
PROBLEM SESSION ON HEIGHTS

TA: JUANITA DUQUE-ROSERO

ABOUT THIS PROBLEM SET

The goal of these problems is to familiarize you with the concepts around Diophantine heights.
We will study heights in projective space and elliptic curves. In each section, you will find a variety
of problems; some of them get you to work with basic concepts with and some are meant to chal-
lenge you. The most advanced problems are marked with the symbol ✽. Please note that the list of
problems is long, so I do not expect you to solve every single question during the AWS. Please be
kind to yourself and take things at your own pace!

Most of these questions appeared in the problem sets for the Preliminary Arizona Winter School
(PAWS) on Diophantine heights. The problems accompanied Padmavathi Srinivasan’s lectures.
You can find videos and notes from those lectures at the PAWS website. The problems for PAWS
were compiled by Niven Achenjang, Juanita Duque-Rosero, Carlos Rivera, Padmavathi Srinivasan,
and Marley Young.

1. PRELIMINARIES: PROJECTIVE SPACE, MORPHISMS, AND RATIONAL MAPS

We make basic definitions in algebraic geometry related to projective varieties. If you are inter-
ested, a good place to learn more about these concepts is [5, Chapter 2].

Definition 1.1. The projective 𝑁-space over a field 𝐾 , denoted by ℙ𝑁 or ℙ𝑁 (𝐾), is the set of
all (𝑁 + 1)-tuples

(𝑥0,… , 𝑥𝑁 ) ∈ 𝐾𝑁+1 ⧵ {(0, 0,… , 0)}
modulo the equivalence relation

(𝑥0,… , 𝑥𝑁 ) ∼ (𝑦0,… , 𝑦𝑁 )
if there exists a 𝜆 ∈ 𝐾 ⧵ {0} such that 𝑥𝑖 = 𝜆𝑦𝑖 for all 𝑖. An equivalence class

{

(𝜆𝑥0,… , 𝜆𝑥𝑁 ) ∶ 𝜆 ∈ 𝐾 ⧵ {0}
}

is denoted by [𝑥0,… , 𝑥𝑁 ], and the 𝑥𝑖 are called homogeneous coordinates for the corresponding
point in ℙ𝑁 .

Question 1. Let’s explore ℙ1(ℝ). This is a space obtained from taking equivalence classes of
elements in ℝ2. Pick some points in ℝ2 and draw all other elements that are equivalent to them.
How does each equivalent class look like geometrically? Can you make sense of the “shape” of
ℙ1(ℝ)?

Question 2. Show that for any [𝑥0,… , 𝑥𝑁 ] ∈ ℙ𝑁 (ℚ) we can choose homogeneous coordinates so
𝑥𝑖 ∈ ℤ for all 𝑖 and gcd(𝑥0,… , 𝑥𝑁 ) = 1.

Definition 1.2. A polynomial 𝑓 ∈ 𝐾[𝑋0,… , 𝑋𝑁 ] is homogeneous of degree 𝑑 if
𝑓 (𝜆𝑋0,… , 𝜆𝑋𝑁 ) = 𝜆𝑑𝑓 (𝑋0,… , 𝑋𝑁 ) for all 𝜆 ∈ 𝐾.
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Question 3. Prove that a polynomial is homogeneous of degree 𝑑 if and only if each of its mono-
mials has degree 𝑑.

Definition 1.3. A rational map of degree 𝑑 between projective spaces is a map

𝜙∶ ℙ𝑁 ⤏ ℙ𝑀

𝑃 ↦ [𝑓0(𝑃 ),… , 𝑓𝑀 (𝑃 )],

where 𝑓0,… , 𝑓𝑀 ∈ 𝐾[𝑋0,… , 𝑋𝑁 ] are homogeneous polynomials of degree 𝑑 with no common
factors. The rational map𝜙 is defined at 𝑃 if at least one of the values 𝑓0(𝑃 ),… , 𝑓𝑀 (𝑃 ) is non-zero.
The rational map 𝜙 is called a morphism if it is defined at every point of ℙ𝑁 (𝐾). If the polynomials
𝑓0,… , 𝑓𝑁 have coefficients in a subfield 𝐿 of 𝐾 , we say that 𝜙 is defined over 𝐿.

