\[w^5 + x^5 = y^5 + z^5 \]

All solutions are "trivial": \(\{w, x\} = \{y, z\} \) believed.

\[H(q) = \max (|a_1|, |b_1|) \]

Theorem: For \(\varepsilon > 0 \), \(H \geq 1 \), there are \(\ll H^{13/8 + \varepsilon} \) nontrivial solutions.
Analogue for certain non-algebraic sets in \mathbb{R}^n.

Cubes

Theorem: Let $f(x)$ be a non-algebraic function that is real analytic on $[0,1]^n$, $x \in \mathbb{R}^n$ graph, $\epsilon > 0$. Then exist a constant $c(f, \epsilon)$. $\exists N(x, H) \leq c(f, \epsilon) H \leq 1$

$\# \{ x \in x \cap \phi^n : H(x) \leq H \}$

"few"
Sketch proof:

$[0, L]$ $H \subseteq$ bounded, cover $[0, 1]$

Given ϵ, choose d such that $\frac{2}{d+3} < \epsilon$

$D = \frac{(d+1)(d+2)}{2}$

monomials in xy degree at most d

$x^a f(x)^b$ with $0 \leq a, b \leq d$

\[\square \]
If $Q \subseteq \mathbb{R}^n$ is compact and $f : Q \rightarrow \mathbb{R}$ is continuous, then f is uniformly continuous on Q. Suppose D is a partition of Q by intervals x_1, \ldots, x_D. Define

$$\Delta := \det \left(\begin{array}{c}
\ldots
\vdots
\end{array}
\begin{array}{c}
x_1
\vdots
\end{array}
\begin{array}{c}
f(x_1)
\vdots
\end{array}
\ldots
\right)_{D \times D}$$
\[\Delta = \det (\phi_i (x_i)) \]
\[\phi_1, \ldots, \phi_D, \ x_1, \ldots, x_D \]

H & X Schwarz
\[\Delta = V(x_1, \ldots, x_D) \det (\phi_i(x_i) \phi_j(x_j)) \]
\[\frac{D(D-1)}{2} \]

Whereas:
\[\text{row } i \times f(x_i) \ldots \]
\[\text{cleared by } \leq (H^2d)^D \]
\[|\Delta| \leq \frac{1}{H^{2dD}} \]

then \(\Delta = 0 \)

\[H \leq H^{-\frac{8}{d+3}} \leq \quad \quad \]

\[L = H \]

In each \([0, L]\),

\[\# X \cap C_p \leq c(f, d). \]
\[x \leq \mathbb{R}^n \]

\[f: \mathbb{R}^k \rightarrow \mathbb{R}^n \]

Analytic

\[X = \lim f \]

Definition

A semi-algebraic set in \(\mathbb{R}^n \) is a finite union of sets each defined by finitely many equations and inequalities with real coefficients.
Definition: For $X \subseteq \mathbb{R}^n$, algebraic part X_{alg} to be union U_A of all connected positive dim semi-alg $A \subseteq X$.

Transcendental part $X_{\text{trans}} = X - X_{\text{alg}}$.

Theorem: Let $X \subseteq \mathbb{R}^n$ be definable, $\varepsilon > 0$, then exists $c(X, \varepsilon)$: $\exists N(X_{\text{trans}}, H) \leq c(X, \varepsilon) H$.

Dioph. appl.

F Laurent polynomial
in two variables
\[C[X, X', Y, Y'] \]

\[V = \{(x, y) : (C_x)^2 : \phi(x, y) = 0 \} \]

Points in \(V \) that are
torsor pts in \((C_x)^2 \)
i.e. \((s, n)\) rank \(r \) unit
Theorem (Ihara, Serre-Tate)

The number of such pants is finite unless

\[F \text{ is Bm } x^m y^m = s \]

n, m \in \mathbb{Z} \text{ not both zero, }

s \text{ not of unity.}

\[\text{Such sets } x^n y^m = 1 \]

\text{union coset}
Theorem (Laurent, 1831)

Let $V \subset X = (C^\times)^n$

\[x \text{-tes tangent points.} \]

Alg subgps

\[x_1, k_1 \ldots x_n, k_n = 1 \]

torus cosets

\[= \frac{1}{2} \]

There are finitely many torsion cosets $x_i \in V$ which account for all torsion pts of X in V.
The point-counting approach

(Strategy: Zimmer)

\[e : C^n \to (C^\times)^n \]

\[e(\mathbf{z}_1, \ldots, \mathbf{z}_n) = (e^{2\pi i z_1}, \ldots, e^{2\pi i z_n}) \]

Studying torsion pts on \(V \)

= studying rational pt on \(e^{-1}(V) \)

\[F = \{ (z_1, \ldots, z_n) \in C^n : 0 \leq \text{Re} z_i < 1 \} \]

\(e^{-1}(V) \cap F \) is definable

\(\mathbb{Z} \)
\[e : \mathbb{Z} \to \sqrt{\mathbb{Q}} \]

Let \((S_1, \ldots, S_n) \in \mathbb{V}^*\)

order \((N_1, \ldots, N_n)\)

\[\max : N. \]

Hardy & Wright

\[[\Omega(L) : \Omega] \geq \delta \, N^{\gamma} \]

2alg
\[A \leq z \leq \sqrt[4]{W} \leq e^{-1}(V) \leq v \leq \frac{1}{\sqrt[4]{m}} \]
\{ (x_1, \ldots, x_n, e^{x_1}, \ldots, e^{x_n}) \}

\subset C_{2n}

\overline{z = x^Y}

x, y \in \mathbb{C}/\{1, 27\}