
INTRODUCTION TO MODEL THEORY WITH APPLICATIONS

RONNIE NAGLOO

3. THE FIRST FEW BIG THEOREMS

In this lecture we will look at the first few major theorems in basic model theory.
In particular we introduce the Compactness Theorem one most fundamental result
in model theory. We will delay its proof for the next lecture and instead focus on the
consequences (or application) of this theorem.

3.1. More on Elementary Substructures. Let L be a fixed language. In the second
lecture we introduced the concepts of elementary embeddings and elementary sub-
structures. We recall here the definition for convenience.

Definition 2.14. Suppose M and N are L-structures. We say that an embedding
ρ : M → N is an elementary embedding if for all L-formulas φ(x1, ..., xn) and and
all a ∈ Mn we have that M |= φ(a) if and only if N |= φ(ρ(a)).
If M ⊆ N and the inclusion map is also elementary, we say that M is an elementary
substructure of N and that N is an elementary extension of M. We write M � N.

It turns out that the difference between an elementary substructure and elemen-
tary embedding is not too important:

Fact 3.1. 1 If ρ : M → N is an elementary embedding, then there is an L-structure N′

isomorphic to N such that M � N′.

We will use this fact several times in this lecture. The following gives a criterion
to check whether a given substructure is elementary.

Proposition 3.2 (Tarski-Vaught Test). Let M and N be two L-structures such that M ⊆
N. Then the following is equivalent

(1) M � N

(2) For any LM-formula φ(x) in one free variable, if NM |= ∃xφ(x) then there is b ∈ M
such that NM |= φ(b).

Proof. (1)⇒(2) Suppose M � N and let φ(x) be an LM-formula in one free variable.
Assume NM |= ∃xφ(x). Since M ≡M N, we have that MM |= ∃xφ(x). So by
definition there is b ∈ M such that MM |= φ(b). Since M � N, the result follows.
(2)⇒(1) Assume the statement (2) holds. Let φ(y1, ..., yn) be a L-formula, and a ∈
Mn. We need to show that M |= φ(a) if and only if N |= φ(a). Using Proposition
2.13, we know that this holds for quantifier free formulas. Using the usual argu-
ments, we only need to prove by induction that it holds for the case when φ(y) is

1You will be ask to prove it in the problem session.
1



2 RONNIE NAGLOO

of the form ∃xψ(y, x) given that it already holds for ψ(y, x). If M |= φ(a) then there
is b ∈ M such that M |= ψ(a, b). By induction N |= ψ(a, b) and hence N |= φ(a).
On the other hand, assume that N |= φ(a). By simply noticing that ψ(a, x) is an
LM formula, we see that we can apply (2) to N |= ∃xψ(a, x) and obtain an b ∈ M
such that N |= ψ(a, b). By induction M |= ψ(a, b) and so we get that M |= φ(a) as
required. �

Remark 3.3. Note that by inspecting the proof of (2)⇒(1) carefully, we see that the
statement (2) is only used in one direction. So together with Proposition 2.13 and the
relevant arguments in the proof, we also obtain: Let M and N be two L-structures
such that M ⊆ N. If M |= φ(a) then N |= φ(a) for any existential L-formula φ(y) :=
∃xψ(y, x) with ψ(y, x) quantifier free and any a ∈ Mn.

The Tarski-Vaught Test also holds for elementary embedding and we leave it for
the reader to verify this fact. The following is believed to be the first Theorem in
model theory. Recall that |L| is the cardinality of the set of all the symbols in L.

Theorem 3.4 (Downward Löwenheim-Skolem). Suppose N is an L-structure and A ⊆
N. Then there exists an elementary substructure of M � N such that A ⊆ M and |M| ≤
max{|A|, |L|,ℵ0}.

In particular, if L is countable then every L-structure has a countable elementary sub-
structure.

