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ABSTRACT. We discuss some points of contact between model theory and unlikely inter-
section problems. These connections include one strand of the origins of these problems
in Zilber’s program to axiomatize the theory of the complex exponential function, ques-
tions of the (un)decidability of the theory of rational functions, and techniques for solving
functional versions of these problems using the model theory of differential fields. Notably
absent from these notes and the accompanying lectures is the theory of o-minimality.
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1. INTRODUCTION

What we now know as unlikely intersection problems were first formulated by Bombieri,
Masser, and Zannier in their study of intersections of algebraic subvarieties of powers of
the multiplicative group with translates of subtori [16, 14, 10, 11, 15, 13, 12]. Indepen-
dently, Zilber proposed his Conjecture on Intersections with Tori [44] as part of his pro-
gram to explain the theory of the complex exponential function. Shortly thereafter, Pink
proposed a way to combine the Mordell-Lang and André-Oort Conjectures using his for-
malism of mixed Shimura varieties [34]. These conjectures, which go under the name of
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the “Zilber-Pink conjecture” or “conjectures on unlikely intersections” have been refined,
notably in [5], and extended over the years. See [43, 21] for detailed surveys.

In these notes, we will focus on three aspects of the Zilber-Pink conjectures having
close connections to mathematical logic. In Section 2 we recount parts of Zilber’s pro-
posed axiomatization of the theory of the complex exponential function. This gives us a
context to introduce Schanuel’s conjecture and Zilber’s initial version of the Zilber-Pink
conjecture, the Conjecture on Intersections with Tori. In Section 3 we relate the conjec-
tures of Zilber-Pink-type to the problem of describing the induced structure on sets in
algebraically closed fields. We will discuss how this is related to the problem of whether
the theory of the field of rational functions C(t) is decidable. In Section 4 we describe an
approach to the Zilber-Pink conjecture using the theory of differentially closed fields.

As we noted in the abstract, one of the most salient connections between mathematical
logic and the Zilber-Pink conjecture is the use of o-minimality to prove instances of the
conjecture. Please see Pila’s notes for his course at this 2023 Arizona Winter School for an
account of the use of o-minimality in special point and unlikely intersection problems.

The present notes (i.e. the ones you are reading right now) are still rather rough and
certainly contain errors and omissions. Please let me know about corrections I should
implement. I would also like to know about parts of the notes for which you would like
to see more details. Those may be added to this document over time and may be included
in the lectures at the Arizona Winter School.

2. ZILBER’S PROGRAM FOR THE COMPLEX EXPONENTIAL FUNCTION

The theory of the real exponential function, by which we mean the first-order the-
ory of the structure Rexp := (R,+, ·, exp,≤, 0, 1) is famously tame, indeed, the theory
is model complete and o-minimal [41] and if the Schanuel conjecture (which we will dis-
cuss in much more detail below) for the real numbers holds, then this theory is even
decidable [26]. On the other hand, one the first observations one makes about Cexp =
(C,+, ·, exp, 0, 1), and as Marker notes in [27], it is often the last observation, is that Z is
definable in Cexp. Hence, the theory of Cexp suffers from the Gödelian undecidability of
arithmetic. We will leave it to you with the following exercise to find a definition of Z.

Exercise 2.1. If we were to allow π and i =
√
−1 as parameters, then it would be easy to

define Z as by the formula ϕ(x) := exp(2πix) = 1. However, neither π nor
√
−1 is part

of our language for Cexp. Find a definition of Z which does not use any new parameters.

2.1. Zilber’s proposed infinitary axiomatization of Cexp. Zilber’s insight, or really one of
Zilber’s many insights, was that the theory of Cexp may be tame relative to the complexity
introduced by the integers. In its strongest form, this suggestion takes the form that his
theory of pseudoexponentiation, which we describe below, is actually the theory of Cexp.
A formally weaker form is his Quasiminimality Conjecture.

Definition 2.2. A structure M is quasiminimal if its universe M = |M| is uncountable and
for every definable (with parameters) set X ⊆ M either X or M ∖ X is countable.

Remark 2.3. From the compactness theorem one sees that quasiminimality is a property
of a structure, not of its first-order theory. There are infinitary languages in which quasi-
minimality may be enforced by the theory.
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Remark 2.4. In Definition 2.2 we asked that every definable set be countable or co-countable
without specifying the logic. While we usually work in first-order logic, we will observe
that Zilber’s proposed theory for Cexp is most naturally expressed using the infinitary
logic Lω1,ω(Q) (which will be described in detail below). We might consider a stronger
form of quasiminimality which would allow for more expressive logics. Let us say that
the structure M is strongly quasiminimal if its universe |M| is uncountable and for every
finite subset A ⊆ |M| each AutA(M)-invariant subset of |M| is countable or cocountable.
Strong quasiminimality corresponds to our syntactic notion of quasiminimality where we
take “definable set” to mean a set definable in the logic L∞,∞ with finitely many parame-
ters.

Conjecture 2.5. Cexp is (strongly) quasiminimal.

One could read Conjecture 2.5 as asserting that the complexity of Cexp is encapsulated
in its definable countable sets. This conjecture has some strong consequences. One imme-
diate consequence is that R would not be definable in Cexp. A less obvious consequence is
that if Conjecture 2.5 holds, then |Aut(Cexp)| = 22ℵ0 . In particular, there would be some
discontinuous field automorphism σ : C → C which commutes with the exponential
function.

Zilber suggested that the theory of Cexp should be described by saying that
• the underlying field is an algebraically closed field of characteristic zero of cardi-

nality 2ℵ0 ,
• exp is a surjective homomorphism from the additive group to the multiplicative

group,
• the kernel of exp is an infinite cyclic group,
• not too many exponential-algebraic relations hold as formalized by Schanuel’s Con-

jecture,
• all systems of exponential-algebraic equations whose solvability do not explicitly

contradict Schanuel’s Conjecture have many solutions, and
• the “exponential closure” of each finite set (by which we mean the collection num-

bers obtained by closing off under the field operations, exponentiation, and certain
implicitly defined functions) should be countable.

In order to formalize this specification, we will need to explain Schanuel’s Conjecture,
the condition of not explicitly contradicting this conjecture, and the details of how to form
the exponential closure.

Let us start with Schanuel’s Conjecture.

Conjecture 2.6. If α1, . . . , αn ∈ C are linearly independent over Q, then the transcendence degree
over Q of the field Q(α1, . . . , αn, eα1 , . . . , eαn) generated by α1, . . . , αn and their exponentials is at
least n.

Remark 2.7. The Schanuel conjecture for the real numbers, mentioned above in connection
with the decidability of the theory of Rexp, is the restriction of Conjecture 2.6 to the case
that α1, . . . , αn ∈ R.

Other than some special cases covered by classical results, such as the Lindemann-
Weierstrass Theorem which asserts that Conjecture 2.6 is true when α1, . . . , αn are all alge-
braic, Schanuel’s Conjecture remains open. Indeed, applying Schanuel’s conjecture to the
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case of α1 = 1 and α2 = 2πi would yield the algebraic independence of e and π, which is
unknown. Indeed, as of this writing it is still unknown whether e + π is rational.

The condition that every system of exponential algebraic equations which does not
explicitly contradict Schanuel’s Conjecture may be expressed via the Converse Schanuel
Conjecture, also proposed by Schanuel [42].

Conjecture 2.8. Suppose that K is a countable field of characteristic zero with with an exponen-
tial function, that is, a surjective group homomorphism E : (K,+) → (K×, ·), having an infinite
cyclic kernel and satisfying Schanuel’s Conjecture in the sense that whenever α1, . . . , αn ∈ K are
linearly independent over Q, then the transcendence degree over Q of Q(α1, . . . , αn, E(α1), . . . , E(αn))
is at least n. Then there is an embedding σ : (K,+, ·, E, 0, 1) ↪→ Cexp.

The axiom on the countability of exponential closures is less relevant to our concerns,
but for the sake of completeness we explain the details. Morally, for a set A ⊆ C the
exponential-algebraic closure of A, ecl(A), is the set of numbers which are components of
isolated solutions to exponential-algebraic equations with coefficients from A. To make
this notion precise we need to define what we mean by an exponential-algebraic equation
with coefficients from A and we need to abstract the notion of an isolated solution to such
an equation so as not to refer to the Euclidean topology.

An exponential ring (A, E) is a commutative ring A given together with a homomor-
phism E : (A,+) → (A×, ·) from the additive to the multiplicative group of A.

Exercise 2.9. Show that if (K, E) is an exponential field, by which we mean that it is an
exponential ring whose underlying ring is a field, and E is nontrivial, then K has charac-
teristic zero.

Given an exponential ring (A, E) and a natural number n, A[x1, . . . , xn]E, the exponen-
tial ring of exponential polynomials with coefficients in A in the variables x1, . . . , xn, is the
free exponential ring extension of A generated by the variables x1, . . . , xn. This ring of ex-
ponential polynomials may be constructed as the term algebra in the variables x1, . . . , xn
for the language L(E,+,−, ·, {a}a∈A) modulo the universal axioms for exponential rings
and the atomic diagram of A.

Exercise 2.10. Show that A[x1, . . . , xn]E is characterized by the following universal prop-
erty. For any maps of exponential rings ϕ : (A, E) → (B, E) and choice (b1, . . . , bn) ∈ Bn

of an n-tuple from B there is a unique map ϕ̃ : A[x1, . . . , xn]E → B of exponential rings
with ϕ̃(xi) = bi and ϕ̃ ↾ A = ϕ.

