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Introduction

These lectures discuss point-counting in o-minimal structures and applications to dio-
phantine problems. The main objective is to describe the point-counting approach to the
unlikely intersection problem of a curve in a product of modular curves.

Lecture 1

Synopsis. The basic point-counting result (for “definable sets in an o-minimal struc-
ture”, but deferring a discussion of this notion) and its simplest application to an “unlikely
intersection” (in this case “special point”) problem: describing the distribution of torsion
points on a subvariety of (C×)n, a problem known as “Multiplicative Manin-Mumford”.

Introduction. Diophantine geometry studies the distribution of rational points (and
more generally points defined over number fields) on algebraic varieties. For curves one
has good (geometric) criteria for finiteness of such points (Faltings proof of the Mordell
conjecture). This result is quantitative but not effective: one can bound the number of
rational points but not their height.

In higher dimensions one has very strong conjectures (Bombieri-Lang: an algebraic
variety is “mordellic” outside its (geometrically defined) “special set”), but results are
sparse. Some results assert that suitable algebraic varieties have “very few” rational points
beyond the “obvious” ones. As such results do not assert finiteness, they are framed in
terms of counting points up to some give height bound H.

1.1. Definition. The height of a rational number q = a/b in lowest terms is H(q) =
max{|a|, |b|}.

For example, conjecturally, no positive integer can be written as a sum of two fifth
powers in two different ways. That is, all positive integer solutions to the diophantine
equation w5 + x5 = y5 + z5 are trivial in the sense that {w, x} = {y, z}. Up to height H
there are H2 +O(H) trivial integer solutions.

1.2. Theorem. ([18]) For ε > 0 and H ≥ 1 there are �ε H
13/8+ε non-trivial solutions to

w5 + x5 = y5 + z5 in positive integers up to H.

We will start by considering analogous results for rational points on non-algebraic (but
suitable) sets. Here one needs some notion of “suitable” as one can hardly hope to prove
meaningful statements about rational points on arbitrary sets.

We will give a provisional notion of “suitable set” and defer a precise description of
these sets “definable in an o-minimal structure over the real field” to the third lecture, in
order to discuss the unlikely intersection problem in Lecture 2.
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Counting result for curves. The basic one-dimension result is the following.

For a set X ⊂ Rn we define

X(Q, H) = {x ∈ X ∩Qn : H(x) ≤ H}

and the counting function
N(X,H) = #X(Q, H).

1.3. Theorem. ([17, 42]) Let f(x) be a non-algebraic function that is real analytic on an
open neighbourhood of [0, 1], and let X ⊂ R2 be the graph of f : [0, 1] → R. Let ε > 0.
Then there is a constant c(f, ε) such that

N(X,H) ≤ c(f, ε)Hε.

The proof (see Appendix) proceeds by showing that the points in question reside on
“few” algebraic curves of degree d = d(ε). Here “few” means � Hε. This relies on a mean
value theorem of H. A. Schwarz and “size versus height” considerations to show that all
the points in a small subinterval of [0, 1] must lie on one such algebraic curve. But not too
small: [0, 1] is covered by � Hε such subintervals. As f is non-algebraic, the intersection
X ∩ A is finite and of size uniformly bounded for all curves A of degree d (see
Lecture 3: this is a consequence of o-minimality). This gives the result.

Higher-dimensional sets. Moving to higher dimensional sets, one must set out
some reasonable class of sets, as one cannot hope to get good estimates for arbitrary sets.
Our theorem will apply to sets which are “definable in an o-minimal structure over the
real field” (henceforward for brevity we will call such a set “definable”) but provisionally
consider the image X ⊂ Rn of a function

f : [0, 1]k → Rn

that is real analytic on an open neighbourhood of [0, 1]k. Such a set we will see is definable,
though not all definable sets are of this form.

Also, a higher dimensional (definable) set X may contain positive-dimensional real
semi-algebraic sets (see below) even if X itself is non-algebraic.

1.4. Definition. A semi-algebraic set in Rn is a finite union of sets each of which is defined
by finitely many equations and inequations between polynomials with real coefficients.

1.5. Definition. Let X ⊂ Rn. The algebraic part of X, denoted Xalg is the union
⋃
A of

all connected positive-dimensional semi-algebraic sets A ⊂ X. The transcendental part of
X, denoted Xtrans, is the complement in X of Xalg.

Such semi-algebraic subsets of X may contain “many” rational points. For example,
the graph X ⊂ R3 of z = xy on x, y ∈ [1, 2], is definable, being an image of the above-
mentioned type. For each y ∈ Q there is a piece of the real algebraic curve z = xy

contained in X, and each such piece contains � Hδ rational points up to height H for
some δ = δ(y) > 0.

1.6. Theorem. ([49]) Let X ⊂ Rn be definable in an o-minimal structure over the real
field. Let ε > 0. Then there is constant c(X, ε) such that

N(Xtrans, H) ≤ c(X, ε)Hε.
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Thus, the algebraic part of a definable set is a coarse analogue of the special set of an
algebraic variety: there are “few” rational points outside it.

This basic point-counting result can be elaborated in various ways, for example to
count algebraic points of some fixed degree rather than rational points. In general one
cannot improve the bound �ε H

ε or make the constant C(X, ε) effective. But under more
restrictive hypotheses one can hope to do either or both, and various results are known.
See e.g. [9, 11].

Diophantine applications. Here we sketch the very simplest application of the
counting theorem to a diophantine problem. It is part of a wider collection of results and
conjectures.

Warning. Above we discussed sets in real Eudlicdean space and “dimension” refers to
real dimension. Below we discuss complex algebraic varieties and “dimension” for them
will be complex dimension. Further below we interact these pictures viewing C as R2 and
considering complex analytic sets as real sets. So beware that “dimension” can refer to
real or complex dimension depending on context!

The Mordell conjecture (1922) has already been mentioned. Proved by Faltings (1983),
it asserts that a smooth projective curve V of genus g ≥ 2, such as smooth plane quartic
curve, has only finitely many rational points.

This conjecture fits into a more general conjectural framework, including the Modell-
Lang conjecture (proved in work of a number of people starting with Faltings), and a much
wider and very much open Zilber-Pink conjecture.

In the course of considering the conjectural picture, Lang considered the following
problem around 1960. Let F be a Laurent polynomial in two variables (polynomial in
X,X−1, Y, Y −1) and let

V = {(x, y) ⊂ (C×)2 : F (x, y) = 0}.