Definition 1.4. Let 𝑓 ∈ ℚ̄[𝑋0,… , 𝑋𝑁 ] be a homogeneous polynomial. Then, we can define the
projective subvariety

𝑉 (𝐹 ) ∶= {𝑃 ∈ ℙ𝑁 ∶ 𝑓 (𝑃 ) = 0}
cut out by 𝐹 (see Question 3). We sometimes write 𝐶 ∶ 𝐹 = 𝐺 as shorthand to denote 𝐶 =
𝑉 (𝐹 − 𝐺), e.g. 𝐸 ∶ 𝑌 2𝑍 = 𝑋3 − 432𝑍3 would mean 𝐸 ∶= 𝑉 (𝑌 2𝑍 − (𝑋3 + 432𝑍3)).

Question 4. Let 𝑓 (𝑇0, 𝑇1,… , 𝑇𝑛) be a homogeneous polynomial. Given a point 𝑃 = [𝑥0,… , 𝑥𝑛] ∈
ℙ𝑛(ℚ̄), note that the expression 𝑓 (𝑃 ) = 𝑓 (𝑥0,… , 𝑥𝑛) is not well-defined; that is, its value can
depend on a choice of representative for 𝑃 . Despite this, show that the if 𝑓 (𝑥0,… , 𝑥𝑛) = 0, then
𝑓 (𝑦0,… , 𝑦𝑛) = 0 for any other choice of 𝑦0,… , 𝑦𝑛 ∈ ℚ̄ so that 𝑃 = [𝑦0,… , 𝑦𝑛]. Because of this,
our notation

𝑉 (𝑓 ) ∶= {𝑃 ∈ ℙ𝑛 ∶ 𝑓 (𝑃 ) = 0} ⊂ ℙ𝑛,
from Definition 1 is justified.

Earlier, we defined rational maps and morphisms between projective spaces. One can similarly
define rational maps and morphisms between projective varieties. The general definition is a bit
involved, but for the purposes of this problem set, examples of the following form suffice.

Definition 1.5. Let 𝑓 (𝑋0,… , 𝑋𝑁 ), 𝑔(𝑋0,… , 𝑋𝑀 ) be homogeneous polynomials cutting out pro-
jective subvarieties 𝑋 = 𝑉 (𝑓 ) ⊂ ℙ𝑁 and 𝑌 = 𝑉 (𝑔) ⊂ ℙ𝑀 . Let 𝜙0,… , 𝜙𝑀 ∈ ℚ̄[𝑇0,… , 𝑇𝑁 ] be
homogeneous polynomials all of the same degree 𝑑, so they define a rational map

𝜙 ∶= (𝜙0,… , 𝜙𝑀 ) ∶ ℙ𝑁 ⤏ ℙ𝑀 .

If 𝜙(𝑃 ) ∈ 𝑌 (ℚ̄) for all 𝑃 ∈ 𝑋(ℚ̄) at which 𝜙 is defined, then the restriction 𝜙|𝑋 ∶ 𝑋 ⤏ 𝑌 gives
an example of a rational function from 𝑋 to 𝑌 . This 𝜙 will be a morphism from 𝑋 to 𝑌 if 𝜙(𝑃 )
is defined for all 𝑃 ∈ 𝑋(ℚ̄) (even if 𝜙(𝑃 ) is not defined for all 𝑃 ∈ ℙ𝑁 (ℚ̄)). If there exists a
morphism 𝜓 ∶ 𝑌 → 𝑋 so that 𝜙◦𝜓 = id𝑌 and 𝜓◦𝜙 = id𝑋 , then we say that 𝜙 (and so also 𝜓) is
an isomorphism.

In general, one can define rational functions 𝑋 ⤏ 𝑌 which do not necessarily extend to rational
functions ℙ𝑁 ⤏ ℙ𝑀 , but we will not see those in this problem set.

