ARIZONA WINTER SCHOOL PROBLEM SESSION ON MODEL THEORY

ADELE PADGETT

1. Day 1: Basic model theory of \mathbb{C} and \mathbb{R}

1.1. Basic model theory.

(1) Let $\varphi(x)$ be an \mathcal{L}-formula and n a natural number. Show that there is an \mathcal{L}-sentence ψ such that $M \vDash \psi$ if and only if the definable set $Y=\{a \in M: M \vDash \varphi(a)\}$ has at least n elements. What about expressing that Y has at most n elements? Exactly n elements? Could you write a sentence saying Y has infinitely many elements?
(2) Let $A \subset M^{m+n}$ be a definable set and fix $x \in M^{m}$. Show that $A_{x}=\left\{y \in M^{n}\right.$: $(x, y) \in A\}$ is definable.
(3) Let $F: M^{m+n} \rightarrow M^{k}$ be a definable function. Show that the set $\left\{a \in M^{m}: F(a, \cdot)\right.$: $M^{n} \rightarrow M^{k}$ is injective\} is definable. Instead of injectivity, what are some other definable properties that we could require of $F(a, \cdot)$? Can you think of properties that would not be definable?
(4) Let $\mathcal{L}=\{+,-, \cdot, 0,1\}$, and let T be the theory of fields. Let $\varphi(x):=\exists y(x y=1)$. Find a quantifier-free formula $\psi(x)$ such that $T \vDash \forall x(\varphi(x) \longleftrightarrow \psi(x))$.
(5) Let $\mathcal{L}=\{+,-, \cdot, 0,1\}$. Let $\varphi(x):=\exists y\left(x=y^{2}\right)$.
(a) Find a quantifier-free \mathcal{L}-formula that is equivalent to $\varphi(x)$ in $\operatorname{Th}(\mathbb{C})$.
(b) Let $\mathcal{L}_{\text {or }}=\mathcal{L} \cup\{<\}$. Find a quantifier-free $\mathcal{L}_{\text {or }}$-formula that is equivalent to $\varphi(x)$ in $\operatorname{Th}(\mathbb{R})$.
(c) Is it possible to find a quantifier-free $\mathcal{L}_{o r}$-formula equivalent to $\varphi(x)$ in $\operatorname{Th}(\mathbb{Q})$?
(6) Let T be a \mathcal{L}-theory with quantifier elimination. Let $\mathcal{L}_{c}=\mathcal{L} \cup\{c\}$, where c is a new constant symbol. Let T_{c} be any \mathcal{L}_{c}-theory that extends T. Show that T_{c} has quantifier elimination.
1.2. ACF_{0}.
(1) Find quantifier-free equivalents to the following in ACF_{0} :
(a) $\exists x\left(a x^{2}+b x+c=0\right)$
(b) $\exists y\left(y^{3}\left(s^{2}+t(t-1)(t-2)\right)+t^{2}=0\right)$
(2) Let $\mathcal{L}=\{+, \cdot, 0,1\}$ be the language of rings, consider \mathbb{C} as an \mathcal{L}-structure, and let T be its complete \mathcal{L}-theory. Let

$$
\varphi(a, b, c):=\exists x_{1} \exists x_{2} \exists x_{3}\left(\bigwedge_{i=1}^{3} x_{i}^{3}+a x_{i}^{2}+b x_{i}+c=0 \wedge \bigwedge_{i<j} x_{i} \neq x_{j}\right) .
$$

Find a quantifier-free formula $\psi(a, b, c)$ such that

$$
T \vDash \forall a \forall b \forall c(\varphi(a, b, c) \longleftrightarrow \psi(a, b, c)) .
$$

(3) Let $K \vDash \mathrm{ACF}_{0}$. Show that every definable subset of K is either finite or cofinite.
(4) Let $\mathcal{L}_{c}=\{+, \cdot, 0,1, c\}$ extend the language of rings by a new constant symbol c. Let $\mathrm{ACF}_{0}(c)$ be the theory ACF_{0}, but viewed as an \mathcal{L}_{c}-theory (i.e., no axioms are added that say anything about c). Then $\mathrm{ACF}_{0}(c)$ is not complete (why?). Describe all the completions of $\mathrm{ACF}_{0}(c)$. Hint: Use exercise 1.1(6).
(5) Let $\mathcal{L}=\{+, \cdot, 0,1, \exp \}$ be the language of exponential rings. Show that the set of integers \mathbb{Z} is \mathcal{L}-definable in $\mathbb{C}_{\text {exp }}$. (This is exercise 2.1 of Scanlon's notes.)
1.3. RCF.
(1) Consider the language $\mathcal{L}=\{<,+, \cdot, 0,1, f\}$, where f is a function symbol in one variable. We can think of \mathbb{R} as an \mathcal{L}-structure by interpreting f as a function F : $\mathbb{R} \rightarrow \mathbb{R}$. Write down \mathcal{L}-sentences asserting the following:
(a) $\lim _{x \rightarrow 0} F(x)=1$
(b) F is continuous on \mathbb{R}.