We want to consider points on V that are roots of unity. Roots of unity are the torsion
points in the multiplicative group C×, hence it is natural to take the ambient variety to be
the group (C×)2 rather than C2.

1.7. Theorem. (Proved by Ihara-Serre-Tate) The number of such points is finite except
in the case that F is of the form xnym = η where n,m ∈ Z are not both zero and η is a
root of unity.

The number of such points is infinite in the exceptional cases. Such V is a coset by a
torsion point of an algebraic subgroup xnym = 1; such a set will be called a torsion coset.

Let us now consider an algebraic subvariety V ⊂ X = (C×)n. Then X is an algebraic
group, and we will denote by Xtors its set of torsion points (points whose coordinates are
all roots of unity).

The algebraic subgroups of X are all defined by multiplicative conditions: some num-
ber of equations of the form xk11 . . . xknn = 1, where ki ∈ Z, and the torsion cosets are
then the components of subvarieties defined by some number of equations of the form
xk11 . . . xknn = η with η a root of unity. A zero-dimensional torsion coset is a torsion point.

The following result is a special case of the Multiplicative Mordell-Lang conjecture,
proved by Laurent (1984); it also follows from earlier results of Mann on linear relations
between roots of unity.

1.8. Theorem. Let V ⊂ X be an algebraic variety. There are finitely many torsion cosets
Xi ⊂ V that account for all the torsion points of X that are in V .
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The point-counting approach. This follows a strategy proposed by Zannier, im-
plemented initially in [50, 38].

Consider the (modified) exponential map e(z) = exp(2πiz) and its n-fold cartesian
power (which we will also denote e):

e : Cn → (C×)n, e(z1, . . . , zn) = (e(z1), . . . , e(zn)).

The pre-images of torsion points under e are precisely rational points: studying torsion
points on V can be approached by studying rational points on e−1(V ) ⊂ Cn.

Now e−1(V ) is not a definable set (where we identify Cn with R2n using real and
imaginary parts), due to the periodicity of e. The map e is invariant under the action of
Zn acting on Cn by translation. A fundamental domain for this action is the set

F = {(z1, . . . , zn) ∈ Cn : 0 ≤ Re(zi) < 1, i = 1, . . . , n}

The graph of the restriction of e to F is a definable set (in the structure known as Ran exp;
see Lecture 2) and (hence) so is

Z = e−1(V ) ∩ F.

Moreover, every point in V has a pre-image (and indeed a unique pre-image) in Z. So
studying torsion points in V is the same as studying rational points in Z. A crucial fact
will be that torsion points are algebraic points of quite high degree and hence have many
Galois conjugates.

Note: Here the pre-images of torsion points are rational points and lie on the real line. In
general the pre-images of “special” points are dense, so lets put this fact to one side.

By the order N(η) of a root of unity η we mean its minimal order. By the complexity
of a torsion point (η1, . . . , ηn) we mean the maximum order of its coordinates. The degree
of a root of unity is φ(N), where φ is the Euler φ-function and N is its order. This is quite
large: all the primitive roots are conjugate e.g. if N = p is a prime number the degree is
p− 1.

1.9. Theorem. (see e.g. Hardy and Wright) Let δ > 0. Then there is constant c(δ) such
that, for a root of unity η of exact order N , one has [Q(η) : Q] ≥ c(δ)N1−δ.

It will be necessary to have a description of the algebraic part of Z. Suppose Z
contains some positive dimensional semi-algebraic subset A in the real coordinates. Then
in fact e−1(V ) contains a complex algebraic subset W containing A. This is by analytic
continuation because the map e is complex analytic. Hence Zalg consists of (positive
dimensional components of) F ∩e−1(V )complex alg, where this denotes the union of positive
dimensional complex algebraic varieties contained in Z.

And what is e−1(V )complex alg? We need to understand when we can have e(W ) ⊂
V . The exponential map is highly transcendental, and usually e(W ) is Zariski dense in
(C×)n, so that e−1(V )complex alg is typically empty. E.g. e(z) and e(z2) are algebraically
independent functions. But if e.g. W ⊂ C2 : z2 = 2z1 + 3 then e(W ) is contained in
x2 = x21 and is not Zariski dense.

A theorem of Ax [3] proves (as a special case) that these are the only kind of exceptions.
The complex algebraic part of e−1(V ) is just the union of translates of positive-dimensional
rational subspaces of Cn contained in e−1(V ), which is just the pre-image of cosets con-
tained in V .

Moreover, one can show that the cosets T ⊂ V are translates of finitely many algebraic
subgroups. (This can be proved explicitly or by model-theoretic compactness.) Hence the
union of such cosets (as V is closed in Gnm) is some algebraic subvariety S ⊂ V .
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Sketch proof of Theorem 1.8. via point-counting. First, we can assume that V
is defined over Q. Indeed, for any V , there is a subvariety W ⊂ V defined over Q that
contains all the algebraic points of V . Say V is defined over a Galois number field K of
degree d over Q. Then S is defined over K too.

Choose say δ = 1/2 in 1.9, so that a torsion point P of complexity N has at least
c(1/2)N1/2 Galois conjugates over Q and hence c(1/2)N1/2/d conjugates over K.

On the other hand, choosing ε = 1/4 in 1.6, Z has at most c(X, 1/4)N1/4 rational
points outside its algebraic part. Therefore, if V contains a torsion point P of sufficiently
high complexity then the pre-images of most of its conjugates over K must lie in Zalg, and
so their images (the conjugates of P ) must lie in S. Hence all lie in S.

Now we can conclude the proof by induction. As S consists of translates of finitely
many algebraic groups Ti, asking which translates of T of Ti lie fully in V is asking for
torsion points on the quotient space X/T . So one first proves, by induction, that the union
S0 of positive dimensional torsion cosets contained in V is a finite union. Then S0, V are
both defined over a number-field K. Now deal with torsion points on V − S by opposing
their many conjugates over K to the counting upper bound.

Several other diophantine problems can be approached in the same way. One has a
quasi-projective algebraic variety X with some countable collection of algebraic points that
are “special” (above: torsion). One has a map u : U → X from some complex domain U ,
invariant under some group action with fundamental domain F .