For each i ≤ n there is a unique A-derivation ∂
∂xi

on A[x1, . . . , xn]E which satisfies the
rules that

∂

∂xi
(xj) =

{
1 if i = j
0 if i ̸= j

and
∂

∂xi
(E( f )) =

∂ f
∂xi

E( f )

for any f ∈ A[x1, . . . , xn]E.
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Exercise 2.11. Verify the assertions of the above paragraph. Prove uniqueness by structural
induction on terms t to show that if ∂1 and ∂2 are two A-derivations on A[x1, . . . , xn]E

satisfying the above rules and f is represented by the term t, then ∂1( f ) = ∂2( f ). For
the existence of ∂

∂xi
, observe that A[x1, . . . , xn]E admits an increasing filtration by subrings

where F0 := A[x1, . . . , xn] and Fm+1 is the subring of A[x1, . . . , xn]E generated by E(Fm)
over Fm. Check that the requisite derivation exists on each Fm and that these derivations
are compatible with the inclusions Fm ↪→ Fm+1.

Given an extension of exponential fields (K, E) ↪→ (L, E) we say that a ∈ L belongs
to the exponential algebraic closure of K, written as a ∈ ecl(K), if for some n there are
exponential polynomials f1, . . . , fn ∈ K[x1, . . . , xn]E and a solution (b1, . . . , bn) ∈ Ln to the
system of equations

f1(b1, . . . , bn) = 0
f2(b1, . . . , bn) = 0

· · ·
fn(b1, . . . , bn) = 0

with ∣∣∣∣∣∣∣∣∣∣

∂
∂x1

f1(b1, . . . , bn)
∂

∂x1
f2(b1, . . . , bn) · · · ∂

∂x1
fn(b1, . . . , bn)

∂
∂x2

f1(b1, . . . , bn)
∂

∂x2
f2(b1, . . . , bn) · · · ∂

∂x2
fn(b1, . . . , bn)

...
... . . . ...

∂
∂xn

f1(b1, . . . , bn)
∂

∂xn
f2(b1, . . . , bn) · · · ∂

∂xn
fn(b1, . . . , bn)

∣∣∣∣∣∣∣∣∣∣
̸= 0

and b1 = a.
More generally, if (L, E) is an exponential field and A ⊆ L is any subset, then ecl(A) =

ecl(K) where K is the exponential field generated by A, that is, the smallest exponential
subfield of L containing A.

Exercise 2.12. Show that in Cexp if A ⊆ C, then ecl(A) is countable.

On the face of it, to express all of these axioms we require a stronger logic than or-
dinary first-order logic. It is not a problem to say that we have an exponential field in
which the exponential map is surjective and the underlying field is algebraically closed
of characteristic zero, but each of the remaining axioms seems to require to require more.

Exercise 2.13. Give more details as to how to express that we have an exponential field in
which the exponential map is surjective and the underlying field is algebraically closed
of characteristic zero with a first-order theory.

Zilber’s original (conjectural) axiomatization of the theory of Cexp is expressed in the
infinitary language Lω1,ω(Q). The Conjecture on Intersections with Tori would permit
most instances of this infinitary language to be replaced by formulae in usual first-order
logic.

In Lω1,ω(Q), in addition to the usual first-order formula construction operations we
are permitted to form countable conjunctions and to apply a new quantifier Q which is
intended to mean “there exist uncountably many”. That is, if Φ is a countable set of Lω1,ω-
formulae, then

∧
Φ is also an Lω1,ω-formula and if ϕ is an Lω1,ω(Q)-formula and x is a
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variable, then Qxϕ is also an Lω1,ω-formula. If M is a structure and a is an (infinitely long)
tuple from M to be substituted for the free variables, then

M |=
∧

Φ(a) ⇐⇒ for all ϕ ∈ Φ, M |= ϕ(a) .

The quantifier Q is interpreted as saying “there are uncountably many”. That is,

M |= Qxϕ ⇐⇒ {a ∈ M : M |= ϕ(a)} is uncountable.

Exercise 2.14. Show that the condition that the kernel of exp is an infinite cyclic group may
be expressed in Lω1,ω. (Note: we have omitted the quantifier Q.). Show that the condition
that the exponential algebraic closure of each finite set is countable may be expressed in
Lω1,ω(Q). Show that neither of these axioms may be expressed by a first-order theory.

The remaining axioms, expressing Schanuel’s Conjecture and its converse form, may
also be expressed most naturally using Lω1,ω. The Conjecture on Intersections with Tori,
which is Zilber’s first contribution to the Zilber-Pink conjectures, may be used to convert
these infinitary axioms to a set of axioms that may be expressed in first-order logic.

Fix a natural number n and f1, . . . fℓ ∈ Z[x1, . . . , xn, y1, . . . , yn] a sequence of polynomi-
als over the integers in 2n variables for which the dimension of the subvariety V( f1, . . . , fℓ)
of affine 2n-space defined by the vanishing of f1, . . . , fℓ is strictly less than n. Consider
the Lω1,ω sentence

θ f⃗ := (∀x)

 ℓ∧
i=1

f (x, exp(x)) = 0 →
∨

(m1,...,mn)∈Zn∖{(0,...,0)}
m1x1 + · · ·+ mnxn = 0


The sentence θ f⃗ asserts that for each n-tuple a with tr. degQ Q(a, exp(a) < n witnessed

by f1(a, exp(a)) = · · · = fℓ(a, exp(a) = 0, then some nontrivial Z-linear combination of
the coordinates of a is zero, which is equivalent to saying that some nontrivial Q-linear
combination is zero. Thus, Schanuel’s Conjecture is the countable conjunction over all
such f⃗ of the sentences θ f⃗ .

Our formulation of θ f⃗ uses an infinite disjunction in its conclusion. To express Schanuel’s
Conjecture in first-order logic, we would like to replace the disjunction over all possible
nonzero linear forms over the integers with a disjunction over a finite subcollection of
these. The solution, which is dependent on Zilber’s Conjecture on Intersections with Tori
essentially does just this after a slight adjustment of the hypothesis of θ f⃗ and by shifting
from linear relations on the arguments to multiplicative dependencies on the exponen-
tials.

To convert to a multiplicative version of Schanuel’s Conjecture we begin with a version
in which we do not require the arguments to be linearly independent.

Exercise 2.15. Show that Schanuel’s Conjecture is equivalent to the statement that for
any finite sequence α1, . . . , αn of complex numbers, the transcendence degree of the field
Q(α1, . . . , αn, exp(α1), . . . , exp(αn)) is at least the dimension over Q of the Q-vector space
generated by α1, . . . , αn.

Considering relations on the exponentials instead of linear relations on the arguments,
we might like to replace the formulation of Schanuel’s Conjecture from Exercise 2.15 with
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the conclusion that the transcendence degree of the field Q(α1, . . . , αn, exp(α1), . . . , exp(αn))
is at least as large as the rank of the subgroup of the multiplicative group generated by
exp(α1), . . . , exp(αn). It is easy to deduce this latter statement from Schanuel’s Conjec-
ture, but the other implication is not obvious (and, as far as I know, not even known
to be true). For example, Schanuel’s Conjecture in its original form would imply that
tr. deg Q(π, e) = tr. deg Q(1, 2πi, e, 1) = 2, but applying the multiplicative form directly
would give only that tr. deg Q(π, e) = tr. deg Q(1, 2πi, e, 1) ≥ 1, which we know to be
true. A refinement comes from working over the kernel.

Definition 2.16. Let (L, E) be an exponential field. Let K := {a ∈ L : E(a) = 1} be the
kernel of the exponential in L. By KQ we mean K ⊗ Q realized as the Q-vector subspace
of L generated by K. We say that Schanuel’s Conjecture holds over the kernel if whenever
α1, . . . , αn ∈ L, then tr. degQ(K) Q(α, E(α), K) ≥ dimQ(KQ + ∑ Qαi)/KQ.

Schanuel’s Conjecture over the kernel does immediately translate into a multiplicative
form.

Exercise 2.17. Show that the exponential field (L, E) satisfies Schanuel’s Conjecture over
the kernel if and only if whenever α1, . . . , αn ∈ L, then tr. degQ(K) Q(α, E(α), K) is at least
the rank of the multiplicative group generated by E(α1), . . . , E(αn).

Exercise 2.18. Show that Schanuel’s Conjecture for the usual complex exponential function
is equivalent to Schanuel’s Conjecture over the kernel for the complex exponential.

Taking into account Exercises 2.17 and 2.18, in attempting to axiomatize Cexp, we may
replace Schanuel’s Conjecture with Schanuel’s Conjecture over the kernel expressed in
the multiplicative form.

There is a downside to moving to Schanuel’s Conjecture over the kernel in that we will
have to work over parameters. That is, Schanuel’s Conjecture in its original form may be
expressed by saying that for each algebraic variety X ⊆ Gn

a × Gn
m defined over Q with

dim(X) < n, if (a, exp(a)) ∈ X, then some nontrivial Z-linear form vanishes on a. As
we have seen, we may convert these assertions into countably many Lω1,ω-sentences. For
Schanuel’s Conjecture over the kernel we need to quantify over all algebraic varieties de-
fined over Q(K) and as the interpretation of K may change from one model to another,
this will require working with families of algebraic varieties and verifying that the rele-
vant geometric properties are definable in parameters.

Fortunately, the properties that we require are in fact definable, though the proofs are
nontrivial. Let us see how to define dimension uniformly, starting with a precise formu-
lation as a proposition.