Write down \mathcal{L}-formulas defining the following sets:
(c) The set of points where F is continuous.
(d) The set of points where F is differentiable.
(e) The set of points where F is k-times differentiable.

Can you define the smooth points of F ?
(2) Let $\mathcal{L}=\{<+, \cdot, 0,1\}$ and consider \mathbb{R} as an \mathcal{L}-structure. Let $A \subset \mathbb{R}^{n}$ be a definable set. Show that the closure of A (in the Euclidean topology) is a definable set.
(3) Let $\mathcal{L}=\{<,+, \cdot, 0,1\}$. Find quantifier-free equivalents to the following:
(a) $\varphi(x):=\exists y\left(y=x^{2}+1\right)$
(b) $\varphi(x, y):=\exists z\left(x+z^{2}=y\right)$
(4) Let $\mathcal{L}=\{<,+, \cdot, 0,1\}$. The interval $I=(-\sqrt{2}, \sqrt{2}) \subset \mathbb{R}$ can be defined by the formula $\varphi(x):=-\sqrt{2}<x<\sqrt{2}$. In this case, $-\sqrt{2}$ and $\sqrt{2}$ are called parameters. Write down a different formula defining I using no parameters.
(5) Let $\mathcal{L}=\{<, \ldots\}$, let T be an o-minimal \mathcal{L}-theory, and let $M \vDash T$. Suppose $\varphi(x)$ is an \mathcal{L}-formula with only finitely many realizations in M. Show that for every $m \in M$ realizing $\varphi(x)$, there is another \mathcal{L}-formula $\psi(x)$ such that m is the only realization of $\psi(x)$.

2. Days 2-3: Uniformity and Compactness

2.1. Uniformity.

(1) Let $K \vDash \mathrm{RCF}$ and $A \subset K^{m+n}$ be definable. Show that there is a definable function $f: K^{m} \rightarrow K^{n}$ such that for all $\bar{x} \in K^{m}$, if there is some $\bar{y} \in K^{n}$ such that $(\bar{x}, \bar{y}) \in X$, then $(\bar{x}, f(\bar{x})) \in X$. In fact, we may pick f so that if $\bar{a}, \bar{b} \in K^{m}$ and

$$
\left\{\bar{y} \in K^{n}:(\bar{a}, \bar{y}) \in X\right\}=\left\{\bar{y} \in K^{n}:(\bar{b}, \bar{y}) \in X\right\}
$$

then $f(\bar{a})=f(\bar{b})$. (Hint: Use induction on n, and use o-minimality in the base case.)
Such a function f is called a definable choice function for X. In fact, every ominimal expansion of an ordered group has definable choice functions.
(2) Let $\mathcal{L}=\left\{<,+, \cdot, 0,1,\left(f_{i}\right)_{i \in I}\right\}$ where $\left(f_{i}\right)_{i \in I}$ are function symbols. Suppose we interpret these new function symbols on \mathbb{R} in such a way that the \mathcal{L}-theory of \mathbb{R} is o-minimal.
(a) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a definable function and assume that $g^{-1}(x)$ is a finite set for all $x \in \mathbb{R}$. Show that there is a natural number N such that for all $x \in \mathbb{R}$, $g^{-1}(x)$ has at most N elements.
(b) Let $g: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be a definable function and assume that $g^{-1}(\bar{x})$ is a finite set for all $\bar{x} \in \mathbb{R}^{n}$. Show that there is a natural number N such that for all $\bar{x} \in \mathbb{R}^{n}$, $g^{-1}(\bar{x})$ has at most N elements.
(Hint: Use cell decomposition and induction.)
(3) Let $\left\{f_{a}(x): a \in A\right\}$ be a definable family of definable functions in $\mathbb{R} \vDash$ RCF. Show that the set $\left\{a \in A: \forall x\left(\operatorname{dim}\left(f_{a}^{-1}(x)\right)=1\right)\right\}$ is definable. Would the same be true for a definable family of definable functions in ACF_{0} ? (As shown in Proposition 2.19 of Scanlon's notes, dimension is a definable condition in ACF_{0}.)
(4) Show that there is no definable family of subvarieties of \mathbb{C}^{n} that contains all special (in the sense of the j-function) subvarieties of \mathbb{C}^{n}. (Hint: Look at \mathbb{C}^{2} first, and think about degrees of modular polynomials.)
(5) Let $f(z)$ be a complex analytic function definable in an o-minimal expansion of the real field (i.e., view $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as a definable function of its real and imaginary parts). Show that the isolated singularities of f cannot be essential. (Hint: look at the fibers $f^{-1}(z)$.)
(6) Let $f(z)$ be a meromorphic function on \mathbb{C} definable in an o-minimal expansion of the real field. Show that f is a rational function. Thus any meromorphic function on all of \mathbb{C} which is definable in $\mathbb{R}_{\text {an,exp }}$ must already be definable in just the real field.
2.2. Compactness. To expand our discuss of compactness, we will use the notions of types and saturation.