Question 5. Show that the rational map 𝜙 ∶ ℙ2 → ℙ2 given by

𝜙([𝑋, 𝑌 ,𝑍]) = [𝑋2 − 𝑌 2, 𝑋𝑌 −𝑍2, 𝑌 2 −𝑍2]

is not a morphism.
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Question 6. Show that the set
{

(𝑎, 𝑏, 𝑐) ∈ ℤ3
| gcd(𝑎, 𝑏, 𝑐) = 1, 𝑎2 + 𝑏2 = 𝑐2, and 𝑐 ≠ 0

}

of primitive Pythagorean triples is in bijection with the set

𝑃 ∶=
{

(𝑢, 𝑣) ∈ ℚ2 ∶ 𝑢2 + 𝑣2 = 1
}

of rational points on the unit circle. Further show that there is a map

𝑓 ∶ ℚ ⟶ 𝑃

𝑡 ⟼

(

1 − 𝑡2

1 + 𝑡2
, 2𝑡
1 + 𝑡2

)

which is injective with image 𝑃 ⧵ {(−1, 0)}.

Question 7. This question gives a projective interpretation of Question 6. We use the notation of
that question.

(a) Convince yourself that we can view ℚ as a subset of ℙ1(ℚ) via 𝑡 ↦ [𝑡, 1]. Similarly, show
that we can view 𝑃 as a subset of ℙ2(ℚ) via (𝑢, 𝑣) ↦ [𝑢, 𝑣, 1] and show that this in fact gives
a bijection 𝑃 ≅ 𝐶(ℚ) onto the ℚ-points of 𝐶 ∶= 𝑉 (𝑋2 + 𝑌 2 = 𝑍2).

(b) Show that the map 𝑓 ∶ ℚ → 𝑃 extends to the rational map 𝜙 ∶ ℙ1 → 𝐶 given by

𝜙([𝑋, 𝑌 ]) = [𝑌 2 −𝑋2, 2𝑋𝑌 , 𝑌 2 +𝑋2].

By ‘𝜙 extends 𝑓 ’ we mean that if 𝑡 ∈ ℚ, and 𝑓 (𝑡) = (𝑢, 𝑣), then 𝜙([𝑡, 1]) = [𝑢, 𝑣, 1].
(c) Show that 𝜙 is in fact an isomorphism. Hence, primitive Pythagorean triples are parameter-

ized by ℙ1(ℚ) without caveats (the missing point (−1, 0) ∈ 𝑃 from before now corresponds
to the point ∞ ∶= [1, 0] ∈ ℙ1(ℚ)).

2. PRELIMINARIES: ELLIPTIC CURVES

We now discuss elliptic curves. This topic is huge, and we are only presenting some basic prop-
erties of elliptic curves. For mere, see [2].

Definition 2.1 ([2, p.42,§ III.I]). An elliptic curve 𝐸 over ℚ is a curve defined by an equation of
the form

𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵,
where 𝐴 and 𝐵 are in ℚ, and such that the number Δ ∶= −16(4𝐴3 + 27𝐵2) is nonzero.

The equation 𝑦2 = 𝑥3 +𝐴𝑥+𝐵 is called a Weierstrass equation for the elliptic curve 𝐸. The
associated number Δ ∶= −16(4𝐴3+27𝐵2) is called the discriminant of the Weierstrass equation.
The discriminant is the analogue of the quantity 𝑏2−4𝑎𝑐 for the quadratic polynomial 𝑎𝑥2+ 𝑏𝑥+ 𝑐
– the quantity −16(4𝐴3 + 27𝐵2) is zero precisely when the cubic 𝑥3 + 𝐴𝑥 + 𝐵 has repeated roots.
There is a wonderful online database of these curves in the LMFDB (L-functions and modular
forms database) that I strongly encourage you all to explore as you familiarize yourself with these
objects! The examples we consider here have links to their LMFDB pages.

Question 8. Consider the elliptic curve 𝐸 ∶ 𝑦2 = 𝑥3 − 𝑥. Show that there is an isomorphism (of
projective subvarieties) 𝜙 ∶ 𝐸 → 𝐸 given by 𝜙(𝑥, 𝑦) = (−𝑥, 𝑖𝑦).
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Question 9. Say ℙ2 is given homogeneous coordinates [𝑋 ∶ 𝑌 ∶ 𝑍]. Consider the elliptic curves

𝑉 ∶= 𝑉 (𝑋3 + 𝑌 3 = 𝑍3) and 𝑊 ∶= 𝑉 (𝑌 2𝑍 = 𝑋3 − 432𝑍3).