Proposition 2.19. Let d, ℓ, m, and n be natural numbers. We write x = (x1, . . . , xn) and
y = (y1, . . . , ym) for these tuples of variables. Let f1, . . . , fℓ ∈ Z[x,y] be polynomials in the
variables x and y over the integers. Then there is a quantifier-free formula ϑd,f (y) in the language
of rings L(+, ·,−, 0, 1) with free variables amongst y so that for any algebraically closed field K
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and tuple b ∈ Km the set of solutions to

f1(x, b) = 0
f2(x, b) = 0

· · ·
fℓ(x, b) = 0

in Kn is the set of K-points of an algebraic variety of dimension d if and only if K |= ϑd(b).

There are several methods available to prove Proposition 2.19. Algebraically, you could
compute degree bounds necessary to test whether some given subset of the x variables of
size d are algebraically independent modulo

√
( f1(x, b), . . . , fℓ(x, b)). A general model

theoretic argument could go through the observation that all completions of the theory of
algebraically closed fields are strongly minimal, that Morley rank and algebraic dimen-
sion agree in this theory, and that Morley rank is uniformly definable in strongly minimal
theories. The following exercises outline another proof.

Exercise 2.20. Let K be an algebraically closed field, d a natural number, and X ⊆ An
K

an algebraic subvariety of affine n-space over K for some natural number n. Show that
dim X ≥ d if and only if there is some coordinate projection π : An

K → Ad
K, given by

(x1, . . . , xn) 7→ (xi1 , . . . , xid) for some 1 ≤ i1 < i2 < · · · < id ≤ n so that the Zariski
closure of π(X(K)) is Ad

K.

Exercise 2.21. Let K be an algebraically closed field and X ⊊ An
K a closed subvariety

of affine n-space over K with X ̸= An. Show that there are a1, . . . , an+1 ∈ Kn so that⋂n+1
i=1 (ai + X(K)) = ∅.

Exercise 2.22. Prove Proposition 2.19 using Exercises 2.20 and 2.21.

Using Proposition 2.19 we may express Schanuel’s Conjecture over the kernel as count-
able list of Lω1,ω sentences.

2.2. Conjecture on Intersections with Tori and first-order axiomatizations. Let us con-
sider the Conjecture on Intersections with Tori in form that generalizes naturally to other
unlikely intersection problems.

If S is a smooth algebraic variety and X and Y are irreducible subvarieties of S, then
each component of the intersection X ∩ Y has dimension at least dim X + dim Y − dim S.
Generally, we expect the dimension to be exactly dim X + dim Y − dim S. We call a com-
ponent of such an intersection atypical if its dimension is larger than this lower bound and
we say that an intersection between X and Y is unlikely if dim(X) + dim(Y) < dim(S).

Let g ∈ Z+ be a positive integer and write S := G
g
m for the gth Cartesian power of

the multiplicative group, regarded as an algebraic group. For an irreducible subvariety
X ⊆ S we define the atypical locus of X, Xatyp, to be the union of all atypical components
of intersections X ∩ T where T ≤ S is an algebraic subgroup. Note that we do not require
T to be connected.

Conjecture 2.23 (Zilber’s Conjecture on Intersections with Tori). With the notation as in the
previous paragraph, Xatyp is a Zariski closed subvariety of X.
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Exercise 2.24. Follow the notation and of Conjecture 2.23. Show that each of the following
statements is equivalent to Conjecture 2.23.

• If X is not contained in the a proper algebraic subgroup of S, then Xatyp is not
Zariski dense in X.

• There is a finite set T of algebraic subgroups of S so that Xatyp is the union of the
atypical components of intersections X ∩ T as T ranges through T .

In the original formulation of Conjecture 2.23, the subvariety X was taken to be defined
over the algebraic numbers. It turns out that the conjecture for X defined over C is equiv-
alent to the conjecture for X defined over Qalg, though the proof of this equivalence is not
obvious (at least, not to me).

How do we use the Conjecture on Intersections with Tori to show that infinitary sen-
tences θ f⃗ may be replaced by first-order sentences? Let us begin by describing how we
adjust the hypotheses.

Let f : X → Y be a regular map of irreducible algebraic varieties. For b ∈ Y we write Xb
for the fiber of f over b. It follows from the theorem on semicontinuity of fiber dimension
that the set

Xgfd := {x ∈ X : dim X = dim X f (x) + dim f (X)}

is a constructible, Zariski dense subset of X.
Let now n be a natural number, X ⊆ Gn

a × Gn
m be an irreducible subvariety of the

product of the nth Cartesian power of the additive group with the nth Cartesian power
of the multiplicative group defined over Q having dimension strictly less than n, and let
f : X → Gn

m be the restriction of the natural projection map to the last n coordinates.
Fixing another natural number N, we define a new sentence ϑX,N by

ϑX,N := (∀x)


(x, exp(x)) ∈ Xg f d →

∨
(m1, . . . , mn) ∈ Zn

|mi| ≤ N
(m1, . . . , mn) ̸= (0, . . . , 0)

}

m1x1 + · · ·+ mnxn = 0


We will show with the next proposition that if the Conjecture on Intersections with Tori

holds, then for each such irreducible Q-algebraic variety X ⊆ Gn
a × Gn

m with dim(X) < n
we may find a natural number N(X) so that modulo the theory of exponential fields,
Schanuel’s Conjecture is equivalent to the first-order theory axiomatized by the sentences
ϑX,N(X). Indeed, we may say what number N(X) to take. If the Conjecture on Intersec-
tions with Tori holds, then there this a finite set T = T (X) of proper algebraic subgroups
of Gn

m so that f (X)
atyp

is equal to union of the atypical components of f (X) ∩ T as T
ranges through T . For each T ∈ T , there is some nonzero vector (m1, . . . , mn) ∈ Zn

for which T is contained in the group defined by ∏n
i=1 xmi

i = 1. Let M(T) := min{N ∈
Z+ : ∏n

i=1 xmi
i = 1} on T for some nontrivial (m1, . . . , mn) ∈ Zn with max mi ≤ N}. Set

N = N(X) := maxT∈T M(T).
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Proposition 2.25. Schanuel’s Conjecture may be expressed by a countable set of first-order sen-
tences if and only if the Conjecture on Intersections with Tori holds.

Proof. Let us start by showing that if the Conjecture on Intersections with Tori holds and
Schanuel’s Conjecture holds, then the axioms ϑX,N(X) described in the paragraph before
the statement of this proposition hold.

Fix some irreducible Q-algebraic variety X ⊆ Gn
a × Gn

m with dim X < n. Suppose that
(a, exp(a)) ∈ Xgfd. Let T ≤ Gn

m be the smallest algebraic subgroup containing exp(a).
Using the truth of the Schanuel Conjecture, we see that

tr. degQ Q(a, exp(a)) ≥ n − dim T

By additivity of transcendence degrees, we have

tr. degQ Q(a, exp(a)) = tr. degQ(exp(a)) Q(a, exp(a)) + tr. degQ Q(exp(a))

Let C be a component of f (X)∩ T containing exp(a). We aim to show that C is atypical.
Since (a, exp(a) ∈ Xgfd, we have

tr. degQ(exp(a) Q(a, exp(a)) ≤ dim Xexp(a) = dim X − dim f (X) < n − dim f (X)

This yields that

dim C > dim T + dim f (X)− n

That is, C is atypical. Therefore, exp(a) ∈ f (Y)
atyp

implying that ∏n
i=1 exp(ai)

mi = 1
for some non-zero vector (m1, . . . , mn) ∈ Zn with |mi| ≤ N for all i ≤ n. That is, we have
verified that each sentence ϑX,N(X) holds.

We leave it as an exercise to verify that Schanuel’s Conjecture follows from the ϑX,N(X)
axioms. □

To complete the proposed axiomatization of Cexp we should find a geometric way to
express Conjecture 2.8. Originally, Zilber did this with a Strong Exponential-Algebraic
Closedness axioms which said that systems of exponential-algebraic equations which are
not obviously inconsistent have generic solutions. It turns out that it suffices to ask merely
that such systems of equations have solutions; that is, without specifying that they have
generic solutions.

If X ⊆ Gn
a × Gn

m is a subvariety, defined over Q, of the product of the nth Cartesian
power of the additive group by the nth Cartesian power of the multiplicative group, and
dim X < n, then Schanuel’s Conjecture says that there should be no points of the form
(a, ea) ∈ X(C) (let us call these “exponential points on X”) unless a lies on some hy-
perplane defined over Q. So, while it may be possible for there to be some sporadic
exponential points on X if its dimension is small, generally we do not expect many. Thus,
in any axiom asserting that there are exponential points on such a variety X we should
include the condition that dim X ≥ n.

10



There may be hidden reasons why a variety is too small to have many exponential
points. Given a matrix

M =


µ1,1 µ1,2 . . . µ1,n
µ2,1 µ1,2 . . . µ1,n

...
... . . . ...

µm,1 µm,2 . . . µm,n

 ∈ Mm×n(Z)

we may define a map algebraic groups ΨM : (Gn
a × Gn

m) → (Gm
a × Gm

m) by

(x1, . . . , xn, y1, . . . , yn) 7→ (

(
n

∑
j=1

µi,jxj

)m

i=1

,

(
n

∏
j=1

y
µi,j
j

)n

i=1

) .

If for some X ⊆ Gn
a × Gn

m and a matrix M ∈ Mm×n(Z) with rk(M) = n we had
dim ΨM(X) < n, then by Schanuel’s Conjecture we would not expect many exponential
points on ΨM(X), and because ΨM maps exponential points to exponential points, not
many exponential points on X. Thus, in formulating a condition under which varieties
should have exponential points we should take into account these transformations. The
relevant notion goes under different names in the literature and admits some variants
allowing for relativization. Let us say that X ⊆ Gn

a × Gn
m is broad if for every matrix

M ∈ Mm×n(Z) with rk(M) = m we have dim ΨM(X) ≥ m.
One other obstruction to X having exponential points is that there may be some non-

trivial integer vector µ = (µ1, . . . , µn), which we could think of as an n × 1 matrix, for
which the projection of Ψµ(X) to Ga is contained in the the rational hull of the kernel of
exp or the projection of Ψµ to Gm is contained in the roots of unity. We say that X is free
if this does not happen. In practice, we also need to consider relativizations of this this
condition.