E.g. the André-Oort conjecture (see e.g. [45]). In the simplest example this leads to
analogues of the above in which e(2πix) is replaced by the modular function (j-function).
Say u : Hn → Cn with u(z1, . . . , zn) = (j(z1), . . . , j(zn)).

The crucial elements of the proof are: that the graph of u|F is definable, that the the
pre-images of special points are algebraic points of some bounded degree; that special points
themselves have high degree (a positive power of some natural complexity measure that
controls the height of a pre-image in F ); and a description of the algebraic part matching
the description of exceptional subvarieties (cosets).

Lecture 2

Synopsis. On unlikely intersections for a curve in Y (1)n. This is a true “unlikely
intersection” problem, rather than a “special point” problem. We will go through the proof
(of a partial result) emphasizing the counting aspects and further issues where o-minimality
plays a role.

The modular curve Y (1). For background on elliptic curves and their j-invariants
see e.g. [58]. Or see [45, Ch. 4].

If Λ = Z.ω1⊕Z.ω2 is a lattice then Λ\C has the structure of an elliptic curve. Scaling
the lattice or changing basis produces an isomorphic curve (over C), so one can assume
that the lattice has the form Λτ = Z.1 ⊕ Z.τ with τ ∈ H, the complex upper half-plane
(positive imaginary part).

The elliptic curve corresponding to Λτ is determined up to isomorphism by its j-
invariant, a complex number j(τ) associated to τ ∈ H. The modular function j : H→ C is
a holomorphic function that is invariant under the action of the modular group SL2(Z) on
H given by

z 7→ az + b

cz + d
,

(
a b
c d

)
∈ SL2(Z).

I will write z rather than τ for the variable in H. This action has the classical fundamental
domain F consisting of the region in between real parts ±1/2 and outside the unit circle,
and half the boundary.
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The modular function j maps onto C; hence the moduli space of complex elliptic
curves, which is classically denoted Y (1), is just the complex line C. It is the simplest
(positive dimensional) example of a Shimura variety .

Special subvarieties. For a generic elliptic curve E, the only complex numbers λ
which preserve the lattice (i.e. satisfy λΛ ⊂ Λ) are the integers. Equivalently, this means
that the endomorphism ring of E is generically Z. For some elliptic curves there are non-
integer λ preserving Λ. Such elliptic curves are said to have complex multiplication and
their j-invariants are algebraic numbers (even algebraic integers) known as singular moduli .
Thirteen of them are rational numbers. Let Σ ⊂ C denote the set of singular moduli.

The elliptic lattice curve corresponding to Λτ has CM just if τ ∈ H is quadratic over
Q. Thus singular moduli are the values of j at quadratic points, just as roots of unity are
the values of e2πiz at rational points.

We also consider the following relations on pairs of elliptic curves E,E′: for each
positive integer N , one may consider when E,E′ are related by a cyclic isogeny of degree
N , meaning that Λ′ ⊂ Λ (up to scaling) and the quotient Λ/Λ′ = Z/NZ. It turns out that
this relation is captured by a polynomial ΦN (j, j′) on the corresponding j-invariants. Thus
Φ1 = X − Y while for N > 1 one proves that ΦN ∈ Z[X,Y ] and are symmetric. These
polynomials are classically called modular polynomials.

If all the above is unfamiliar, you may just take as given that there is a certain count-
ably infinite subset of algebraic numbers Σ ⊂ C and a sequence of bivariate polynomials
ΦN ∈ Z[X,Y ] with rather remarkable properties. In particular if σ ∈ Σ and ΦN (σ, y) = 0
then y ∈ Σ.

Then a special subvariety of Y (1)3 is an irreducible component of an algebraic subva-
riety defined by some number of equations of the form xi = σ, where σ is “special” (i.e. a
singular modulus), or ΦN (xj , xk) = 0 where ΦN is a classical modular polynomial.

We define also a broader class of weakly special subvarieties where one allows constant
coordinates xi = c where c is any complex number, not necessarily special. So a special
subvariety is weakly special and a weakly special subvariety that contains a special point
is a special subvariety. (These properties hold in general.)

The André-Oort conjecture concerns special points (singular moduli). The simplest
case concerns a curve V ⊂ Y (1)2. The set of special points of Y (1)2 is Σ2. The conjecture
(proved in this case by André [1]) asserts that if V ∩Σ2 is infinite then V must be the zero-
set of a modular polynomial. This is the analogue of Lang’s problem for a curve V ⊂ (C×)2

and torsion points. (And one can give a counting proof that extends to Y (1)n in analogy
with the proof of Theorem 1.8 by counting quadtraic points in a suitable definable set.)

In general, for a Shimura variety X, its special points S and special subvarieties {T},
one has always that special points are dense in a special subvariety. The André-Oort
conjecture is the converse statement: if special points are (Zariski-)dense in V ⊂ X then
V is a special subvariety.

Unlikely intersections for a curve in Y (1)3. The André-Oort conjecture, like
Multiplicative Manin-Mumford, is a “special point problem”. The much broader Zilber-
Pink conjecture ([60, 14, 54]) considers more generally “unlikely intersections”.

Say V ⊂ Y (1)3 is a curve and T ⊂ Y (1)3 is a one-dimensional special subvariety (say
defined by two modular conditions ΦN (x, y) = 0,ΦM (y, z) = 0 or one special coordinate
and one modular relation, but beware that the intersection of the two modular relations is
in general not irreducible: a special subvariety is one of its components. However we want
to consider the union of all one-dimensional special subvarieties).

Since V, T are both one-dimensional inside Y (1)3 one would expect them not to inter-
sect, although they might. And there are countably many possibilities for T . However, if
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V satisfies one modular condition (e.g. ΦN (x, y) = 0) identically, then V will in general in-
tersect the curve defined by this condition together with one additional modular condition
(e.g. ΦM (y, z)).

The following is the simplest unlikely intersection problem in a Shimura variety.

2.1. Conjecture. (Special case of ZP) Let V ⊂ X = Y (1)3 be a curve that is not
contained in any proper special subvariety of X. Then the intersection of V with the union
X [2] of all special subvarieties of codimension ≥ 2 is a finite set.

The multiplicative analogue. The multiplicative analogue of this problem was
considered by Bombieri-Masser-Zannier in [13], obtaining a partial result completed in
[40], and further extended in [15]. A point-counting approach is in [19]. See also [12].