Let \mathcal{L} be a language and T an \mathcal{L}-theory. An n-type is a collection p of \mathcal{L}-formulas in variables x_{1}, \ldots, x_{n} such that there is some model $\mathcal{M} \vDash T$ and some $a_{1}, \ldots, a_{n} \in M$ such that $M \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$ for all $\varphi \in p$. An n-type is complete if for all \mathcal{L}-formulas φ in n variables, either $\varphi \in p$ or $\neg \varphi \in p$. Let $\mathcal{M} \vDash T$. If $A \subset M$, let \mathcal{L}_{A} be the language \mathcal{L} with new constant symbols added to represent each element of A. We sometimes call an n-type p of \mathcal{L}_{A} formulas "a type with parameters from A " or "a type over A ". We say that \mathcal{M} is saturated if for all $A \subset M$ with $|A|<|M|$, all $n \in \mathbb{N}$, and all complete n-types p with parameters from A, there is some $\bar{a} \in M^{n}$ such that $M \vDash \varphi(\bar{a})$ for all $\varphi \in p$.
\mathbb{C} is a saturated model of ACF_{0}. So for every type over a countable set of parameters, there is some tuple of elements of \mathbb{C} that satisfies every formula in the type.

Example 2.1. This is an example of a typical proof using the compactness theorem, and a non-example of saturation. Let $\mathcal{L}=\{<,+, \cdot, 0,1\}$, consider \mathbb{Q} as a \mathcal{L}-structure, and let T be its \mathcal{L}-theory. We will find a type with no parameters and show that no element of \mathbb{Q} satisfies every element of the type. Let p be the following set of formulas in a single variable x :

$$
\{x>a: \sqrt{2}>a \in \mathbb{Q}\} \cup\{x<a: \sqrt{2}<a \in \mathbb{Q}\} .
$$

These formulas seem to use parameters that are not in \mathcal{L}, but if, for example, $a=b_{1} / b_{2}$ with $b_{1}, b_{2} \in \mathbb{N}$, the formula " $x>a$ " is really shorthand for

$$
(\overbrace{1+\cdots+1}^{b_{2} \text { times }}) \cdot x>(\overbrace{1+\cdots+1}^{b_{1} \text { times }})
$$