Each of the conditions of breadth and freeness seem to depend on quantificaton over a
countable set. The Conjecture on Intersections with Tori may be used to convert them to
conditions expressible in first-order logic.

When working with the proposed axioms for Cexp in Lω1,ω, Zilber showed that for
each uncountable cardinal κ there is exactly one model of size κ up to isomorphism. In
particular, there is unique model B of cardinality 2ℵ0 . Zilber’s conjecture is that B ∼= Cexp.

3. SPECIAL POINT CONJECTURES AND INDUCED STRUCTURE

It is a long standing open problem [36] whether the first-order theory of the field C(t)
of rational functions in the single variable t with coefficients from the field C of complex
numbers is decidable. In various public lectures, Pheidas has described a strategy, which
he attributes to an anonymous reviewer of a grant proposal, for showing that this theory
is undecidable based on interpreting complicated structure on the complex numbers.

Using the fact that there are no nonconstant rational maps from the projective line to
curves of positive genus, it is easy to see that C is definable in C(t). For example, we have

C = {a ∈ C(t) : (∃y)a3 + y3 = 1} .
The harder observation is that the set of j-invariants of elliptic curves with complex

multiplication is also definable in C(t). We pause to recall some some facts about elliptic
11



curves in Subsection 3.1, but you would do well to consult [40] for more details. Some
of the constructions and concepts will be familiar to you from Tsimerman’s lectures at
this Arizona Winter School. We return in Subsection 3.2 to the details of how to define
complicated structures on C in C(t).

3.1. Primer on elliptic curves. Recall that an elliptic curve over the complex numbers is a
connected, projective algebraic group of dimension one. For an elliptic curve E over C, the
complex Lie group of the complex points on E may be realized as E(C) = C/(Z + Zτ),
a quotient of the additive group of the complex numbers by a lattice of the form Z + Zτ
with τ ∈ h = {z ∈ C : Im(τ) > 0}.

On general grounds, one sees that if E1 and E2 are two complex elliptic curves realized
as Ej(C) = C/Λj then we may identify the group of maps of elliptic curves Hom(E1, E2),
by which we mean maps of complex algebraic groups ψ : E1 → E2, so group homomor-
phisms given by regular maps of algebraic varieties, with the set

{λ ∈ C : λΛ1 ≤ Λ2} .

Indeed, in one direction, one sees that if λ ∈ C and λΛ1 ≤ Λ2, then the linear map x 7→ λx
from C → C descends to a map of complex Lie groups ψλ : C/Λ1 → C/Λ2. By Chow’s
Theorem, which asserts that every closed, complex analytic subvariety of projective space
is necessarily algebraic, the graph of ψλ is algebraic, and, hence, ψλ is itself map of elliptic
curves E1 → E2. In the other direction, a map of elliptic curves ψ : E1 → E2 must lift to
a homomorphism between their universal covering spaces, that is, C itself, ψ̃ : C → C.
Moreover, because ψ is complex analytic, ψ̃ is also complex analytic. As all complex
analytic group endomorphisms of C are given by scalar multiplication, we may identify
ψ̃ with multiplication by some complex number λ. Since ψ̃ descends to ψ, necessarily
λΛ1 ≤ Λ2.

Applying this analysis to the case that E1 = E2 =: E, we determine the only possi-
bilities for End(E) = Hom(E, E) (which has a ring structure with multiplication given
by composition along with addition given by adding the homomorphisms as functions).
Present E as E(C) = C/Λ where Λ = Z + Zτ with τ ∈ h. Certainly, End(E) ≥ Z.
For the endomorphism ring to be larger, we would need to have some λ ∈ C ∖ Z with
λΛ ∈ Λ. Since 1 ∈ Λ, we have λ = λ · 1 ∈ Λ = Z + Zτ. Thus, there are c ∈ Z and
d ∈ Z with λ = c + dτ. Since λ /∈ Z, we have d ̸= 0. We also have that τ ∈ Λ, so there
are a, b ∈ Z with λτ = a + bτ. Using the formula that λ = c + dτ, we compute that
dτ2 + (c − b)τ − a = 0. Recalling that d ̸= 0, we see that τ satisfies a quadratic equation.
We say that an elliptic curve E has complex multiplcation or is CM (or that its moduli point
is CM) if End(E) ̸= Z. From this discussion, we see that if E has complex multiplication,
then End(E) = Z[λ] for some quadratic imaginary number λ. In particular, the rank of
End(E) as an abelian group is two.

The projective general linear group GL2 of invertible two-by-two matrices by acts by
algebraic automorphisms on the projective line via linear fractional transformations ex-
pressed with matrices acting on points in projective coordinates as(

a b
c d

)
· [x0 : x1] = [ax0 + bx1 : cx0 + dx1]

or in affine coordinates taking x1 = 1, as
12



(
a b
c d

)
· x =

ax + b
cx + d

If we restrict the action to the real Lie group GL2(R)+ := {g ∈ GL2(R) : det(g) > 0},
we see that GL2(R)+ maps the upper halfplane h back to itself.

There is an analytic function j : h → C characterized as the unique analytic func-
tion which is invariant under precomposition with linear fractional transformations com-
ing from SL2(Z), has a simple pole at infinity, and takes the values j(i) = 1728 and
j(exp(2πi

3 )) = 0. More explicitly, j may be computed as a ratio of two modular forms. In
what follows we express our functions of the variable τ ranging over h as series in the
variable q := exp(2πτ).

For each natural number r we define a function σr : Z+ → Z by

σr(n) := ∑
d|n

dr

For even r ≥ 2 we have the Eisenstein series

Er := 1 − 2r
Br

∞

∑
n=1

σr−1(n)qn

where Br is the rth Bernouli which admits the closed form expresion

Br =
(−1)

r
2+12(r!)

(2π)r ζ(r)

where ζ is the Riemann zeta function.
The discriminant form ∆ is defined by

∆ = q
∞

∏
n=1

(1 − qn)24

We may then express the j-function as

j =
E3

4
∆

The set of complex numbers serves as the coarse moduli space of elliptic curves over
C. That is, to each elliptic curve E over C we may assign a complex number j(E) ∈ C

so that for two such elliptic curves E1 and E2, we have that j(E1) = j(E2) if and only
if E1

∼= E2 as complex algebraic groups. The quantity j(E) may be defined analytically
using the presentation E(C) = C/(Z + Zτ) of the complex points of E as a quotient of
the additive group of C by a lattice with and setting j(E) := j(τ) where j is the analytic j-
function. This construction of the j-invariant may be familiar to you from study of special
point problems through the o-minimal counting method discussed at the Arizona Winter
School.

It turns out that j(E) may be computed as a polynomial in the coefficients of the equa-
tions giving E. On general grounds, every complex elliptic curve may be realized as a
smooth cubic curve in the projective plane described in affine coordinates by an equation
of the form y2 = x3 + Ax + B where A and B are constants, the identity element of the
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group is the unique point on this curve at infinity, and the group operation is given by
the secant and tangent method. From this equation for E we may compute j(E) as

j(E) =
1728(4A)3

−16(4A3 + 27B2)

The comparison to the analytic formula for the j-invariant comes from recognizing the
coefficients A and B as certain scalar multiples of the Eisenstein series E4 and E6, respec-
tively, and then computing an expression for ∆ in terms of E4 and E6.

By an isogeny ψ : E1 → E2 between elliptic curves we mean a map of algebraic groups
with a finite kernel. Analytically, all pairs of elliptic curves for which there is an isogeny
from the first to the second may be obtained from the following construction.

If N ∈ Z+ is a positive integer, then for any τ ∈ h, the identity map C → C induces a
map of complex Lie groups

Ej(Nτ)(C) C/(Z + ZNτ) // C/(Z + Zτ) Ej(τ)(C)

whose kernel is isomorphic to Z/NZ.
There is polynomial ΦN(x, y) ∈ Z[x, y] in two variables with integer coefficients, monic

as a polynomial in x and as a polynomial in y, so that for any pair of complex numbers
(a, b) ∈ C2 we have

Φ(a, b) = 0 ⇐⇒ (∃τ ∈ h) (a, b) = (j(Nτ), j(τ)) .

That is, there is an isogeny ψ : E1 → E2 having kernel isomorphic to Z/NZ if and only
if ΦN(j(E1), j(E2)) = 0.

An elliptic curve E is CM if and only if there is some N ∈ Z with N ≥ 2 (equivalently,
infinitely many such N) for which there an isogeny ψ : E → E with a cyclic kernel of
size N. Indeed, for any nonzero n ∈ Z, the kernel E[n] of the map [n]E : E → E given
by multiplication by n in E with respect to the group law of E is isomorphic to the (non-
cyclic) group (Z/|n|Z)2. Conversely, if E has CM, then it admits an endomorphism with
a nontrivial cyclic kernel.

From these observations, we see that if E has CM, then j(E) is an algebraic integer.
Moreover, since there are infinitely many distinct quadratic imaginary fields, we see that
the set of j-invariants of CM elliptic curves is an infinite set of algebraic integers. In the
next subsection we will explain how to see this set as a definable subset of C(t).

3.2. Defining CM-points and isogeny relations in C(t). As we noted in the introduction
to this section, the set of complex numbers is a definable subset of C(t).