Let V ⊂ Gnm be a curve. Say n = 3. Then it is unlikely for V to intersect a torsion
coset of dimension 1, equivalently for a point (x1, x2, x3) ∈ V to satisfy two independent
multiplicative conditions. Of course one could have two such conditions satisfies on just
two of the coordinates, say x1, x2. Then x1, x2 must be roots of unity, and the existence of
infinitely many such points is governed by the corresponding special point problem (here
Lang’s problem).

2.2. Theorem. ([40, 15]) Let V ⊂ Gnm be a curve defined over C that is not contained in
any proper special subvariety of G3

m. Then there are only finitely many points in V which
satisfy two independent multiplicative conditions.

Note that here one cannot automatically assume that V is defined over Q. The ex-
tension to C includes genuinely different problems, such as (following [15]) that there are
only finitely many complex t 6= 0, 1, π such that there are two independent multiplicative
relations among

2, π, t, t− 1, t− π.

The Zilber-Pink conjecture (ZP). ZP ([60, 14, 54]) concerns, more generally, a
mixed Shimura variety X in place of Y (1)3. These have a countably infinite collection
of “special subvarieties” T = {T} including a countably infinite set of “special points”.
Suppose V ⊂ X. The conjecture addresses intersections V ∩T for T ∈ T that are atypical
in dimension. This includes the unlikely intersections, whose “expected” dimension
would be negative such as (as above) two curves in a space of dimension 3 or more.

2.3. Definition. Let X be a mixed Shimura variety with its collection T = {T} of
special subvarieties. A subvariety A ⊂ V is called an atypical component (of V in X) if
A ⊂cpt V ∩ T for some T ∈ T

codim A < codim V + codim T, (i.e. dimA > dimV + dimT − dimX).

2.4. Zilber-Pink Conjecture. Let X be a mixed Shimura variety and V ⊂ X. Then the
union of atypical components of V in X is a finite union (hence a closed algebraic subset
of V ).

It is always “unlikely” for a proper V ⊂ X to contain a special point. So ZP implies
“special point” conjectures such as Manin-Mumford and André-Oort by a straightforward
formal argument. It also implies Mordell-Lang. But it goes far beyond these in the more
general “unlikely intersection” problems such as Conjecture 2.1 and Theorem 2.2. The
analogue of 2.2 for Abelian varieties is established in [33]. In general, Conjecture 2.4 is
wide open; see [16] for a result on planes in G5

m; it is open for surfaces in general; the best
general result in Gnm is in [29].
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Back to a curve in Y (1)3. A number of partial results towards 2.1 are known [32,
44, 24] (see also [22, 23, 41] for results on curves in the Siegel modular varieties Ag of
abelian varieties). In general the required counting results in the counting approach are
not effective, but the Galois lower bounds can be made effective in the known cases. In
[32] these use isogeny estimates to get Galois lower bounds from height upper bounds.

The points (x1, x2, x3) ∈ V ∩ X [2] fall into a few different types, the “generic” one
being that the coordinates x1, x2, x3 are non-special with the corresponding elliptic curves
being pairwise isogenous. Let’s call these “totally isogenous points”.

Point-counting strategy for totally isogenous points. I want to describe this,
concentrating on the counting aspect. I will say a little about the arithmetic aspects, which
are the central focus of Project 1, at the end.

Suppose that V ⊂ Y (1)3 is a curve and that P = (x1, x2, x3) is a totally isogenous
point. This requires the points xi to be non-special. Then the special curve T they lie on
is unique (otherwise the intersection of two distinct special curves is a special point). So
we have unique L,N,M such that

ΦL(x1, x2) = 0, ΦM (x2, x3) = 0, ΦN (x3, x1) = 0.

We define the complexity of P to be B(P ) = max(L,M,N).
Let z1, z2, z3 ∈ F be the j-pre-images of the xi. Then z2 = gz1 for some 2× 2 integral

matrix g of determinant L, and one can show that the entries of the matrix have height at
most cB7 ([32, Lemma 5.2] or see [45, 21.9]; a better exponent is obtained in [39]).

I want first to describe: how (and where) an unlikely intersection leads to a rational
point.

Let G = GL+
2 (R), the group of 2× 2 real matrices with positive determinant, and let

Z = j−1(V ). For (α, β) ∈ G2 let

Yα,β = {(z1, z2, z3) ∈ H3 : z2 = αz1, z3 = βz2}.

Then a totally isogenous point P ∈ V gives rise to a rational point on

W = {(α, β) ∈ G2 : Yα,β ∩ Z 6= ∅}.

And this is a definable set.

Some consequences of o-minimality. Let us make some further observations.
First, since each Yα,β is definable, the intersection Yα,β ∩ Z is either finite or contains a
real analytic arc. But in the latter case, since Yα,β and j−1(V ) are complex analytic sets,
the intersection is complex analytic and positive dimensional, hence j−1(V ) ⊂ Yα,β .

Now by an analogue of Ax’s theorem for the modular function, as this amounts to the
“modular logarithm” of V being not Zariski-dense in H3, we must actually have that V is
contained in a proper weakly special subvariety.

We ruled out V being contained in a proper special subvariety, so the only possibility
is that some coordinate is constant on V . This greatly simplifies the problem, and so I
want to assume that we are not in this case.

Then each intersection Yα,β ∩ Z is a finite set.
Now, the sets Yα,β for (α, β) ∈ G2 form a definable family, meaning that the set

Y = {(α, β, z1, z2, z3) ∈ G2 ×H3 : z2 = αz2, z3 = βz2}

whose fibres overG2 are the Yα,β is a definable set. It is then an consequence of o-minimality
that the finite size of Yα,β ∩ Z is uniformly bounded over all α, β.
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A problem and a work-around. For any point z ∈ (z1, z2, z3) ∈ H3 there is a
positive dimensional set of (α, β) such that z ∈ Yα,β . This is because G is transitive on H
and each point has a stabiliser. This implies that W alg = W and so the counting theorem
as presented in Lecture 1 says something trivial.

However, all is not lost! The proof of the counting theorem gives something more
than stated. I will be a bit sketchy. It implies that the rational points of W are contained
in its intersections with � Hε algebraic sets of suitable degree and real dimension that
are either points or pieces in the algebraic part (because some dimension did not drop on
intersection). These pieces are called “blocks” and defined in detail [43] (with a variant in
[45]).