Proof. For each L-formula φ(y, x) we define a function fφ : Nn → N as follows:
for a ∈ Nn

• If N |= ∃xφ(a, x), choose any b ∈ N such that N |= φ(a, b) and set fφ(a) = b,
• if N |= ¬∃xφ(a, x), then set fφ(a) = b for some arbitrary b ∈ N.

We let M0 = A and define

Mi+1 = Mi ∪ { fφ(a) : φ(y, x) is an L-formula and a ∈ Mi}.

We also set M =
⋃

Mi.
Now notice that if φ(y, x) is of the form y = c where c ∈ LC is a constant symbol,

then fφ = cN. Similarly, if φ(y, x) is of the form f (y) = x where f ∈ LF is a function
symbol, then fφ = fN. In particular, for any f ∈ LF and tuple a ∈ Mn f , since
a ∈ M

n f
i for some large enough i, we have that fN(a) = fφ(a) ∈ Mi+1 ⊂ M. Hence,

M contains all the constants of N and is preserved by all the functions in N. As a
result, M is the universe of a substructure M of N.

We claim that M � N. Indeed let φ(y, x) be an L-formula and let a ∈ Mn be such
that N |= ∃xφ(a, x). Then N |= φ(a, b) for b = fφ(a) ∈ M. By the Tarski-Vaught test,
M � N.

Finally, let κ = max{|A|, |L|,ℵ0}. We must show that |M| ≤ κ. First observe that a
formula φ(y, x) is a finite string from a set of symbols of size |L|+ℵ0 ≤ κ and since κ
is infinite, there can only be at most κ many formulas. If |Mi| ≤ κ, then we claim that
|Mi+1| ≤ κ. Indeed, since |Mi| ≤ κ, there can only be at most κ-many finite tuples a
from Mi. Hence the set of all pairs (φ(y, x), a) (which is in bijection with the set of
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all fφ(a) added to Mi+1) also has cardinality at most κ. So |Mi+1| ≤ κ. By induction
|Mi| ≤ κ for all i and since M =

⋃
Mi, we get that |M| ≤ κ as required. �

3.2. The Compactness Theorem and its consequences. We now state the Compact-
ness Theorem, one of the most fundamental result in model theory. We will delay
its proof for the next lecture. Instead we will focus on its many consequences.

Theorem 3.5 (Compactness Theorem). Suppose T is an L-theory. T is consistent if and
only if every finite subset of T is consistent.

The right to left assertion is, of course, the key aspect of the theorem. It states
that to prove that a theory is consistent, all we have to do is check whether an arbi-
trary finite subset is consistent. Let us illustrate its use in several applications. The
following notion will be useful

Definition 3.6. Let L ⊆ L′ be languages. Let M′ be an L′-structure. The reduct of
M′ to L is the L-structure M whose universe is the same as that of M′ and such that
interpretation in M of any symbol in L is the same as the interpretation in M′.

Of course we have already seen the example of (R,+,×,−, 0, 1) which is the
reduct of (R,+,×,−, 0, 1,<) to Lr.

Proposition 3.7. If an L-theory T has arbitrarily large finite models. Then T has an infinite
model.

Proof. Let φn be the setentences

φn := ∃x1 . . . ∃xn
∧

1≤i<j≤n

xi 6= xj,

and let T′ be the new theory T′ = T∪{φn : n ∈N>0}. Then we have that any model
of T′ is an infinite model of T. In other words all we have to do is show that T′ is
consistent. By the Compactness Theorem all we have to show is that every finite
subset of T′ is consistent. So let ∆ be a finite subset of T′. We have that for some
N > 0, ∆ is a subset of T ∪ {φ1, . . . , φN}. Our assumption is that there is a model
M |= T such that |M| ≥ N, that is M |= ∆. �

Proposition 3.8. The class of torsion groups is not first order axiomatizable.