Remark 3.1. We have given an existential definition of C in C(t). Since quantifier-free
formulae in one variable in the language of fields always define finite or cofinite sets, there
can be no quantifier-free definition of C. Is there a definition given by universal formulae?
Compare this problem to that of defining Z in Q. It has been known since 1948 [37] that Z

is definable in Q and much more recently [25] that there are universal definitions of Z in
Q. It remains an open question whether there is an existential definition of Z in Q. If there
were, then we could reduce Hilbert’s Tenth Problem for Q to Hilbert’s Tenth Problem for
Z, and then conclude from the Matiyasevich-Davis-Putnam-Robinson theorem [18, 28]
that no algorithm to decide the solvability of Diophantine equations in the rationals exists.
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If X and Y are two smooth, projective curves over the complex numbers, then every ra-
tional map X 99K Y extends to a regular map from X to Y. Equivalently, Y(C(X)), the set
of C(X)-rational points on Y may be identified with the set of regular maps of algebraic
varieties from X to Y. Using this observation, we see immediately that if we are given
a family C ⊆ Pn

B of projective curves presented through some system of homogeneous
equations on projective n-space with coefficients varying through some definable set B,
then we may uniformly define the sets of maps P1 → Cb of curves as b varies through
B. Of course, once the genus of Cb is positive, then there are no such nonconstant maps.
Thus, it may seem that there is not much to be gained from this observation. The key
point is that by making use of the restriction of scalars construction, we may upgrade this
simple observation to the stronger conclusion that when given two families of smooth
projective curves Ci ⊆ P

ni
Bi

for i = 1, 2, then we may uniformly define the sets of mor-
phisms Mor((C1)b1 , (C2)b2) as bi varies through Bi for i = 1, 2.

In model-theoretic terms, if K is any field and L is a finite extension of K, then L is
interpretable in K. In fact, for any fixed positive integer d, the set of field extensions of
K of degree d is uniformly interpretable in K. The construction should be familiar to you
from the interpretation of C in R. That is, using real and imaginary parts we may regard
C as R2 with addition defined by

(x1, x2)⊕ (y1, y2) := (x1 + y1, x2 + y2)

and multiplication given by the rule

(x1, x2)⊙ (y1, y2) := (x1y1 − x2y2, x1y2 + x2y1) .

With addition and multiplication defined in this way, the map ρ : (R2,⊕,⊙) → (C,+, ·)
given by (x1, x2) 7→ x1 + x2i is an isomorphism of structures. In this way, we may convert
the set of complex valued points in any constructible set to the set of real valued points in
some corresponding constructible set living in an ambient space of twice the dimension.

For a general finite extension of fields, L/K, we interpret L in K as follows. First, we fix
a K-basis α1, . . . , αd of L over K. Second, we compute the matrix describing multiplication
L ⊗ L → L relative to this basis. That is, we find µi,j,k ∈ K for 1 ≤ i, j, k ≤ d so that

αiαj =
d

∑
k=1

µi,j,kαk

for each pair (i, j) with 1 ≤ i, j ≤ d. We then define operations on Kd by taking ⊕ to
be coordinatewise addition and ⊙ to be the bilinear form given by µ. That is, the kth

coordinate of (x1, . . . , xd)⊙ (y1, . . . , yd) is

d

∑
i=1

d

∑
j=1

µi,j,kxiyjαk .

Then as with the interpretation of C in R, the map

ρ : (Kd,⊕,⊙) → (L,+, ·)
15



given by

(x1, . . . , xd) 7→
d

∑
i=1

xiαi

is an isomorphism of structures.
More generally, if we start with K and elements µi,j,k for 1 ≤ i, j, k ≤ d we may use µ to

define functions ⊕ and ⊙ on Kd via the rules described above. In each case, we obtain a
structure Lµ for the language with two binary function symbols having underlying uni-
verse Kd. Because the theory of fields is finitely axiomatizable, we can identify definably
for which choices of µ is Lµ a field. If it is, then by mapping 1 ∈ K to the identity element
for ⊙µ in Lµ we obtain a map of fields K → Lµ expressing Lµ as an extension of K of
degree d.

Using these interpretations, definable sets in finite extensions of K may be converted to
definable sets relative to K. The only case that will matter to us will be the conversion of
algebraic varieties over some Lµ to algebraic varieties over K.

To simplify the notation for the remainder of this discussion we fix a positive integer d
and a choice of parameters µ from K for which L := Lµ is a field extension of K of degree
d. We will write α1, . . . , αd ∈ L for the standard basis of L = Kd over K in which αi is the
vector (0, . . . , 0, 1, 0, . . . , 0) with a 1 in the ith coordinate and 0s everywhere else.

For each natural number n, from the interpretation of L in K we obtain a map of L-
algebras

ϑ : L[x1, . . . , xn] → L[{xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ d}]
given by

xi 7→
d

∑
j=1

xi,jαj .

The polynomial ring L[{xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ d}] may be realized as

L[{xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ d}] = (K[{xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ d}])µ

=
d⊕

j=1

L[{xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ d}]αj .

For each j ≤ d define

πj : L[{xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ d}] → K[{xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ d}]
by projecting to the coefficient of αj in this presentation.

If X ⊆ An
L is subvariety of affine n-space defined over L, we let RL/KX, the Weil restric-

tion of scalars form L to K of X, be the subvariety of affine dn-space over K defined by the
ideal {πj( f ) : f ∈ I(X), 1 ≤ j ≤ d} in K[{xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ d}]. It is easy to check
that there is a natural identification between X(L) and RL/KX(K).

Given a map f : X → Y of affine algebraic varieties over L, where X ⊆ An
L and Y ⊆ Am

L ,
if Γ( f ) ⊆ X × Y is the graph of f , then RL/KΓ( f ) is naturally the graph of a morphism
RL/K( f ) : RL/KX → RL/KY. In this way, we construct a functor from the category of
embedded affine algebraic varieties over L to the category of embedded affine algebraic
varieties over K. In fact, this construction localizes correctly, thereby allowing for an
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extension to general algebraic varieties (or schemes) and may be understood in terms of
an adjunction. We leave the verification of these observations to the following exercises.

Exercise 3.2. Verify that RL/K extends to a functor on the category of algebraic varieties
over L to the category of algebraic varieties over K. You will need to check, for instance,
that if X is an algebraic variety defined over L with a covering U by affine open subsets
U ⊆ X and for each U we are given an embedding ϕU : U ↪→ A

nU
L for which the maps

ψU,V : ϕU(V) → ϕV(U) given by ψU,V = ϕV ◦ ϕ−1
U are regular, then the data of {RL/KU :

U ∈ U} and {RL/K(ψU,V) : (U, V) ∈ U 2} defined an algebraic variety RL/KX defined
over K. While you are at it, you should check that this construction extends to give a
functor from the category of schemes over L to the category of schemes over K.

Exercise 3.3. Tensor product defines a functor

−⊗K L : AlgK → AlgL

from K-algebras to L-algebras. Each scheme X over K (respectively, over L) defines the
functor of points hX from AlgK (respectively, AlgL) to Set by the rule A 7→ X(A). Show
that we have a natural identification for each K-algebra A of X(A ⊗K L) with RL/KX(A).

Working scheme theoretically, the tensor product −⊗K L corresponds to the base change
functor SchK → SchL from the category of schemes over K (or more precisely, over Spec K)
to the category over schemes over L, X 7→ X ×Spec K Spec L, which we usually write, abus-
ing notation, as X ⊗K L or even just as XL. The identification you have just completed may
be used to show that RL/K : SchL → SchK is right adjoint to the base change functor in the
sense that for X a scheme over K and Y a scheme over L we have a natural identification
RL/KY(X) = Y(XL).

Let us return to the field C(t) of rational functions and specialize the restriction of
scalars construction to the case of function fields of elliptic curves.

As we have noted, a complex elliptic curve may be given by an affine equation of the
form y2 = x3 + Ax + B for a choice of complex numbers A and B by taking the origin
of the group to the point at infinity on the closure of this affine curve in the projective
plane. In order for this equation to define a smooth curve, we require that 4A3 + 27B2 be
invertible, which is clearly a definable condition. In what follows, we write EA,B for the
elliptic curve defined by this equations and we assume that A and B have been chosen so
that the curve is nonsingular.

By replacing x with t, the function field of EA,B may be realized as C(t)[y]/(y2 − t3 −
At − B) = C(t)(1,1,1,t3+At+B) if we use the basis 1, y for C(EA,B) over C(t). Thus, for any
algebraic variety X defined over C, using the parameters A and B and the parameters
appearing in a definition X, we may interpret X(C(EA,B) in C(t). In particular, we may
uniformly interpret the groups EA′,B′(C(EA,B)).

For a pair of complex elliptic curves E1 and E2, the group of rational points E2(C(E1)),
is the same as the group of maps of algebraic varieties from E1 to E2 and fits into an exact
sequence

0 // E2(C) // E2(C(E1)) // Hom(E1, E2) // 0

Specializing to the case that E1 = E2 =: E, we see that E(C(E))/E(C) ∼= End(E),
regarded as an additive group. We know that E has CM if and only if rk End(E) > 1.
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Thus, we may definably recognize that EA,B has CM by checking whether

|EA,B(C(EA,B))/2EA,B(C(EA,B))| > 2 .

With this observation, we see that the set {j(EA,B) : EA,B has CM } is definable in C(t).

Exercise 3.4. Work out in more detail the formula used to define the set of j-invariants of
elliptic curves with CM.