But each individual Yα,β only accounts for a finite bounded number of points on Z.
If the point P has “many” conjugates, then the “few” pieces (points or subsets of W alg)
cannot account for so many points unless there is some one-real-dimensional semi-algebraic
subset in one of the pieces such that the intersection point with Z moves. I.e. the “pieces”
cannot all be contained in stabilisers.

But then by “modular Ax” we get an algebraic surface that contains j−1(V ), which
contradicts our assumptions.

Conclusion. Thus, if we can prove that a totally isogenous point has “many” Galois
conjugates, then this strategy will succeed. What we need is the following.

Conjecture. For given V defined over Q there are positive constants c(V ), δ(V ) such that
if (x1, x2, x3) ∈ V is a totally isogenous point of complexity B = B(P ) then

[Q(x1, x2, x3) : Q] ≥ cBδ.

This conjecture in turn follows if such points have small height, and it can be estab-
lished ([32]) when V is “asymmetric”.

Conjecture. For given V defined over Q and ε > 0 there is a constant c(V, ε) such that if
(x1, x2, x3) ∈ V is a totally isogenous point of complexity B = B(P ) then

h(x1, x2, x3) ≤ c(V, ε)Bε.

This conjecture in turn follows from a conjecture on likely intersections (see [30, Ap-
pendix B] and [45, 21.23]). For other cases where it holds see [24].

Lecture 3

Synopsis. An introduction to definable sets in o-minimal structures, examples, and
refinements of point-counting to count algebraic points of bounded degree. This encounters
the situation when the “basic” statement can become trivial, but the proof of the counting
theorem still yields a useful statement. This will be needed in the application in Lecture
3.

Mathematical structures and model theory. (Also covered in the PAWS notes
of Ronnie Nagloo.)

Algebraic structures are often defined as consisting of a set with some specified kind
of “additional structure”.

A prime example is a field. It is a set K endowed with two binary operations + and
× and two elements 0 and 1. Such a structure, whether or not it is a field, we would (in
model theory) write as (K,+,×, 0, 1). Examples are (R,+,×, 0, 1) and (C,+,×, 0, 1) etc.
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There is a corresponding “first-order” language L with symbols +̇, ×̇, 0̇, 1̇ in addition
to the logical symbols and quantifiers (and = and brackets).

A structure as above is indeed a field if various properties hold (associativity, com-
mutativity, distributivity etc.). All these properties can be expressed in the corresponding
language: for example, every non-zero element has to have a multiplicative inverse, and
addition is associative:

∀x(¬x = 0̇→ ∃yx×̇y = 1̇), ∀x∀y∀z
(
x+̇(y+̇z) = (x+̇y)+̇z

)
.

These statements use only the operation symbols (+̇, ×̇) and constant symbols (0̇, 1̇) in
L, together with logical operations (¬,→)), and quantifiers (∀,∃) that run over the set K
(and = and brackets). I.e., they may be expressed a formulae in the language L.

Another kind of algebraic structure is an ordered field (K,<,+,×, 0, 1) that carries a
strict total order. Here one requires that the order interact well with the field operations
(e.g. multiplying by a positive number preserves inequalities). I won’t list them (see [27]),
but e.g. (R, <,+,×, 0, 1) and (Q, <,+,×, 0, 1) are ordered fields.

More generally, a structure one can have any number of functions, of given arities, on
it, and any number of relations, of specified arities, and specified constants. There is a
corresponding first-order language. To indicate such a general structureM on a set M we
would write

M = (M, . . .).

For example,M = (M,<) is a set with a binary relation. If suitable axioms (which can be
written in the language) are satisfied it will be a strictly totally ordered set. If one wants
to talk about a structureM′ on M consisting of the order < and some other (unspecified)
structure, one refers to this as an expansion of M = (M,<) and writes

M′ = (M,<, . . .).

Formally one distinguishes the symbols in the language from their interpretation is a
structure (e.g. by a dot as above); in practice one ignores this distinction.

Definable sets. Given a structure M = (M, . . .), a definable set is a set A ⊂
Mn, n ≥ 1, whose membership can be described by a formula φ in the first-order language
L corresponding to M, i.e.

A = {(x1, . . . , xn) ∈Mn : φ(x1, . . . , xn)}.

Strictly, only constants that are distinguished in the structure (and si represented in
the language) are permitted in φ. A broader notion of definable with parameters allows
the use of any constants from M . In o-minimality, “definable” nearly always means “with
parameters” and we will adopt this convention.

Minimal and o-minimal structures. A non-zero polynomial has only finitely many
roots in a field. A consequence is that a subset of C that is definable (with parameters) in
(C,+,×, 0, 1) is either finite or cofinite. A structure with this property is called minimal ,
as such sets are definable (with parameters) when there is no structure at all, just using
=. (The structure is called strongly minimal if all elementarily equivalent (same theory)
structures are minimal.) This property plays a very important role in model theory, being
enjoyed by the “nicest” structures.

Now consider a ordered structure such as (R, <). It is not minimal as an interval
and its complement are both infinite. O-minimality is the analogue of minimality for a
structure M = (M,<, . . .) expanding a dense linear order without endpoints.
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3.1. Definition. A structure M = (M,<, . . .) expanding a dense linear order without
endpoints is o-minimal if the definable subsets of M are no more than the subsets definable
in (M,<). Namely, finite unions of points and open intervals (including intervals of the
form (a,∞) and (−∞, b)).

One can consider expansions of more general orders, but in fact the most interesting
examples arise as expansions of an ordered field. If o-minimal, the field must be real closed
and we will stick to expansions (R, <,+,×, 0, 1, . . .) of the real field.

While sometimes described as fulfilment of Grothendieck’s vision of a “tame topology”,
the idea of o-minimality arose out of the study of the model theory of the real exponential,
specifically the structure (R, <,+,×, 0, 1, ex), in work of van den Dries [26], prompted by a
question of Tarski, and was developed (and named) in analogy with minimality in a series
of papers by Knight, Pillay, and Steinhorn ([35, 51, 52, 53]).

Properties. O-minimal structure have remarkable properties. For example, a func-
tion definable in an o-minimal structure (meaning its graph is a definable set) must be
continuous except at finitely many points and even (in an expansion of a field) differen-
tiable except at finitely many points.

