
INTRODUCTION TO MODEL THEORY WITH APPLICATIONS

RONNIE NAGLOO

2. THEORIES, MODELS AND DEFINABLE SETS

Modern model theory is often describe as “the study of definable sets in a given
structure or a given model of some theory”. In the second lecture, we give all the
necessary background to make sense of this description. Namely we will look more
closely at the notion of a definable set and give the definition of a first order theory
and its models. All along, we will provide several examples. Finally we will explore
some of the natural questions that arise when working with these notions.

2.1. Definable sets continued. We ended the first lecture by giving the definition
of a definable set. We now give the more general definition of definable sets where
one also allows for “parameters”. Throughout, L will denote a fixed language.

Suppose that M is an L-structure and let A ⊆ M. We would like to think of A
(which could be the set M itself) as a set of parameters. We do so by considering
the new language LA = L ∪ {ca : a ∈ A}, where each ca is a new constant symbol.
Then, for any L-structure N ⊇M we obtain an LA-structure, denoted NA, using the
interpretation cNa = a.

Important. 1
(1) If φ(x) is an LA formula, then we will sometime write φ(x, ca1 , . . . , can), where

φ(x, y) is an L-formula in free variables (x, y), to highlight that ca1 , . . . , can are
the constant symbols appearing in φ(x).

(2) Moreover, we will abuse notation and think of a ∈ A itself as the constant
symbol ca. So we will write formulas as φ(x, a) instead of φ(x, ca).

Definition 2.1. Let M be an L-structure and A ⊆ M. A set Y ⊆ Mn is said to be
definable over A or A-definable if it is of the form

Y = {b ∈ Mn : MA |= φ(b)}

where φ(x) is an LA-formula with free variables x = (x1, . . . , xn). Equivalently,
Y ⊆ Mn is definable over A if there is an L-formula φ(x, y) in free variable
(x1, . . . , xn, y1, . . . , ym) and a ∈ Am such that

Y = {b ∈ Mn : M |= φ(b, a)}

In any case we will write Y = φ(M) and say that φ defines Y in M.

Let us look at few examples
1
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Example 2.2. Let us work with the language L = Lg and let G = (G, ∗, e) be a group.
Let h ∈ G be any element and consider the L{h} formula φ(x, h) := (x ∗ h = h ∗ x).
Then we have that

φ(G) = {g ∈ G : G |= φ(g, h)} = {g ∈ G : g ∗ h = h ∗ g}
is a definable set and is the centralizer CG(h) of h in G.

Example 2.3. Consider the field (C,+,−,×, 0, 1) and let P1, . . . , Pk ∈ C[x1, . . . , xn]
be polynomials. Then the set V defined by

V = {a ∈ Cn : P1(a) = · · · = Pk(a) = 0}
is a so called algebraic set and is of course (quantifier-free) definable over C. As is
well-known, these set are the closed sets in the Zariski topology on Cn.

Example 2.4. Consider the ordered field (R,+,−,×, 0, 1,<) and let P1, . . . , Pk ∈
R[x1, . . . , xn] be polynomials. Then the set V defined by

V = {a ∈ Rn : Pi(a) ≥ 0 for all i : 1, . . . , k}
is a so called semi-algebraic set1 and is of course (quantifier-free) definable over R.

Here are some more concrete examples.

Example 2.5. Consider the field R = (R,+,−,×, 0, 1). It turns out that even though
it is not present in the language, we can define the ordering < in this structure.
Indeed, consider the formula

φ(x, y) := ∃z((z 6= 0) ∧ y = x + z2).

Then it is not hard to see that for (a, b) ∈ R, we have that a < b if and only if
R |= φ(a, b). So φ(R) is the ordering on the real numbers.

Example 2.6. Recall that Lagrange’s theorem says that an integer is positive if and
only if it is the sum of four squares. Hence like in the previous example, the ordering
is defined in the ring (Z,+,−,×, 0, 1) but this time by:

∃z1∃z2∃z3∃z4((z1 6= 0) ∧ y = x + z2
1 + z2

2 + z2
3 + z2

4).

It can be much harder to show that a set is not definable in some given structure.
We will come back to this issue soon.