Proof. Recall that Lg = {∗, e} is the language of groups and Tg the theory of groups.
A group G |= Tg is torsion if for all h ∈ G we have that

hn = h ∗ · · · ∗ h︸ ︷︷ ︸
n−times

= e

for some n ∈ N. Notice that ∀h∃n(hn = e) is not a first order formula since we are
only allowed to quantify over variables (i.e. ultimately over elements of the universe
of structures).
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Assume for contradiction that there is a set of Lg-sentences S so that Ttor = Tg ∪ S
axiomatizes the class of torsion groups. Let L = Lg ∪ {c} be the language which
extend Lg by adding a new constant symbol c and consider the L-theory

T′ = Ttor ∪ {cn 6= 0 : n ∈N>0}

which extend Ttor. It is not hard to see that T′ is consistent. Indeed, if ∆ is a finite
subset of T′ then for some m > 0 we have that ∆ is contained in Ttor ∪ {cn 6= 0 :
n ∈ {1, . . . , m}}. Let Gm = ({0, 1, . . . , m− 1},+m, 0) be the Lg-structure where +m
is addition modulo m. We of course know that Gm |= Ttor (this is simply the additive
group of the integers modulo m). However, we can make Gm into an L-structure by
interpreting c as 1. So indeed Gm |= Ttor ∪ {cn 6= 0 : n ∈ {1, . . . , m− 1}} and hence
∆ is consistent. By the Compactness Theorem, T′ is consistent. If G′ |= T′ then we
can consider the its reduct G to Lg which satisfies G |= Ttor, that is G is torsion. This
impossible since the interpretation of c ∈ G′ give that c is not torsion in G. So we
get a contraction. �

We now look at an example (of an application) of a different flavor. Let Q =
(Qalg,+,×,−, 0, 1). A natural questions to ask is whether all the elements in a model
of Th(Q) (or Th(QQalg)) must be algebraic over Q. That is, whether the algebraicity
of Qalg is part of the Th(QQalg). We show that it is not the case:

Proposition 3.9. Q has an elementary extension which contains a transcendental element.

Proof. For simplicity let us write L = Lr and T = Th(QQalg). Let L′ = LQalg ∪ {c}
where c is a new constant symbol. We work with the L′-theory

T′ = T ∪ {F(c) 6= 0 : F ∈ Q[X] \Q}.

If ∆ is a finite subset of T′, then for some N > 0, it is contained in the set T ∪
{F(c) 6= 0 : F ∈ Q[X] and deg(F) ≤ N}. So in particular Q itself is a model of ∆
by interpreting c as an algebraic number whose minimal polynomial is of degree
> N. By the Compactness Theorem T′ is consistent. Let M′ |= T′ and let M be
the reduct of M′ to L. Notice that we have shown that MQalg |= Th(QQalg). Let

ρ : Qalg → M be the map defined by ρ(q) = c
M

Qalg
q where q ∈ Qalg and cq is the

constant symbol in LQalg for q. Since MQalg |= Th(QQalg), we have that Q |= φ(a)
if and only if M |= φ(ρ(a)) for every L-formula φ(x) and every a tuple from Qalg.
That is ρ : Q→M is an elementary embedding. Finally, the interpretation of c in M′

gives a transcendental element of M. �

Let us look at a more theoretical consequences of the Compactness Theorem.

Theorem 3.10 (Upward Löwenheim-Skolem). Suppose M is an infinite L-structure and
let κ ≥ max{|M|, |L|}. Then there exists an elementary extension of M of cardinality κ.

In particular, if L is countable and T is an L-theory with an infinite model, then T has
models of any infinite cardinality
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Proof. Let κ ≥ max{|M|, |L|} and define L′ := LM ∪ {cα : α < κ} where the cαs are
new constants symbols. Note that |L′| = κ. Consider the L′-theory

T′ := Th(MM) ∪ {cα 6= cβ : α < β < κ}.

It is not difficult to see that M itself is a model of any finite subset of T′ by inter-
preting the cαs which appear as some distinct elements (this is possible since |M| is
infinite). Hence by the compactness theorem, T′ is consistent.