One also has strong uniformity properties. A definable family in a structure M =
(M, . . .) is a definable subset X of some Mk × Mn considered as the family of fibres
Xy = {x ∈Mn : (x, y) ∈ X} parameterized by y ∈Mk. (Some fibres might be empty.)

IfM = (M,<, . . .) is an o-minimal structure and X ⊂Mk ×Mn is a definable family
such that the fibres Xy are all finite, then there must be a uniform bound on their size.
(Hence the uniform bound on #X ∩ C for C of degree d in the proof of Theorem 1.3.)

This is part of the proof of the key structure theorem for definable sets in o-minimal
structures, the Cell Decomposition Theorem, due to Knight-Pillay-Steinhorn [35].

Examples. The basic example is the ordered field Ralg = (R, <,+,×, 0, 1). The
o-minimality of this structure follows from quantifier elimination, due to Tarski.

A second key example is Rexp = (R, <,+,×, 0, 1, ex), due to Wilkie [56].
Another example is

Ran = (R, <,+,×, 0, 1, {f : B → R})

where B ranges over all closed bounded boxes B ⊂ Rn, for all n, and f over all functions
that are real analytic on an open neighbourhood of B. The o-minimality of this structure
of restricted analytic functions follows from Gabrielov’s Theorem in real analysis.

Finally, one can add ex to Ran to form the structure Ran exp. Note that the graph of
ex is not restricted analytic. This structure seems to suffice for diophantine applications.
For example, the sets required in the proof of Theorem 1.8 are definable in Ran exp as they
are defined using ex and restricted sine and cosine.

Proving the counting theorem. The key to this is to realize a definable set as an
image in a suitable way i.e. a suitable parameterization. Such a result for semi-algebraic
sets was proved by Yomdin [57] and refined by Gromov [28].

3.2. Definition. 1. Let Z ⊂ (0, 1)n, and r ≥ 1 an integer. An r-parameterization of Z is
a finite set Φ = {φ} of maps

φ : (0, 1)k → (0, 1)n, φ=(φ1, . . . , φn), φi ∈ Cr((0, 1)k), i = 1, . . . , n,

such that Z =
⋃
φ((0, 1)k), where the union is over φ ∈ Φ, and such that |φ(µ)i (x)| ≤ 1 for

all partial derivatives up to order r of all the φi, at all x ∈ (0, 1)k.
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2. Let Z ⊂ P × (0, 1)n be a family of sets, and r ≥ 1 an integer. A definable
r-parameterisation of Z is a finite set Φ of definable families

φ : P × (0, 1)k → (0, 1)n

of maps (0, 1)k → (0, 1)n such that, for each y ∈ P , the finite set of fibres {φy} : φ ∈ Φ is
an r-parameterisation of Zy.

3.3. Theorem. (The r-Parameterisation Theorem; [49]) Let Z be a definable family of
sets in (0, 1)n, and r ∈ N. Then there exists a definable r-parameterisation of Z.

Sketch proof of the counting theorem. Since the maps x 7→ ±x±1 are definable
and preserve heights, it suffices to consider a family Z of sets in (0, 1)n. Let ε > 0 be
given. We choose r large enough and r-parameterise Z. Now on a small sub-box of (0, 1)k

(but not too small! � Hε boxes cover (0, 1)k) all the rational points up to height H lie
on one algebraic hypersurface of some degree d = d(ε). The intersections of X with all
such hypersurfaces form a definable family. Generally, the intersections will have lower
dimension, and we can repeat.

There are a number of technicalities, and one must see how the “algebraic part”
presents. Essentially, when a definable set is intersected with an algebraic variety of dimen-
sion ` and the intersection has the same dimension ` then such pieces are in the algebraic
part. So in fact one intersects a k-dimensional set Z with k dimensional real algebraic sets
by imposing an algebraic relation on every k+1 coordinates. The intersections components
of dimension k are then in the algebraic part.

Observation. In this proof, the rational points on all Z are contained in � Hε

“pieces” that are either points or positive dimensional pieces contained in Zalg.

One can count algebraic points of bounded degree. For a set Z ⊂ Rn, integer k ≥ 1 and
H ≥ 1 we set (using the multiplicative Weil height, but you could also use the maximum
height of the coefficients of the minimal polynomial)

Z(k,H) =
{
z = (z1, . . . , zn) ∈ Z : [Q(zi) : Q] ≤ k, H(zi) ≤ H, i = 1, . . . , n

}
,

N(k, Z,H) = #Z(k,H).

3.4. Theorem. ([43, Theorem 1.6]) Let Z ⊂ Rn be definable in an o-minimal structure,
k ≥ 1, and ε > 0. Then there is a constant c(Z, k, ε) such that, for all H ≥ 1,

N(k, Ztrans, H) ≤ c(Z, k, ε)Hε.

Proving this encounters the issue that we encountered in the previous lecture.

Lecture 4

Synopsis. In the last lecture we will, as time permits, describe further applications
and problems.

Relative Manin-Mumford. Let E be an elliptic curve and V ⊂ E × E a curve.
Then the Manin-Mumford conjecture (theorem of Raynaud) implies that V contains only
finitely many torsion points of E×E, unless it is a translate of an elliptic curve by a torsion
point.
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In a series of papers Masser and Zannier considered the case where V is a curve moving
in a family of squaresof elliptic curves (or more generally products of two elliptic curves).

For λ ∈ C\{0, 1} one has the elliptic curve on Legendre form

Eλ : y2 = x(x− 1)(x− λ)

which one considers as the fibre over λ in a family L of elliptic curves over C\{0, 1} (the
Legendre family . Let L(2) denotes the family of squares E × E over λ ∈ C\{0, 1}. Then
dimL(2) = 3. It is a“mixed Shimura variety”. The special points of L(2) are the torsion
points in CM fibres (the Generalised AO in L is proved in [2]). The special subvarieties
of dimension 1 include torsion sections parameterising, for each k, the k-torsion points in
E × E over λ. (Also: the special subvarieties of individual fibres.)

Let V ⊂ L(2) be a curve. Then ZP predicts that V meets only finitely many torsion
sections unless V ⊂ T for some special subvariety of dimension 2 (torsion translate of a
family of elliptic curves subvarieties F ⊂ E × E).