2.2. Theories and Models. We can finally bring in the axioms. Recall first that an
L-sentence φ is an L-formula that has no free variables. Given an L-structure M,
if when we go through Definition 1.18 (using the convention M0 = {∅} and φ =
φ(∅)) we get that M |= φ, then we say that φ is true in M. Otherwise we say that φ
is false in M.

Definition 2.7. By an L-theory we simply mean a set of L-sentences. Given such
an L-theory T, we say that an L-structure M is a model of T and write M |= T, if
M |= φ for all φ ∈ T.

1We use a ≥ b as an abbreviation for (b < a) ∨ (a = b)
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Notice that a theory T might not have any model. Take for example T = {(∀x x =
0), (∃x x 6= 0)} which clearly cannot have any model. We say that a theory T is
consistent if it has a model. Also we say that a collection K of L-structures is axioma-
tisable if there is an L-theory T such that K = {M : M |= T}.

Let us go back to Example 1.6 (where we look at various examples of languages)
and give the relevant axiomatization.

Example 2.8. e
(1) Consider L∅ = ∅ the language of pure sets. Clearly, a set (or more precisely

an L∅-structure) X is infinite if and only if every sentence in T∞ = {φn : n ∈
N>0}, where

φn := ∃x1 . . . ∃xn
∧

1≤i<j≤n

xi 6= xj,

is true in X. Hence models of T∞ are precisely the infinite sets and so by
definition we say that the theory T∞ axiomatizes the theory of infinite sets.

(2) Let Lg = {∗, e} be the language of groups. We let Tg be the Lg-theory given
by

∀x (e ∗ x = x ∗ e = x)
∀x∀y∀z ((x ∗ y) ∗ z = x ∗ (y ∗ z))
∀x∃y (x ∗ y = y ∗ x = e).

It follows that an Lg-struture M is a group if and only if M |= Tg. So the
theory of groups is axiomatized by Tg.

(3) Let Lr = {+,−,×, 0, 1} be the language of rings and Lor = Lr ∪ {<} be that
of ordered rings. Repeating the above observations, we see that the theories
of rings and/or fields, as well as their ordered counterparts are all axioma-
tized by the usual/relevant L-sentences.

Going back to the example of groups (i.e. models of Tg), by experience we know
that not all groups are of the same kind. Take for example A an Abelian group
and N a non-Abelian one. We have by definition that A, N |= Tg but that A |=
∀x∀y (x ∗ y = y ∗ x) while N |= ¬(∀x∀y (x ∗ y = y ∗ x)). In other words A and N
have different Lg-theories in the following sense: given an L-structure M, the set of
all L-sentences true in M is called the theory of M and is denoted by Th(M).

One of our aims is to try and understand Th(M). We are naturally brought to the
following concepts

Definition 2.9. Two L-structures M and N are said to be elementarily equivalent,
written M ≡ N, if Th(M) = Th(N).

By the above discussion we see that models of the theory of groups are not neces-
sarily elementary equivalent. Naturally, we would like to characterize those theories
for which all their models are elementarily equivalent. Given an L-theory T and an
L-sentence φ, we say that φ is a consequence of T, and write T |= φ, if for every model
M |= T, we have that M |= φ. A theory T is complete if for every L-sentence φ,
either T |= φ or T |= ¬φ. Here’s our first theorem.
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Theorem 2.10. 1

(1) For any L-structure M, we have that Th(M) is a complete consistent theory which
contains all its consequences.

(2) For any consistent theory T. The following are equivalent:
i) T is complete

ii) The set of consequences of T is of the form Th(M) for any M |= T
iii) Any two models of T are elementarily equivalent.

Proof. 1) For any L-sentence φ it follows that M |= φ or M |= ¬φ. Hence Th(M) is
complete. The rest follows by definition.
2) i)⇒ii) Assume T is complete and let T′ be its set of consequences. Let M |= T. By
the definition of Th(M) we must have that T′ ⊆ Th(M). We show that Th(M) ⊆ T′.
So let φ ∈ Th(M). Since T is complete we have that T |= φ or T |= ¬φ. In the
first case, we get that φ ∈ T′ and are done. We show that the second case cannot
happen. Indeed if T |= ¬φ, then it must be by definition that M |= ¬φ so we get,
since φ ∈ Th(M), that M |= φ ∧ ¬φ a contradicton.
ii)⇒iii) Let M and N be models of T and let T′ be set of consequences of T. The
assumption ii) tells us that Th(M) = T′ = Th(N). Hence, M ≡ N.
iii)⇒i) Assume that for any models M and N of T we have that M ≡ N. Let φ be an
L-sentence. We need to show that T |= φ or T |= ¬φ. If T 6|= φ then by definition
there is M |= T such that M |= ¬φ. So ¬φ ∈ Th(M). For any other model N |= T
we have that ¬φ ∈ Th(N) = Th(M) and hence N |= ¬φ. So we have shown that
T |= ¬φ, i.e. T is complete. �

Remark 2.11. Notice that without the assumption “T is complete”, the assertion
T 6|= φ does not necessarily imply that T |= ¬φ. Indeed in the case of groups above,
if φ := ∀x∀y (x ∗ y = y ∗ x) then Tg 6|= φ and Tg 6|= ¬φ. This is true on the other
hand for M 6|= φ. I have seen this confusion numerous times.

So Theorem 2.10 tells us that complete theories are precisely those theories all
models of which are elementarily equivalent. We will later comeback to methods
that will help us determine whether a given theory is complete.

2.3. Elementary substructures and embeddings. Consider now the special case
where we are given two L-structures, M and N such that M ⊆ N. So far we have
asked whether Th(N) = Th(M) 2. However, since M ⊆ N, we can also look at
the language LM and ask whether Th(NM) = Th(MM), that is whether the LM-
structures NM and MM are elementarily equivalent (we write M ≡M N). In other
words, we have come up with a notion of elementary substructure.

Important. In what follows, we will use the fact that an LM-sentence φ can also be
written in the form ψ(a) where ψ is an L-formula and a ∈ Mn.

2For example we will come back to the non-trivial fact that indeed Th(Qalg,+,−,×, 0, 1) =
Th(C,+,−,×, 0, 1).
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Example 2.12. In Lr = {+,−,×, 0, 1}, consider the formula φ(y) := ∃x(x× x = y).
It is not hard to see that Q 6|= φ(2). On the other hand R |= φ(2). So the two
structures are not elementary in the above sense.

It turns out that the quantifiers are the culprit in all examples.

Proposition 2.13. Suppose M ⊆ N are L-structures, φ(x1, ..., xn) is a quantifier-free L-
formula, and a ∈ Mn. Then M |= φ(a) if and only if N |= φ(a).

Proof. We first argue that if t = t(x) is an L-term then tM = tN�Mn . We prove
this by induction on the complexity of t. If t is a constant or variable symbol then
this is clear. Suppose t = f (t1, . . . , tn f ), where f ∈ LF is a function symbol and
t1(x), . . . , tn f (x) are L-terms for which the result is known. Then for any a ∈ Mn,

tM(a) = fM
(

tM1 (a), . . . , tMn f
(a)
)

by definition,

= fM
(

tN1 (a), . . . , tNn f
(a)
)

by induction hypothesis,

= fN
(

tN1 (a), . . . , tNn f
(a)
)

since fM = fN�Mn f ,

= tN(a).

Using this we can prove the result using induction on φ (which is quantifier-free). If
φ is of the form (t1 = t2) for two L-terms t1(x) and t2(x), then

M |= φ(a) ⇐⇒ tM1 (a) = tM2 (a)

⇐⇒ tN1 (a) = tN2 (a) since tMi = tNi �Mn ,
⇐⇒ N |= φ(a).

If φ is of the form R(t1, . . . , tnR) for some relation symbol R ∈ LR and t1(x), . . . , tnR(x)
L-terms, then

M |= φ(a) ⇐⇒ (tM1 (a), . . . , tMnR
(a)) ∈ RM

⇐⇒ (tN1 (a), . . . , tNnR
(a)) ∈ RM since tMi = tNi �Mn ,

⇐⇒ (tN1 (a), . . . , tNnR
(a)) ∈ RN since RM = RN ∩MkR ,

⇐⇒ N |= φ(a).

Next assume that ψ and θ are quantifier-free L-formulas for which the result is
known. If φ = ¬ψ then

M |= φ(a) ⇐⇒ M 6|= ψ(a)
⇐⇒ N 6|= ψ(a) by induction,
⇐⇒ N |= φ(a).