3.3. Tameness of the set of CM points. From our observations in the previous section,
we have seen that both the field of complex numbers C and the set CM of j-invariants
of elliptic curves with CM are definable in C(t). Thus, the complicated structure CM :=
(C,+, ·, 0, 1,CM) consisting of the complex numbers regarded as a field with a predicate
for the set of CM points is interpretable in C(t). One might expect that this would imply
that the theory of C(t) is complicated, and, in particular, undecidable. However, Th(CM)
is itself stable and decidable. Thus, one cannot prove the undecidability of Th(C(t)) by
reducing to the undecidability of the interpreted structure CM.

The first hint that Th(CM) may be tame comes from the André-Oort conjecture for
products of the j-line proven by Pila [30]. If X ⊆ An is an algebraic variety, then there is
a finite union of special varieties, by which we mean components of varieties defined by
modular equations ΦN(xi, xj) = 0, Y ⊆ An for which

X(C) ∩ CM = Y(C) ∩ CM .

Analyzing the structure of the special varieties, one sees that the André-Oort conjecture
implies that the structure induced on CM by the field structure on C is not complicated.
More precisely, it is strongly minimal with trivial forking geometry. General theorems
on expansions of strongly minimal structures by predicates with stable induced structure
imply that CM is itself stable [33]. Moreover, these theorems express how to axiomatize
Th(CM). We need to start with the axioms of (C,+, ·, 0, 1), namely, ACF0, the theory of
algebraically closed fields of characteristic zero. We then need to express the correspon-
dence between a variety X ⊆ An and X(C) ∩ CMn. Recent work of Binyamini [7] shows
that this function is recursive. Hence, Th(CM) admits a recursive axiomatization and is
therefore decidable.

With our projects we consider some other structures which are definable in C(t) and
for which conjectural effective Zilber-Pink conjectures may imply tameness.

4. DIFFERENTIAL ALGEBRAIC APPROACHES TO ZILBER-PINK

Differential algebra has played an important role in the problems around unlikely inter-
sections, even before they were formulated as such. As we have noted, Schanuel’s Con-
jecture for complex numbers is a stubbornly difficult problem, but a functional analogue
was proven by Ax already in the early 1970s using methods from differential algebra [2].
Ax’s theorem and its generalizations for other covering maps are crucial ingredients in
the proofs of André-Oort conjecture, functional versions of the Zilber-Pink conjecture,
and other results on unlikely intersections.

In this section we recount some of the ideas behind Ax’s theorem and its generaliza-
tions, discuss how these theorems are used to prove Zilber-Pink-type theorems, and close
with a discussion of effective finiteness in differential fields.
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4.1. The Ax-Schanuel theorems. In the following statement of Ax’s theorem we refer to
a certain rank. We will be given set ∆ = {∂1, . . . , ∂n} of n commuting derivations and
another list α1, . . . , αm of elements of some ∆-field. By rk(∂iαj) we mean the rank of the
Jacobian m × n-matrix 

∂1α1 ∂2α1 . . . ∂nα1
∂1α2 ∂2α2 . . . ∂nα2

...
... . . . ...

∂1αm ∂2αm . . . ∂nαm

 .

Theorem 4.1. [Ax] Let n, m ∈ Z+ be positive integers and let K be a field of characteristic zero
with ∆ = {∂1, . . . , ∂n} a set of n commuting derivations on K. Let C := {x ∈ K : δi(x) =
0 for 1 ≤ i ≤ n} be the field of ∆-constants in K. Let α1, . . . , αm, β1, . . . , βm ∈ K. We write
α = (α1, . . . , αm) and β = (β1, . . . , βm). We assume that these elements of K satisfy

• β j ̸= 0 for 1 ≤ j ≤ m,

• ∂iβ j
β j

= ∂iαj for 1 ≤ j ≤ m and 1 ≤ i ≤ n, and
• the images of the αis are Q-linearly independent in the vector space K/C.

Then
tr. degC C(α,β) ≥ m + rk(∂iαj) .

We have stated Theorem 4.1 in its differential algebraic formulation. It implies results
about actual functions. With the following exercise you should work out what it means
about complex analytic functions.

Exercise 4.2. Let n ∈ Z+ and let U ⊆ Cn be a simply connected domain in Cn. Let
α1, . . . , αm be a sequence of complex analytic maps αj : U → C. For each j ≤ m, set β :=
exp ◦αj. Suppose that for all non-zero integer vectors ℓ = (ℓ1, . . . , ℓm) ∈ Zm the function

∏m
j=1 β

ℓj
j is nonconstant. Show that it follows from Theorem 4.1 that tr. degC C(α,β) ≥

m + rk(
∂αj
∂zi

).

Remark 4.3. In fact, Theorem 4.1 follows formally from the conclusion of Exercise 4.2 using
the Seidenberg embedding theorem [38, 39, 29] which says that given a finitely generated
differential subfield K of the meromorphic functions on some simply connected open set
U ⊆ Cn and a finitely generated extension L of K (as a differential field with n commuting
derivations), possibly after shrinking U to some open, simply connected domain V ⊆ U,
there is an embedding of differential fields from L into M(V), the differential field of
meromorphic functions on V, over K.

Ax’s first proof of Theorem 4.1 in [2] is strictly algebraic. We will outline some of the key
steps below. In the following year, in [3] Ax studied a complementary problem about an-
alytic subgroups of algebraic groups using methods of differential geometry and gave an
alternative proof Theorem 4.1. Some generalizations of Theorem 4.1 (usually called “Ax-
Schanuel theorems”) have been proven using differential algebraic methods in the style
of Ax’s original proof, for example, by Kirby [23] for the Lie exponential on a semiabelian
variety. In this century, most proofs of Ax-Schanuel theorems have used o-minimality, for
example by Pila and Tsimerman for the j-function [32] or Bakker, Klingler, and Tsimer-
man for period mappings associated to variations of Hodge structure [4], and then the
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differential algebraic versions have been deduced using the Seidenberg embedding theo-
rem. More recent techniques of Blázquez Sanz, Casale, Freitag, and Nagloo import ideas
from differential geometry into differential algebra to give very general Ax-Schanuel the-
orems [8, 17].

Let us note the highlights in Ax’s proof. He studies properties of differential forms on
general fields. An initial crucial observation is that if L/K is an extension of fields and
δ : L → L is a derivation extends a derivation on K, then there is a unique additive map
δ1 : ΩL/K → ΩL/K which satisfies δ1(adb) = (δa)db + ad(δ(b)) for a, b ∈ L. Using this
map δ1, Ax can differentiate differential forms thereby showing that certain differential
equations in a differential field induce equations involving Kähler differentials. Another
key technical, though elementary, lemma is the observation that if L/K is an extension
of fields of characteristic zero, then the map K ⊗Z dL/L → ΩL/K/dL is injective where
dL/L is the group of logarithmic forms { db

b : b ∈ L}. The proof of this lemma involves a
reduction to the case that tr. degK L = 1 and then a computation with residues.

4.2. Differential algebraic approaches to Zilber-Pink type problems. Differential alge-
braic methods are not so useful for problems involving numbers or zero dimensional
intersections, at least when those intersections are themselves defined over the constants.
We will discuss a possible counterexample to this principle below in connection with a
function field version of Zilber-Pink. If in the Zilber-Pink conjectures we weaken the
conclusion to consider only positive dimensional components of anomalous or unlikely
intersections, then in many cases it is possible to prove these weakened conjectures.

Some approaches to Zilber-Pink problems from differential algebra make use of the
compactness theorem of first-order logic and are thereby ineffective. However, differen-
tial algebra is well suited for explicit computation and various general theorems about
computing bounds on the number of solutions to algebraic differential equations are
available.

We will start with an inductive approach, due to Hrushovski and Pillay [22] which
gives doubly exponential bounds. By using a more refined Bézout theorem, Binyamini
improved the bounds substantially to a singly exponential form [6].

The theory of ordinary differentially closed fields of characteristic zero, DCF0, is the
model completion of the theory of differential fields of characteristic zero. This means
that every differential field (K, δ) of characteristic zero may be embedded as a differential
field in a differentially closed field and the theory DCF0 eliminates quantifiers. Robinson
identified this theory as such (or really, as the model companion of the theory of differ-
ential fields of characteristic zero; quantifier elimination was not proven) already in the
1950s [35] and then Blum found clean axioms for the theory, proved quantifier elimina-
tion, and established ω-stability in her PhD thesis [9].

The theory DCF0 is presented in the language of rings augmented by a unary function
symbol δ which is intended to name a distinguished derivation. The axioms start with
those of algebraically closed fields of characteristic zero and two universal axioms ex-
pressing that δ is additive and satisfies the product rule. The differential closure axioms
say that for each irreducible polynomial f (x0, . . . , xd) in d + 1 variables (with d ≥ 1) and
every polynomial g(x0, . . . , xd−1) in d variables, there is some solution a to f (a, δa, . . . , δda) =
0 and g(a, δa, . . . , δd−1a) ̸= 0.
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Exercise 4.4. Flesh out how to express the axioms for DCF0 with a first-order theory. For
example, explain how to deal with the quantification over the set of irreducible polyno-
mials in d + 1 variables.

Rather than working with differential equations and inequations in a single variable,
we may express the axioms for DCF0 by using algebraic equations involving several vari-
ables and only one application of the derivation. By analyzing these alternative axioms
we will obtain some uniform degree bounds.

