MODEL THEORY PROBLEM SET 3

Beginner problems

- Question 1: Prove Fact 3.1: if $\rho : \mathcal{M} \to \mathcal{N}$ is an elementary embedding, then there is an \mathcal{L} -structure \mathcal{N}' isomorphic to \mathcal{N} such that $\mathcal{M} \leq \mathcal{N}$
- Question 2: Let $\mathcal{L} = \{E\}$, where E is a binary relation symbol. The \mathcal{L} -theory of (undirected) graphs is axiomatized as follows:
 - $\forall x \neg (xEx);$
 - $\forall x \forall y (xEy \rightarrow yEx).$

A graph $\mathcal{G} = (V, E)$ is said to be *connected* if for any vertices $a, b \in V$, either aEb or there are vertices $v_1, \ldots, v_n \in V$ with $aEv_1Ev_2E\cdots Ev_nEb$. Prove that the theory of connected graphs is not first order axiomatizable.

Question 3: Let $\mathcal{L} = \{0, 1, +, \times, <\}$ and consider \mathbb{N} as an \mathcal{L} -structure. Recall that $\operatorname{Th}(\mathbb{N})$ is the set of all \mathcal{L} -sentences satisfied by \mathbb{N} , Show that there is a model $\mathcal{M} \models \operatorname{Th}(\mathbb{N})$ and $a \in M$ such that a is larger than every natural number.

Question 4: Let $\mathcal{L}_{or} := \{0, 1, +, \times, -, <\}$ (this is known as the language of *ordered rings*) and consider \mathbb{R} as an \mathcal{L}_{or} -structure.

- (a) Show that there is an elementary extension $\mathcal{M} \geq \operatorname{Th}(\mathbb{R})$ such that there exists $m \in M$ satisfying m > 0 and $m < \frac{1}{n}$ for all positive integers n (such an m is called an *infinitesimal* element).
- (b) Show that there is an elementary extension $\mathcal{N} \geq \text{Th}(\mathbb{R})$ such that there exists $n \in N$ satisfying n > r for all real numbers $r \in \mathbb{R}$ (such an n is called an *infinite* element).

Intermediate problems

- **Question 5:** Show that the theory of Abelian groups, where every element has order 2 is κ -categorical for all infinite κ . Show that it is not complete. Why does Vaught's Test not apply?
- Question 6: Let $\mathcal{L} := \{0, +, \{f_q\}_{q \in \mathbb{Q}}\}$ be the language used in the first problem set to write down the axioms of \mathbb{Q} -vector spaces (here f_q is a function symbol in one variable that is interpreted as scalar multiplication by q). Let T be the theory given by these axioms. Show that T is complete. Hint: Show that T is κ categorical, for $\kappa > \aleph_0$.
- Question 7: Let $\mathcal{L} = \{<\}$, and consider \mathbb{Z} as an \mathcal{L} -structure. Notice that $\operatorname{Th}(\mathbb{Z})$ extends the axioms for linear orders. Show that there is a model $\mathcal{M} \models \operatorname{Th}(\mathbb{Z})$ such that there is an order preserving embedding $\sigma : \mathbb{Q} \to \mathcal{M}$. (Hint: add constants for each element of \mathbb{Q} .)
- Question 8: Zermelo–Fraenkel set theory with the axiom of choice (ZFC) is a first-order theory in the language $\mathcal{L} = \{\epsilon\}$, where ϵ is a binary relation symbol. Recall that ZFC asserts the existence of an uncountable set, namely the power set of ω . Prove Skolem's Paradox: that despite implying the existence of an uncountable set, ZFC has a countable model (assuming that it is consistent). Why is this not actually a contradiction? That is, why does it not follow that ZFC is inconsistent?

Advanced problems

Question 9: Let $\mathcal{L} = \{<\}$ and let DLO, the theory of dense linear orders without endpoints, be the \mathcal{L} -theory consisting of the following axioms:

- < is a total order;
- < is dense: for any elements a < b, there is an element c with a < c < b;
- < does not have endpoints: for any element a there is are elements b and c with b < a < c. Prove that DLO is \aleph_0 -categorical. Conclude that any countable model of DLO is isomorphic to $(\mathbb{Q}, <)$. Hint: let \mathcal{M}, \mathcal{N} be two countable models of DLO. Carefully construct an increasing sequence of partial maps from M to N with finite domains such that the union of these maps is an isomorphism.

Question 10: Let \mathcal{L} be a language and let T be a complete theory in this language. Show that the following two conditions are equivalent:

- (a) There exists a finite set of \mathcal{L} -sentences T_0 such that for every \mathcal{L} -structure \mathcal{M} we have that $\mathcal{M} \models T$ if and only if $\mathcal{M} \models T_0$ (in this case we say that T is *finitely axiomatizable*).
- (b) There exists a theory T' in the language \mathcal{L} such that for every \mathcal{L} -structure \mathcal{M} we have that \mathcal{M} is not a model of T if and only if \mathcal{M} is a model of T'.

Question 11: Suggest a language that one can use to write down the axioms of metric spaces. Let T be the theory give by these axioms. Can you find any models of T which are not metric spaces?