If φ = (ψ ∧ θ) then

M |= φ(a) ⇐⇒ M |= ψ(a) and M |= θ(a)
⇐⇒ N |= ψ(a) and N |= θ(a) by induction,
⇐⇒ N |= φ(a).
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If φ = (ψ ∨ θ) then

M |= φ(a) ⇐⇒ M |= ψ(a) or M |= θ(a)
⇐⇒ N |= ψ(a) or N |= θ(a) by induction,
⇐⇒ N |= φ(a).

We are done since φ has no quantifiers. �

We our now ready to give the more general definition of “elementary”. But first
note that rather than only looking at M ⊆ N we could made similar inquiries about
the situation when there instead is an embedding ρ : M→ N. Indeed we leave it to
the reader to check that Proposition 2.13 (after natural modification) is also true in
that case. So

Definition 2.14. Suppose M and N are L-structures. We say that an embedding
ρ : M → N is an elementary embedding if for all L-formulas φ(x1, ..., xn) and and
all a ∈ Mn we have that M |= φ(a) if and only if N |= φ(ρ(a)).
If M ⊆ N and the inclusion map is also elementary, we say that M is an elementary
substructure of N and that N is an elementary extension of M. We write M � N.

Theorem 2.15. Every isomorphism is an elementary embedding.

Proof. Assume that ρ : M→ N is an isomorphism. We leave it as an exercise for the
reader to show using induction that the results holds for quantifier free formulas
(by modifying the proof of Proposition 2.13). As explained in the first lecture, since
(¬∃v¬) abbreviates (∀v), it suffices to prove the result for φ(x) of the form ∃yψ(x, y)
and where we assume it already holds for ψ(x, y). In this case

M |= φ(a) ⇐⇒ M |= ψ(a, b) for some b ∈ M
⇐⇒ N |= ψ(ρ(a), ρ(b)) for some b ∈ M using induction
⇐⇒ N |= ψ(ρ(a), c) for some c ∈ N since ρ is surjective
⇐⇒ N |= φ(ρ(a)).

�

Theorem 2.16. If ρ : M → N is an elementary embedding then M ≡ N. In particular,
isomorphic structures are elementarily equivalent.

Proof. This follows using the n = 0 case of the definition of an elementary embed-
ding. Since isomorphisms are elementary embeddings by the above theorem, iso-
morphic structures are elementarily equivalent. �

The converse of Theorem 2.16 is false since there are elementarily equivalent sub-
structure that are not elementary substructures. Maybe the simplest example are the
structures (N \ {0},<) and (N,<) which are isomorphic via the map ρ(n) = n + 1
(and hence elementarily equivalent by Theorem 2.15). However if we consider the
formula φ(x) := ∃y(y < x), then (N \ {0},<) 6|= φ(1) while (N,<) |= φ(1). We
will explore the following concept in more details later:
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Definition 2.17. A theory T is said to be model-complete if for any models M and
N of T, if M ⊆ N then M � N.

Finally let us return to the issue of proving that a given set is not definable in some
given structure. The following can be useful:

Proposition 2.18. Let M be an L-structure and A ⊆ M. If a set Y ⊆ Mn is A-definable
and ρ is an L-automorphism of M fixing A pointwise, then f (Y) = Y.

Proof. Let ρ be an L-automorphism of M (i.e. ρ : M → M is an L-isomorphism)
fixing A pointwise. Suppose Y is defined by φ(x, a) where φ(x, y) is an L-formula
and a ∈ Ak. It follows that

b ∈ Y ⇐⇒ M |= φ(b, a)

⇐⇒ M |= φ(ρ(b), ρ(a)) by Theorem 2.15

⇐⇒ M |= φ(ρ(b), a) since ρ(a) = a

⇐⇒ ρ(b) ∈ Y.

�

Example 2.19. We claim that R is not definable in (C,+,−,×, 0, 1). Indeed, if R was
definable, then we will find a finite set A of parameters over which it is defined (the
finite complex numbers that appear in the formula). But the transcendence degree
of R over Q, and hence over Q(A), is infinite. So we can choose r ∈ R \Q(A)alg and
c ∈ C \ (Q(A, r)alg ∪R) so that in particular r and c are algebraically indpendent
over Q(A). We obtain an isomorphism ρ : Q(A, r)→ Q(A, c) which takes r to c and
fixes Q(A). This isomorphism can be extended to an automorphism of C that fixes
Q(A). But by construction ρ(R) 6= R contradicting Proposition 2.18
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