Show that 𝜙 = [12𝑍, 36(𝑋 − 𝑌 ), 𝑋 + 𝑌 ] ∶ 𝑉 → 𝑊 is a morphism. For something a bit harder,
show that 𝜙 is in fact an isomorphism.

The key property of elliptic curves is that, given points 𝑃 and𝑄 on an elliptic curve, then we can
find another point on the elliptic curve 𝑃 +𝑄. This is done in a very explicit way. You can look at
[2, § III.2] for details or just ask me.

Question 10. Verify that (1, 1) is a point of order 4 on the elliptic curve 𝐸1∶ 𝑦2 = 𝑥3 − 𝑥2 + 𝑥,
and that (0, 2) is a point of order 3 on the elliptic curve 𝐸2∶ 𝑦2 = 𝑥3 + 4.

Question 11. Verify that the doubling map for the elliptic curve 𝑦2 = 𝑥3 + 1 is given by

𝑃 = (𝑥, 𝑦) ↦ 2𝑃 =
(

𝑥4 − 8𝑥
4𝑥3 + 4

, 2𝑥
6 + 40𝑥3

8𝑦3

)

.

Note that we cannot plug in the point (−1, 0) on the curve into the formula above – can you explain
why?

The map 𝑓 (𝑥) = 𝑥4−8𝑥
4𝑥3+4

is an example of a Lattès map. A Lattès map is a rational function
(i.e. a ratio of two polynomials) that describes the 𝑥-coordinate of the point 2𝑃 in terms of the
𝑥-coordinate of 𝑃 for some elliptic curve.

Question 12. This question deals with complex multiplication (CM) in elliptic curves, which will
come up later in this set. Let 𝐸 be an elliptic curve over ℂ.

(a) Show that ℤ ⊆ End(𝐸), where End(𝐸) denotes the ring of morphisms 𝐸 → 𝐸 that are also
group homomorphisms.

(b) We say that 𝐸 has complex multiplication if ℤ ⊊ End(𝐸). This is, 𝐸 possesses “additional
symmetries". Show that the curve 𝐸 ∶ 𝑦2 = 𝑥3 − 𝑥 has complex multiplication over ℂ.

(c) Find a curve 𝐸 without complex multiplication. Hint: use the LMFDB!

✽ Question 13. Let 𝐸 ∶ 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 and 𝐸′ ∶ 𝑦2 = 𝑥3 + 𝐴′𝑥 + 𝐵′ be two elliptic curves.
We let the same letters 𝐸,𝐸′ denote also the corresponding projective varieties

𝐸 ∶ 𝑌 2𝑍 = 𝑋3 + 𝐴𝑋𝑍2 + 𝐵𝑍3 and 𝐸′ ∶ 𝑌 2𝑍 = 𝑋3 + 𝐴′𝑋𝑍2 + 𝐵′𝑍3.

Let 𝜙 ∶ 𝐸 → 𝐸′ be an isomorphism such that 𝜙([0 ∶ 1 ∶ 0]) = [0 ∶ 1 ∶ 0]. Show that 𝜙 must be
of the form

𝜙([𝑋, 𝑌 ,𝑍]) = [𝜆2𝑋 ∶ 𝜆3𝑌 ∶ 𝑍]
for some 𝜆 ∈ ℚ̄. Given that 𝜙 is of this form, write 𝐴′, 𝐵′ in terms of 𝐴,𝐵, 𝜆.

Question 14. Try this exercise if you have access to one of the computing softwares Magma/Pari
GP/SAGE. Open up the webpage of your favourite elliptic curve from this list of curves from the
LMFDB of elliptic curves 𝐸 over ℚ with 𝐸(ℚ) ≅ ℤ. Using the “Show command" option on the
top right of the webpage you opened up, learn how to enter the elliptic curve and a generator 𝑃 for
the Mordell-Weil group into your chosen platform. Also compute the points 2𝑃 , 4𝑃 , 8𝑃 , 16𝑃 etc.
using your chosen platform – what do you observe about the heights of the 𝑥-coordinates of these
points? Repeat this experiment with a different elliptic curve from the list.
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3. HEIGHTS IN ℚ

As a warm-up, we first define heights of rational numbers.