A nice special case ([38]) is to take

V = {
(
λ,
√

2(2− λ),
√

6(3− λ)
)

: λ ∈ C\{0, 1}}

that, is the curve consisting of the points of Eλ × Eλ whose coordinates are (2, . . .) and
(3, . . .). The “unlikely intersections” with special subvarieties of dimension 1 are those λ
for which both points P1(λ) = (2, . . .), P2(λ) = (3, . . .) ∈ Eλ are torsion.

4.1. Theorem. ([38]). The set of λ for which both points in Eλ are torsion is finite.

The proof employs point-counting, the strategy that Zannier had suggested also in our
re-proof of the classical Manin-Mumford theorem.

Note that the above result does not affirm ZP for such V as one must also consider
points such that λ is CM and there is a linear relation between the two points P1(λ), P2(λ)
in E (and here “linear” includes the relevant CM). I.e. the CM fibres are “vertical” special
curves. These cases are dealt with in [4].

Relative unlikely intersections. If one takes the family L(n) of Enλ then a point
in the fibre is unlikely to satisfy two independent “linear” relations in the group. Such
problems are studied in [5]. Consider a curve V ⊂ L(n), whose general points we may write
as (λ, P1(λ), . . . , Pn(λ)).

4.2. Theorem. ([5]) Let V ⊂ A2n+1 be an irreducible curve defined over Q with coordinate
functions (x1, y1, . . . , xn, yn, λ), where λ is non-constant. Suppose that the points Pj =
(xj , yj) ∈ Eλ for each j = 1, . . . . , n and there are no integers a1, . . . , an, not all zero, such
that a1P1 + . . .+ anPn = 0 identically on V . Then there are at most finitely many points
t ∈ V such that the points P1(t), . . . , Pn(t) satisfy two independent relations on Eλ(T ).

An analogue of ZP. Were we take the ambient variety X = An and declare the
“special subvarieties” to be irreducible algebraic varieties defined over Q. So the special
points are just An(Q).

4.3. Theorem. ([20]) Let V ⊂ An be a subvariety defined over C. Suppose that V is not
contained in any proper “special subvariety”. Then the intersection of V with the union⋃
Y of all “special subvarieties” Y with codim(Y ) ≥ dimV + 1 is not Zariski dense in V .

Thus, for example, if V ⊂ A3 is a curve not contained in any hypersurface defined
over Q then the intersection of V with the union of all algebraic curves defined over Q is
a finite set.
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ZP for a curve V ⊂ Y (1)3 not defined over Q.

4.4. Theorem. ([44]) Let V ⊂ Y (1)3 be a curve that is not defined over Q. Then the
intersection of V with the union of all special curves is finite.

If V is not contained in any hypersurface defined over Q then 4.4 follows from the
much stronger 4.3. When V is so contained the argument depends on the high gonality of
modular curves to give “many” conjugates to apply point-counting.

Uniformity and effectivity. Results proved via o-minimality tend to come with a
high degree of uniformity as fibres of definable families all “look the same”. For example
o-minimal proofs of MM (as also others) yields the following uniformity.

4.5. Theorem. Let A be an abelian variety and d, k ≥ 1 over a number field K. Let
V ⊂ A a subvariety of degree d defined over a numberfield of degree k over K. Suppose
(for simplicity) that V contains no torsion cosets of A of positive dimension. Then there
exists

N = N(A, d, k)

such that any torsion point on V has (exact) order at most N .

If the “no positive dimensional special subvarieties” is removed then a similar uniform
bound holds for the shape of the “special set” of V . Making such a bound effective is
another matter: it depends on precisely controlling how to parameterise such sets and on
uniform arithmetic estimates (lower bounds for Galois orbits).

4.6. Theorem. ([9]) Let A be a product of CM elliptic curves defined over a fixed number
field K. Suppose V ⊂ A defined over some finite degree extension L/K. Suppose that V
contains no positive dimensional special subvarieties. Let ε > 0. There exist c,m, effectively
computable from g = dimA and ε, such that, if P ∈ V is a torsion point of exact order N
then

N ≤ c[L : K]1+ε deg(V )m.

Here is an effective result on RMM. In the following, the constant δ(V ) attached to
an algebraic variety measures its complexity in terms of: degree, height and degree of field
of definition of defining equations.

4.7. Theorem. ([8]) Let V ⊂ L(2) be an irreducible curve defined over a number field
K on which λ is non-constant. Suppose that no equation nP = mQ holds identiclly for
(P (λ), Q(λ)) ∈ V , for any n,m ∈ N not both zero. Then any torsion point

(
P (λ), Q(λ)

)
∈

V has order bounded by
poly

(
δ(V ), [K : Q]

)
.

This result though explicit is not uniform in the above sense as the bound depends on
heights of coefficients.

Uniform Zilber-Pink. If one does not control the field of definition of V ⊂ A (say)
one cannot bound the order of a torsion point on V . But one can still hope to bound the
number of torsion points. Indeed, for a fixed Abelian variety, such results are implied by
MM applied to Cartesian powers, by “Automatic Uniformity” [55].

4.8. Theorem. ([34]) Let A be an Abelian variety defined over a numberfield K. There
exist effective explicit constants c = c(A), e = e(A) with the following property. Let V ⊂ A.
Then the number M of torsion cosets contained in V satisfies

M ≤ c(deg V )e.
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Recent spectacular results of DeMarco, Dimitrov, Gao, Ge, Habegger, Krieger, Kühne,
and Ye, have achieved (not via point-counting) remarkable uniformity in Manin-Mumford
and Mordell-Lang in which the Abelian variety is allowed to vary.

4.9. Theorem. ([37]) For each g ≥ 2 there exists an integer c(g) ≥ 1 such that the
following is true. For every algebraic curve V over C and every point P ∈ V (C) we have

#
(
ιP (V ) ∩ Tors

(
Jac(V )

))
≤ c(g)

where
ιP : V → Jac(V ), Q 7→ P −Q

is the Abel-Jacobi sending P to the identity in Jac(V ).

In fact such “numerical uniformity” is implied by ZP. Thus, for example, assuming ZP
for all powers of Y (1)n, one gets the following numerical uniformity.

4.10. Theorem. ([45]) Assume that ZP holds for all cartesian powers of Y (1).
Let d ≥ 1. There is a constant c(d) such that if V ⊂ Y (1)3 is a curve of degree d that is
not contained in any proper special subvariety then the number of “unlikely” points on V
is at most c(d).