which is an \mathcal{L}-formula with no parameters. We will show p is a 1 -type and extend it to a complete 1-type. Let c be a new constant symbol that we add to our language. For each finite subset p_{0} of p, build an \mathcal{L}_{c}-structure \mathbb{Q}_{c} by interpreting c to be a rational number close enough to $\sqrt{2}$ so that $\mathbb{Q}_{c} \vDash \varphi(c)$ for every $\varphi \in p_{0}$. Then the compactness theorem tells us that there exists an \mathcal{L}_{c}-structure $\mathcal{M} \vDash T \cup\{\varphi(c): \varphi \in p\}$. Thus p is a 1-type. Let $p^{\prime} \supset p$ be the set of all unary \mathcal{L}-formulas that are true of $c \in \mathcal{M}$. Then p^{\prime} is a complete 1-type. However, there is no element of \mathbb{Q} that satisfies every formula in p^{\prime}. Thus \mathbb{Q} is not saturated.
(1) Show that \mathbb{R} is not saturated as a model of RCF.
(2) Show that quasiminimality is a property of structures, not theories, as mentioned in Remark 2.3 of Scanlon's notes.
(3) Let $V \subset \mathbb{C}^{m} \times \mathbb{C}^{n}$ be a definable set. For every $q \in \mathbb{C}^{n}$, we have the fiber over q $V_{q} \subset \mathbb{C}^{m}$. Suppose $\{T i\}_{i \in \mathbb{N}}$ is a countable collection of subvarieties of \mathbb{C}^{m} such that for each $q \in \mathbb{C}^{n}$, there exists $k \in \mathbb{N}$ such that $V_{q} \subset T_{1} \cup \cdots \cup T_{k}$. Show that there exists a uniform bound $k_{0} \in \mathbb{N}$ such that for all $q \in \mathbb{C}^{n}, V_{q} \subset T_{1} \cup \cdots \cup T_{k_{0}}$. (Hint: Use compactness and the fact that \mathbb{C} is saturated.)
(4) We say an \mathcal{L}-theory "eliminates $\exists \infty$ " if for any \mathcal{L}-formula $\varphi(x, \bar{y})$ there is a natural number n_{φ} such that for all $\mathcal{M} \vDash T$ and \bar{a} in M, the set $\{x \in M: \varphi(x, \bar{a})\}$ is infinite iff it has more than n_{φ} elements. Show that ACF_{0} and RCF eliminate \exists^{∞}. (Hint for ACF_{0} : Suppose not. Then there is some formula $\varphi(x, \bar{y})$ that witnesses this. Use compactness to show that there is $K \vDash \mathrm{ACF}_{0}$ and \bar{a} in K such that $\{x: \varphi(x, \bar{a})\}$ is neither finite nor cofinite. For RCF, use o-minimality.)

3. Day 4: DCF_{0} and More Uniformity

3.1. DCF_{0}.
(1) Let (K, δ) be a differential field. Show a_{1}, \ldots, a_{n} are linearly dependent over the field of constants if and only if their Wronskian vanishes. (We can see the iff statement as a form of quantifier elimination.)
(2) Let R be a differential ring. If $a \in R$ is algebraic over R^{δ}, then $a \in R^{\delta}$.
(3) Let $L \mid K$ be a differential field extension. Suppose $a \in L^{\delta}$ is algebraic over K. Show a is algebraic over K^{δ}.
(4) Find a quantifier-free equivalent in DCF_{0} to the following formula:

$$
\exists x((\delta s=\delta x) \wedge(\delta t=t x+s))
$$

3.2. Uniform existential closedness. Suppose $X \subset \mathbb{C}^{n} \times \mathbb{R}$ is a definable (uncountable) family of free and broad varieties (as defined toward the end of Section 2 of Scanlon's notes). Suppose each element of the family has points of the form $(b, \exp (b))$.
(1) Show that there is some fundamental domain \mathcal{F} of exp such that the set $\{a \in \mathbb{R}$: $\left.\exists b \in \mathcal{F}:(b, \exp (b)) \in X_{a}\right\}$ is uncountable.
(2) Write a formula $\varphi(y)$ in the language $\mathcal{L}=\{0,1,+, \cdot,<, \exp \}$ saying " X_{y} contains a point on the graph of $\exp \upharpoonright_{\mathcal{F}} "$.
(3) Show that there is an interval $I \subset \mathbb{R}$ of positive length such that $\varphi(a)$ holds for all $a \in I$.
(4) Using definable choice, show that there is a piecewise continuous function $g: I \rightarrow X$ that sends each parameter $a \in I$ to a point of the form $(\bar{b}, \exp (\bar{b}), a) \in X$.
3.3. Uniform Ax-Schanuel. Recall Ax-Schanuel for \exp (Theorem 4.1 in Scanlon's notes). Show the following uniform version of Ax-Schanuel: Let (K, δ) be a differential field of characteristic 0 . Let $\left(V_{b}\right) \subset K^{n} \times\left(K^{*}\right)^{n}$ be a definable family. Then there are finitely many special $T_{1}, \ldots, T_{m} \subset\left(K^{*}\right)^{n}$ such that for all $b \in\left(K^{*}\right)^{n}$ and for all $(x, y) \in V_{b}$, if
(1) $\delta y_{i}=y_{i} \delta x_{i}$
(2) tr. $\operatorname{deg}_{C} C(x, y)<n+\operatorname{rk}\left(\delta_{i} x_{j}\right)$
then $(x, y) \in T_{1} \cup \cdots \cup T_{m}$. (Hint: compactness).