To make express these geometric axioms we need to discuss prolongation spaces. Let
K be a differential field of characteristic zero with a distinguished derivation δ. For any
algebraic variety X defined over K, we define a projective system

X τ0X τ1Xoo τ2Xoo · · ·oo τnXoo · · ·oo

of algebraic varieties. This system has a consistent system of differentially defined sec-
tions ∇n : X → τnX. When X is an embedded affine variety and a ∈ X(L) is a an L-valued
point for some differential field extension L of K, then ∇(a) = (a, δa, 1

2 δ2a, . . . , 1
n! δ

na).
Morally, τnX should be the Zariski closure of {(a, δa, 1

2 δ2a, . . . , 1
n! δ

na) : a ∈ X(L)} as L
ranges through the differential field extensions of K. Still working with embedded affine
varieties, the equations for τnX are obtained by differentiating the equations for X. For-
mally the way this is done is by embedding the polynomial ring K[x1, . . . , xn] into the
differential polynomial ring K{x1, . . . , xn}δ, which is the free differential ring on the gen-
erators x1, . . . , xn extending K. As a ring, K{x1, . . . , xn}δ is the ordinary polynomial ring
on the infinitely many variables {δjxi : j ∈ N, 1 ≤ i ≤ n}. If f ∈ I(X) is a polynomial
vanishing on X and a ∈ X(L) is a point on X valued in the differential field extension L,
then from f (a) = 0 we compute 0 = δ( f (a)) = (δ f )(a, δa).

Generically, for embedded affine varieties, in particular when they are smooth, these
indications of how to construct the prolongations are correct, though there are some tech-
nical issues to contend with coming from singularities and patching in defining τnX for
more general varieties. An honest construction of the prolongations makes use of the Weil
restriction of scalars operation and requires us to consider possible nonreduced schemes.
We will leave these issues aside.

In constructing the prolongation space τnX, we might have simply iterated the first
prolongation construction n-times to get τ1 · · · τ1X rather than building a new variety
τnX. The points obtained by applying ∇ repeatedly to differential points on X would
not be Zariski dense in such iterated prolongation spaces as some coordinates would
always be equal to others. We can fix embeddings τn+mX ↪→ τnτmX expressing these
identifications; and in the differential Bézout theorems they will be important.

If X is an irreducible subvariety of an algebraic variety over a differential field K and

X X0 X1oo X2oo · · ·oo Xnoo · · ·oo

is a projective system of dominant maps of algebraic varieties coming from Xn ⊆ τnX for
which Xn+1 ⊆ τ1Xn via the embedding τn+1X ↪→ τ1τnX, then there is a differential field
L extending K and a point a ∈ X(K) so that for all n, ∇n(a) ∈ Xn(L) is generic in Xn
over K. Thus, consistent systems of algebraic differential equations may be recognized by
such systems of algebraic equations. This observation together with some computations
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of higher derivatives allows for the so-called geometric axioms for DCF0 and gives our
effective bounds.

The geometric axioms for DCF0 also start with ACF0, the theory of algebraically closed
fields of characteristic zero, together with the basic universal axioms expressing that δ is
a derivation, and then replace Blum’s axioms about one variable ODEs with the system
of axioms saying that for every irreducible embedded affine algebraic variety X and irre-
ducible subvariety Y ⊆ τ1X of its first prolongation space for which the natural projection
Y → X is dominant, there is a point a on X with (a, δa) ∈ Y.

Exercise 4.5. Explain how to convert these geometric axioms to first-order sentences. Show
that DCF0 is axiomatized by these geometric axioms by showing that every such differ-
ential field is existentially closed within the class of differential fields. Explain why this is
enough to prove that we have the correct axiomatization.

Our observation about consistent systems of ODEs corresponding to certain projective
systems of algebraic varieties can be used to produce an algorithm for computing the
Zariski closure of the set of solutions to a system of differential equations in a differen-
tially closed field.

Let us fix a differentially closed field K. for the remainder of this section we will iden-
tify algebraic varieties X over K with their sets X(K) of K-rational points.

Let X be an irreducible algebraic variety. A system of order n differential equations on
X is given by an algebraic subvariety Y ⊆ τnX by asking that ∇n(a) ∈ Y. What is the
Zariski closure of {a ∈ X : ∇n(a) ∈ Y}?

Let us call a projective system of varieties (Xn)∞
n=0 which satisfies the conditions that

• X0 = X
• each Xn is irreducible
• Xn ⊆ τnX
• Xn → Xm is dominant and is induced by the map τnX → τmX for n ≥ m
• Xn+1 ⊆ τ1Xn via the embedding τn+1X ↪→ τ1τnX

a coherent δ-sequence.
From our observations above, if Z = Xn for some irreducible component Z of Y in some

coherent δ-sequence (Xn)∞
n=0, then ∇−1

n Y is Zariski dense in X. Let us try to construct such
a sequence. First, break Y into its irreducible components, Y =

⋃ℓ
j=1 Yj. Since ∇−1

n Y =⋃ℓ
j=1 ∇−1

n Yj, we may compute the Zariski closure of ∇−1
n Y as the finite union of the Zariski

closure of the sets ∇−1
n Yj. So, for the remainder of this computation we may as well

assume that Y itself is irreducible.
Starting with this (irreducible) Y, we build a sequence (Xm)∞

m=0 of subvarieties of τnX
by taking Xm to be the Zariski closure of the image of Y in τmX for m ≤ n and Xm to be the
(generic part of the) preimage in τmX of τm−nY under the embedding τmX → τm−nτnX
for m ≥ n. If this sequence is a coherent δ-system, then we are done and have computed
the Zariski closure of ∇−1Y as X. If it is not, then we have to see what may have gone
wrong. Irreducibility is also not a problem (the case of m > n is somewhat annoying in
that we have to be careful about which part of the prolongation we take). It may have
happened that X0 ⊊ X in which case the Zariski closure of ∇−1Y is contained in X0
and we should replace this situation with the equation Y ∩ τnX0, and then conclude by
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Noetherian induction that we know how to compute the Zariski closure of ∇−1(Y∩ τnX0)
in X0. It may have happened that the image of Xm+1 is not contained in τ1Xm for some
m. The way we have constructed Xℓ for ℓ > n, this can only cause a problem for ℓ < n. If
it does, then take m minimal, and let X′

m+1 be the intersection of Xm+1 with the pullback
of Xm. We now have to refine the given sequence X0, X1, . . . , Xm, X′

m+1, Xm+2, . . . into
a potential coherent δ-sequence. As before, we need to break X′

m+1 into its irreducible
components, work with each of these separately, and replace the Xj for j ≤ m with the
Zariski closure of the image of each of these components.

We will continue this process, noting that at each stage either we have produced a co-
herent δ-sequence, from which we can read off the Zariski closure of the set of solutions to
our differential equations, or we obtain a sequence of varieties which are coordinatewise
contained in the varieties from the previous sequence, at least one properly.

If we start with X a projective or embedded affine variety, then we have a good notion
of the degree of a subvariety of X or even of τnX. The steps involved in our algorithm
involve intersection and projection. We can compute bounds on the the degrees of the
varieties we obtain by using Bézout’s theorem.

By following the steps in our algorithm, on obtains the following proposition.

Proposition 4.6 (Proposition 3.1 of [22]). If X ⊆ An
K is a closed subvariety of affine space and

Y ⊆ τℓX is closed subvariety of the ℓth prolongation space, then the degree of the Zariski closure of
∇−1

ℓ Y is at most deg(X)ℓ2nℓ
deg(Y)2nℓ−1. In particular, if the set of solutions to the differential

equation is finite, then this number is a bound on its size.

Binyamini finds much better bounds by using a refined Bézout Theorem of Kušnirenko
which invokes computations of volumes of Newton polytopes. Since this discussion may
take us too far afield, we direct the reader to [6] for details.

Proposition 4.6 and Binyamini’s refinement are used in [31] to prove effective versions
of the Zilber-Pink conjecture over function fields. The key idea there is that even though
the union of special varieties of a given dimension is a countably infinite union of al-
gebraic varieties, and, hence, not an algebraic variety itself, it does satisfy a nontrivial
differential equation. When working over function fields, unlikely or more generally
anomalous intersections with this set may be replaced with solutions to some differential
equations and the effective finiteness theorems may be used to bound the dimension and
degree of the Zariski closure of the anomalous sets. Similar reasoning was used in [19] to
bound intersections of algebraic curves with transcendental isogeny orbits on the moduli
space of elliptic curves. In each of these cases, while the bounds are finite and explicit,
they are still much larger than one might expect the true value to be. In complete gen-
erality it may be difficult to improve the bounds much, but for any particular case, it is
plausible to expect that one could show that the differential equations themselves have
fewer solutions than the worst case bounds allow. One of our projects will be to imple-
ment this idea.

Let us illustrate how differential algebra might be used to study a Zilber-Pink problem
by considering intersections of one dimensional subgroups of G3

m with an algebraic curve
X ⊆ G3

m. We assume about X that it is not contained in any proper algebraic subgroup. If
X is defined over some field K, then because each algebraic subgroup T of G3

m is defined
over Q, if dim T = 1, then dim(T ∩ X) = 0 (or the intersection is empty, as expected), and
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every point in T ∩ X is defined over Kalg. Thus, if K ⊆ Qalg, then differential algebraic
techniques cannot tell us much about the intersection of X with one dimensional groups
because all such intersections will consist of constant points on X. From now on we
assume that X is not defined over the algebraic numbers. Let us equip C with a derivative
δ making C into a differentially closed field with field of constants Qalg. For the remainder
of this argument we will identify algebraic varieties with their sets of C-rational points.

Exercise 4.7. Show that there are derivations δ on C with the properties described above.
The difficult step is to show that given a differential field K with algebraically closed field
of constants C there is a differentially closed extension field L of K also having field of
constants C.