Let N′ |= T′, then its reduct N to L is such that N |= Th(M) and since NM |=
Th(MM), we can proceed as in the proof of Proposition 3.9 to show that M � N. By
construction N has at least κ many elements. Applying the Downward Löwenheim-
Skolem Theorem to any A ⊆ N that contains M and such that |A| = κ, one can
show that there is an N1 of cardinality exactly κ such that M � N1 � N. �

Definition 3.11. Suppose that T is an L-theory. We say that T is κ-categorical if all
models of T of cardinality κ are isomorphic.

We can now give a criterion for proving that a consistent theory is complete.

Corollary 3.12 (Vaught’s Test). Suppose T is an L-theory with only infinite models. If T
is κ-categorical for some infinite cardinal κ, then T is complete.

Proof. Suppose T is κ-categorical. Let M1 and M2 be two models of T. We need to
show that they are elementarily equivalent (using Theorem 2.10). Using the Up-
ward and/or Downward Löwenheim-Skolem Theorem we obtain M′1,M′2 |= T of
cardinality κ such that M1 � M′1 and M2 � M′2. Using our assumption that T is
κ-categorical and the fact that elementary embeddings (and isomorphisms) are ele-
mentarily equivalent (Theorem 2.16), we get M1 ≡M′1 ≡M′2︸ ︷︷ ︸

via ∼=

≡M2. �

We illustrate the use of Vaught’s Test in the following examples

3.3. Some complete theories.

Example 3.13. Consider L∅ = ∅ the language of pure sets and T∞ = {φn : n ∈
N>0}, where

φn := ∃x1 . . . ∃xn
∧

1≤i<j≤n

xi 6= xj,

the theory of infinite sets. It is not hard to see that T∞ is κ-categorical for all cardinals
κ. Hence by Vaught’s Test, T∞ is complete.

Example 3.14. Let Lg = {+, 0} be the language of groups written additively. Let us
denote by Tab the theory Tg (of groups) together with the following sentences

∃x(x 6= 0)

∀x∀y(x + y = y + x)
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and for each n ∈N>0 the sentences2

∀x(x 6= 0→ (nx 6= 0)

∀y∃x(nx = y).
The theory Tab is called the theory of torsion-free divisible Abelian groups.

Proposition 3.15. The theory Tab is κ-categorical for all uncountable cardinal κ and hence
complete.

Proof. Notice first that if V is a vector space over Q, then the underlying group of V
is a model of Tab. We claim that every model of T essentially arises this way. To see
this, let us assume we have G |= T. For any y ∈ G and n ∈ N>0, the axioms tell us
that we can find x ∈ G such that nx = y. It is not hard to see that x is the unique
element of G with such property. Indeed, if z ∈ G is such that nz = y, then we get
that n(x− z) = 0. Using the axioms it must be that x− z = 0, i.e. x = z. We denote
ths element x by y/n. So G can now be viewed as a vectors space over Q with the
scalar multiplication defined as m

n y = m(y/n).
We are now ready to go back to the proof of the proposition. First notice that

in general for a Q-vector space V, if V has dimension α, then |V| = max{α,ℵ0}.
Consequently, if G |= Tab is such that |G| = κ > ℵ0, then G as a Q-vector space
has dimension κ. But two vectors spaces over Q are isomorphic if and only if they
have the same dimension. So any two models of Tab of cardinality κ > ℵ0 will
have the same dimension κ and are hence isomorphic. So Tab is κ-categorical for all
uncountable cardinal κ and by Vaught’s Test, Tab is also complete. �

Remark 3.16. Notice that the existence of the countable models {Qn : n ∈ N>0} of
Tab implies that Tab is not ℵ0-categorical.

2We will use the usual shorthand notation nx = x + · · ·+ x︸ ︷︷ ︸
n−times

.
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