Other unlikely intersection problems. We just describe a few examples of prob-
lems that fall under ZP. For further examples and references see [45].

We have not touched on cases of ZP that come under the earlier André-Pink-Zannier
conjecture, including Relative Mordell-Lang problems; see [25].

It is unlikely for distinct singular moduli σ1, . . . , σk to be multiplicatively independent;
see [46]. If φ : Y → E is a map from a modular curve to an elliptic curve then its is unlikely
for the images φ(σi) of singular moduli to be linearly dependent in E; see [47].

If R is an order in an imaginary quadratic number field then there are finitely many
elliptic curves (up to isomorphism) with CM by precisely R. So they correspond to finitely
many points in Y (1). By contrast, if R is a non-trivial endomorphism ring of Abelian
varieties of dimension g ≥ 2 then the subvariety of Ag has codimension at least g − 1.
Hence, for a curve V ⊂ Ag, g ≥ 3 one expects only finitely many of the Abelian varieties
parameterised by the curve to have any non-trivial endomorphisms, unless V is contained
in some proper special subvariety.

Acknowledgements. Thanks to Xiaojiang Cheng for catching several typos and obscu-
rities.
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29. P. Habegger, On the bounded height conjecture, IMRN 2009, 860–886.
30. P. Habegger, Effective height upper bounds on algebraic tori, arXiv:1201.1815, Autour

de la conjecture de Zilber-Pink , Course notes, CIRM, 2011, 167–242, Panor. Synthèses
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Appendix

An upper estimate. Let D be a positive integer and φ1, . . . , φD ∈ CD(I) on a closed
interval I of length 2L. Suppose x1, . . . xD ∈ I. We want to estimate the alternant

∆ = det
(
φj(xi)

)
the intuition being that if any two xi′ , xi come close together then ∆ will become “small”
like xi′ − xi. This can be done directly via the following mean value theorem due to H. A.
Schwarz.

A.1. Proposition. With the notation above, there exists intermediate points ξij such that

∆ =
V (x1, . . . , xD)

0!1! . . . (D − 1)!
det

(
φ
(i−1)
j (ξij)

(i− 1)!

)
,

where V is the Vandermonde determinant.

One can be more precise about the location of the intermediate points. In the following
c(φ1, . . . , φD) depends on the maximum size of the φj and their derivatives up to order
D − 1 on I.

A.2. Corollary. We have |∆| ≤ c(φ1, . . . , φD)LD(D−1)/2.

To count rational points on higher dimension sets, we will present them as images
φ : (0, 1)k → (0, 1)n and we will want to estimate similar alternants. However there is no
Vandermonde on points in R2 (or higher). So we present another approach.

A cruder approach which generalises. Let φ1, . . . , φD ∈ CD([−L,L]), and con-
sider ∆ as above. Expand each entry of ∆ by Taylor’s Theorem with remainder of degree
D. Namely,

φj(xi) =
D−1∑
`=0

aj`x
`
i +R

(D)
ji , R

(D)
ji = αjDx

D
i

where aj` = φ
(`)
j (0) while αjD is the value of φ

(D)
j /D! at some suitable intermediate point

ξDji between 0 and xi.
Now expand the determinant! Each term is a sum over the rows involving choices

j = σ(i) of which row to take an entry from, where σ ∈ Sn, and ki of which degree term
in the expansion to take. Set κ = (κ1, . . . , κD), an element of {0, 1, . . . , D}{1,...,D}. Then

∆ =
∑
σ

∑
κ

δσ,κ, δσ,κ = sgn(σ)
D∏
i=1

aσ(i)κi
xκi
i

where, if κi = D, we will understand that aσ(i)D will mean ασ(i)D.
Now fix κ and sum over all σ, giving

∆ =
∑
κ

∑
σ

δσ,κ =
∑
σ

∆κ, where ∆κ = det
(
ajκix

κi
i

)
and the point is that if κi′ = κi < D for i′ 6= i then ∆κ = 0 as it has dependent columns.
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So, for surviving terms, each choice of κi = 0, 1, 2, . . . , D − 1 can be made only once
and we see that `(κ) ≥ D(D − 1)/2 for a non-zero ∆κ. So

∆ =
∑

`(κ)≥D(D−1)/2

∆κ,

and so
|∆| � c(d)c(φ1, . . . , φj)L

D(D−1)/2.

An arithmetic lower bound. Now suppose that f is analytic on [−L,L] and, given
d, we take φj , j = 1, . . . D to be the monomial functions

xaf(x)b, 0 ≤ a, b ≤ a+ b ≤ d.

We consider points (xi, yi), where yi = f(xi) are rational points of the graph of height at
most H. That is, we can write

xi =
ai
bi
, yi =

ci
di

where |ai|, |bi|, |ci|, |di| ≤ H.
We consider ∆ as a rational number, and note that the denominator in column i can

be cleared by multiplying through by (bidi)
d.

Thus (the “fundamental theorem of transcendental number theory”), either

|∆| ≥ 1

H2dD
, or ∆ = 0.

Points in shortish intervals. If the points (xi, yi) on the graph of f have height at
most H, and lie in I = (−L,L), then the determinant must vanish if

c(d, f)LD(D−1)/2 ≤ H−cdD,

that is, if
L ≤ c′(f, d)H−4dD/D(D−1) = c′(f, d)H−8/(d+3).

Moreover, this will be true for any choice of D such rational points on the graph.
Hence the rank of the array of monomials is less than D, and all the rational points up
to height H lie on one real algebraic curve (possibly reducible) of degree at most d (and
defined over Q and with some bound on its height, which we don’t need).

Proof of Theorem 1.3. Choose d so that 8/(d + 3) ≤ ε. The interval [0, 1] can be
covered by Hε intervals I on each of which all the rational points up to height H lie on one
curve of degree d. The number of points in an intersection X ∩ A, where X is the graph
and A is algebraic curve of degree d, is bounded by some c′′(f, d).

Higher dimensions. We will present a set in (0, 1)n as a union of finitely many
images φ : (0, 1)k → (0, 1)n. For the above, we do need analytic functions (though they are
convenient as giving a clear distinction between “algebraic” and “non-algebraic”). In the
upper estimate, only some finite number of derivatives (depending on ε via d) is needed.
One needs to show that definable sets can be “parameterized” in this way, bounding some
fixed finite number of derivatives, uniformly in families.
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