Suppose that (x1, x2, x3) ∈ T ≤ Gm for some one-dimensional group T. Then for
two linearly independent triples of integers (ℓ1,1, ℓ1,2, ℓ1,3) and (ℓ2,1, ℓ2,2, ℓ2,3) we have

∏3
j=1 x

ℓi,j
j = 1 for i = 1, 2. Applying the logarithmic derivative, we have ∑3

j=1 ℓi,j
δxj
xj

= 0.

Let us set yj =
δxj
xj

. These two linear equations show that the Qalg-vector space generated
by y1, y2, and y3 has dimension one. From the theory of Wronskians, this is the same as
saying that the matrix y1 δy1 δ2y1

y2 δy2 δ2y2
y3 δy3 δ2y3


has rank one. Taking the determinants of the minors of this matrix, we obtain a system of
order two equations satisfied by (x1, x2, x3). Using Ax-Schanuel one can show that there
only fintely many solutions to these differential equations lying on the curve X. We may
then bound the number of such solutions.

Exercise 4.8. Find the subvariety Y ⊆ τ2G3
m described by these determinantal conditions

and compute its degree.

5. PROJECTS

The three projects associated to this course are grouped by the three main sections of
these notes.

5.1. Exponential-algebraic closedness. Establishing that Cexp is isomorphic to B appears
to be much too difficult given our existing techniques, especially as this would involve
proving Schanuel’s Conjecture. It would be far from easy to prove the complementary
Exponential-Algebraic Closedness axioms, but various recent results, especially those
in the doctoral thesis of Gallinaro [20], show that many instances of the exponential-
algebraic closedness axioms are within reach.

For this project we will look at two analogous questions and then some low dimen-
sional instances of the the exponential-algebraic closedness conjecture.

5.1.1. Differential existential closedness. As we have seen, the special functions we have
beeb considering satisfy nontrivial algebraic differential equations. For example, if g =
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exp( f ), then
g′

g
= f ′ .

The j function satisfies a nonlinear order three. The Schwarzian derivative is given by the
formula

S( f ) :=
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

The Schwarzian is characterized by the property that S( f ) = S(g) if and only if g is a

fractional linear transformation of f . That is, there is some invertible matrix
(

a b
c d

)
with

constant entries for which g = a f+b
c f+d . The Schwarzian satisfies a twisted chain rule:

S( f ◦ g) = (g′)2S( f ) ◦ g + S(g) .

The j-function satisfies the differential equation

S(j) = (j′)2 j2 − 1968j + 2 654 208
−2j2(j − 1728)2 .

From this equation, and the Schwarzian chain rule, one may deduce a differential re-
lation between a function and the composition of that function with the j-function. We
leave it as an exercise for you to work out that formula. Let us write Ej(x, y) for the
resulting minimal differential polynomial for which EJ( f , j( f )) ≡ 0.

In the paper [1], a variant of the exponential-algebraic closedness axiom for the j-
function is considered in which the exact relation y = j(x) is replaced by the differential
algebraic relation Ej(x, y) = 0. Let us make this more precise. First they define the notion
of j-broadness. If X ⊆ An × An is an irreducible algbraic variety then it is “j-broad” if
whenever we take some subset S ⊆ {1, . . . , n} and define πS : An × An → AS × AS by

((x1, . . . , xn), (y1, . . . , yn)) 7→ ((xi)i∈S, (yi)i∈S) ,

then dim πS(X) ≥ #S. They then show that if we work in a differentially closed field K,
then for every j-broad variety X ⊆ An × An, there is a point ((a1, . . . , an), (b1, . . . , bn)) ∈
X(K) for which Ej(ai, bi) = 0 for all i ≤ n. Similar results are known for the equation
satisfied by exponentials.

For this subproject we will extend the theorem of [1] to other analytic covering maps. To
start, we will work with both j and exp. That is, our basic function E : C × h → C× × C is
given by (x, τ) 7→ (exp(x), j(τ)). You will need to formulate a condition for an algebraic
variety X ⊆ (A2)n × (Gm × A1)n to be (exp, j)-broad and then you should should that
in a differentially closed field there are always points in such broad varieties for which
the coordinates satisfy the corresponding differential equations for exp and j. Once this
result is established, you should move onto other covering maps, such as the covering f :
C× h → E of the universal elliptic curve given in Legendre form by y2 = x(x − 1)(x − λ).

General methods are available to find the relevant differential equations. Proving solv-
ability in a differentially closed field often comes down to an algebraic computation fol-
lowed by the use of existential closedness of differentially closed fields.
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5.1.2. Blurred exponential-algebraic closedness. Rather than replacing a covering map by the
differential algebraic relation satisfied by the function, we might work another relation
called “blurring”. For example, from the exponential function exp : C → C× we might
consider instead the blurred exponentiation

Γexp := {(x, y) ∈ C × C× : (∃q ∈ Q) exp(x + 2πiq) = y} .

In [24], Kirby shows that the complex numbers do satisfy the exponential-algebraic
closedness axioms provided that one looks for solutions in the blurred Γexp rather than
exactly in the graph of the exponential function.

Analogues of the blurring construction make sense for other covering maps. For exam-
ple, the blurred graph of the j-function would be given by

Γj := {(τ, y) ∈ h× C : (∃γ ∈ GL2(Q))j(γτ) = y} .

The aim of this subproject is to extend the blurred exponential-algebraic closedness
results to other covering maps.

5.1.3. Exponential-algebraic closedness in low dimensions. Ultimately, we would like to prove
exponential-algebraic closedness in general, but we expect that this would be too much
to attempt in a single week. If we restrict the dimension of the variety in which we seek
solutions, then in some cases the exponential-algebraic closedness is known. For this
subproject, we will consider the first low dimensional case for which the problem remains
open. Specifically, we will consider X ⊆ A2 × Gm × A1 an irreducible surface which is
(exp, j)-broad (we leave it as an exercise to express precisely what this means) and will
attempt to show that there is a point (a, b, exp(a), j(b)) ∈ X(C). If we succeed with this
problem, then we can move on to higher dimensions or other covering maps.

5.2. Induced structure on C in C(t). We have observed that the set CM of j-invariants of
elliptic curves with complex multiplication is definable in C(t). We have also noted that
as a consequence of an effective form of the the André-Oort Conjecture, the theory of the
structure (C,+, ·, 0, 1,CM) is stable and decidable.

Our method of defining CM may be adapted to define the isogeny relation:

I := {(j(E1), j(E2)) : There is an isogeny ψ : E1 ↠ E2} .

Indeed,
(j(E1), j(E2)) ∈ I ⇐⇒ E2(C(E1)) ̸= E2(C) .

For this project we will work out the theory of the structure (C,+, ·, 0, 1, I) obtained
by naming I by a basic predicate and then the potentially more complicated structure
(C,+, ·, 0, 1, I ,CM) obtained by naming both I and the set of moduli points of CM elliptic
curves by basic predicates.

In order to work out this theory, we may need to work conditionally on the truth of
the Zilber-Pink conjecture, and even an effective version of the Zilber-Pink conjecture, for
products of the j-line. For any two algebraic varieties X ⊆ (A2)n and Y ⊆ (A2)n defined
over Q, this theory will have to decide whether X ∩ In ⊆ Y or not. More generally, if
τ ∈ {±}n and we define I+ := I , I− := A2 ∖ I , and Iτ := ∏n

i=1 Iτi , then our theory
has to decide whether X ∩ Iτ ⊆ Y or not. The first of these (i.e. where all components
of τ are +) should be answerable using an effective version of Zilber-Pink. The general
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question may follow from some simple manipulations, though it may also implicate new
Diophantine geometric issues.

As a separate subproject, we will investigate what complicated structures are definable
in C(t) on moduli spaces of higher dimensional abelian varieties. For example, is the set
of moduli points of g-dimensional principally polarized abelian varieties (with sufficient
level structure fixed to guarantee the existence of a moduli space) definable in C(t)? A
difficulty with using our technique for defining this set in the case of the moduli space
of elliptic curves is that we can uniformly interpret function fields of the form C(X) for
X a smooth, projective curve over C, but there is not a natural way to access function
fields of higher dimensional algebraic varieites. For a pair of abelian varieties A1 and A2,
we would like to recognize the morphisms from A1 to A2 as A2(C(A1)). If A1 happens
to be the Jacobian of a curve X1, then we have A2(C(A1)) = A2(C(X1)), which we can
access. Part of this project will involve determining how far we can go with this trick
using Jacobians.

5.3. Better bounds for differential Zilber-Pink. The effective bounds we have computed
in Zilber-Pink problems depend upon general Bézout-style results on the number of solu-
tions to differential equations, but because we are dealing with very special equations of
geometric origin, we would expect that the actual number of solutions is much smaller.
With this project we will consider some low dimensional cases of the weak Zilber-Pink
conjecture, analyzing the differential equations involved to find better bounds.

To start, let us take X ⊆ G5
m to be an irreducible surface not contained in any proper

algebraic subgroup. To make this even more explicit, let us take X to have low degree,
even to be affine to start.

As an exercise, you should write the differential equations describing the Kolchin clo-
sure Ξ of the union of the special subvarieties of dimension two. We must now compute
Ξ ∩ X, and more importantly, the union of the positive dimensional components of this
differential variety.

As an exercise, compute a bound on the degree using the differential Bézout theorem.
I expect that a closer analysis of the differential equations will yield a much lower bound.

After completing this computation, we should move to more complicated situations,
by raising the degree of X and/or moving to higher dimensional ambient spaces.

We should also consider the analogous problem with the exponential function replaced
by the j-function.
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bra and number theory, vol. 235 of Progr. Math., Birkhäuser Boston, Boston, MA, 2005, pp. 251–282.
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