) of F is semialgebraic.

Question 2: Let x and y be algebraically independent over \mathbb{R}. Show that $\mathbb{R}(x,y)$ is formally real and that we can find orderings $<_1$ and $<_2$ of $\mathbb{R}(x,y)$ such that $x<_1 y$ and $y<_2 x$.

Question 3: Let F be a field. Show that F is formally real if and only if for all $a_1, \ldots, a_n \in F$ we have that
\[a_1^2 + \cdots + a_n^2 = 0 \implies a_1 = \cdots = a_n = 0. \]

Question 4: Let $\mathcal{L} = \{0, 1, +, -, \times, <, f\}$, where f is a function symbol.
(a) Consider \mathbb{R} as an \mathcal{L}-structure, where f is interpreted as the sine function on \mathbb{R}: $\sin(x)$. Is the theory of \mathbb{R} in this language o-minimal?
(b) Consider \mathbb{R} as an \mathcal{L}-structure, but now interpret f as the complex exponential function on \mathbb{C} (so now f is a function of two variables). Is the theory of \mathbb{R} in this language o-minimal? \footnote{A very famous theorem of Wilkie shows that if we interpret f as the real exponential function, then the theory of \mathbb{R} is o-minimal.}

Question 5: Let $F \models RCF$ and $S \subseteq F^{m+n}$ be semialgebraic. For $\bar{a} \in F^m$, let $S_{\bar{a}} := \{ \bar{b} \in F^n : (\bar{a}, \bar{b}) \in S \}$. Show that the set
\[\{ \bar{a} \in F^m : S_{\bar{a}} \text{ is open} \} \]
is semialgebraic.

Intermediate problems

Question 6: Let $F \models RCF$, $X \subseteq F^n$ closed and bounded, and $f : F^n \to F$ semialgebraic (i.e., the graph of f is semialgebraic). Show that $f(X)$ is closed and bounded. (Hint: notice that this is true in \mathbb{R}, and transfer the result over to any other real closed field.)

Question 7: Let $F \models RCF$ and $f(\bar{X}) \in F(\bar{X}_1, \ldots, \bar{X}_n)$ be a rational function. We say that f is positive semidefinite if $f(\bar{a}) \geq 0$ for all $\bar{a} \in F^n$. Show that if f is positive semidefinite, then f is a sum of squares of rational functions.

Question 8: Let \mathcal{L} be a language that contains the the symbol \prec. Let T be an o-minimal theory on this language and let \mathcal{M} be a model of T. Suppose that $\phi(x)$ is an \mathcal{L}-formula which has only finitely many realizations in \mathcal{M}. Show that for every $m \in \mathcal{M}$ realizing $\phi(x)$ there is another \mathcal{L}-formula $\psi(x)$ such that the only realization of $\psi(x)$ is m.

Question 9: Let $\mathcal{L} = \{e, *, \prec\}$ and let G be an ordered group (i.e. G is a group and for all $x, y, z \in G$ we have that $x < y \implies x * z < y * z$). Considering G as an \mathcal{L}-structure, let T be the complete first-order theory of G in the language \mathcal{L}. Suppose that T is o-minimal.
(a) Let $X \subseteq G$ be a definable set (defined with parameters from G). Show that if X is a subgroup of G, then either $X = \{0\}$ or $X = G$.
 Hint: First show that if $X \neq \{0\}$, then there is $h \in G$ such that $(-h, h) \subseteq X$.\footnote{A very famous theorem of Wilkie shows that if we interpret f as the real exponential function, then the theory of \mathbb{R} is o-minimal.}
(b) Show that G is abelian.
Hint: Given $h \in G$, consider the definable (with parameter h) subgroup $C(h) := \{g \in G : g \ast h = h \ast g\}$.
(c) Show that G is divisible, i.e. for every $g \in G$ and every positive integer n, there exists $h \in G$ such that $nh = g$.

Question 10: Let \mathcal{L} be a language that contains the symbol $<$ and let \mathcal{M} be an o-minimal \mathcal{L}-structure. Assume that the underlying ordered set of \mathcal{M} is densely ordered. Show that for $a < b \in M$, if $f : [a.b] \to M$ is a definable continuous function, then f assumes all values between $f(a)$ and $f(b)$.

Advanced problems

Question 11: Let $\mathcal{L} = \{0, 1, +, -, \times, \{f\}_{i \in I}\}$, where $\{f\}_{i \in I}$ denotes a set of function symbols. Suppose we interpret the f_i on \mathbb{R} in such a way that the theory of \mathbb{R} in this language is o-minimal.
(a) Let $g : \mathbb{R} \to \mathbb{R}$ be a definable function and assume that $g^{-1}(x)$ is a finite set for all $x \in \mathbb{R}$. Show that there is a positive integer N such that for all $x \in R$, $g^{-1}(x)$ has at most N elements.
(b) Let $g : \mathbb{R}^{n+1} \to \mathbb{R}^n$ be a definable function and assume that $g^{-1}(\pi)$ is a finite set for all $\pi \in \mathbb{R}^n$. Show that there is a positive integer N such that for all $\pi \in \mathbb{R}^n$, $g^{-1}(\pi)$ has at most N elements.
Hint: Use cell-decomposition and induction.

Question 12: Let \mathcal{L} be the language of ordered rings. Let R be an ordered ring such that the complete first-order theory T of R in the language \mathcal{L} is o-minimal. Show that R is a real closed field.