Definition 3.1. Let 𝑥 = 𝑝∕𝑞 be a rational number written in lowest terms (gcd(𝑝, 𝑞) = 1). The
height of 𝑥 is defined to be

𝐻(𝑥) = 𝐻(𝑝∕𝑞) = max{|𝑝|, |𝑞|}.

Question 15. Let 𝑥1,… , 𝑥𝑛 ∈ ℚ. Prove the following basic properties of the height for rational
numbers:

(a) 𝐻(𝑥1 ⋯ 𝑥𝑛) ≤ 𝐻(𝑥1)⋯𝐻(𝑥𝑛);
(b) 𝐻(𝑥1 +⋯ + 𝑥𝑛) ≤ 𝑛𝐻(𝑥1)⋯𝐻(𝑥𝑛).

One of the most important properties that we want to get when we define any height is the North-
cott property.

Definition 3.2. The Northcott property for a height function 𝐻 ∶ 𝑋 → 𝐾 states that for any
𝑁 ≥ 1 there are only finitely many points of 𝑋 of bounded height.

Question 16. Show that the Northcott property holds for the height function of a rational number
presented in Definition 3.1.

4. HEIGHTS IN ℙ𝑁 (ℚ)

We define the height in the case of ℚ-rational points in ℙ𝑁 i.e. the set
ℙ𝑁 (ℚ) = {[𝑥0,… , 𝑥𝑁 ] ∈ ℙ𝑁

| 𝑥𝑖 ∈ ℚ for all 𝑖}.

Definition 4.1. Given a point 𝑃 = [𝑥0,… , 𝑥𝑁 ] ∈ ℙ𝑁 (ℚ), we may assume that the homogeneous
coordinates satisfy
(4.2) 𝑥0,… , 𝑥𝑁 ∈ ℤ and gcd(𝑥0,… , 𝑥𝑁 ) = 1
(see Question 2). Having done this, we define the height of 𝑃 to be

𝐻(𝑃 ) = max{|𝑥0|,… , |𝑥𝑁 |},
and the logarithmic height of 𝑃 to be ℎ(𝑃 ) = log𝐻(𝑃 ).

Question 17. Prove the Northcott property for the height function in projective space. This is,
show that for any 𝑁 ≥ 1 there are only finitely many points of ℙ𝑛(ℚ) of bounded height.

Question 18. Let
(4.3) 𝜈(𝐵) = #{𝑃 ∈ ℙ𝑁 (ℚ) ∶ 𝐻(𝑃 ) ≤ 𝐵}.
Find positive constants 𝑐1 and 𝑐2 such that

𝑐1𝐵
𝑁+1 ≤ 𝜈(𝐵) ≤ 𝑐2𝐵

𝑁+1

for all 𝐵 ≥ 1.

✽ Question 19. Let 𝜙 ∶ ℙ𝑁 → ℙ𝑀 be a rational map of degree 𝑑, defined over ℚ. Prove that there
exists a constant 𝐶 > 0, depending only on 𝜙, such that

ℎ(𝜙(𝑃 )) ≤ 𝑑ℎ(𝑃 ) + 𝐶
for all 𝑃 ∈ ℙ𝑁 (ℚ) at which 𝜙 is defined.
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In fact, if 𝜙 is a morphism, it is also possible to prove a lower bound of the form ℎ(𝜙(𝑃 )) ≥
𝑑ℎ(𝑃 ) − 𝐶 , but we will not yet do so. For now, consider the following example. View the map
𝜙 from Question 7 (b) as a morphism 𝜙∶ ℙ1 → ℙ2 of degree 2, and compute explicit constants
𝐶1, 𝐶2 > 0 such that

2ℎ(𝑃 ) − 𝐶1 ≤ ℎ(𝜙(𝑃 )) ≤ 2ℎ(𝑃 ) + 𝐶2

for all 𝑃 ∈ ℙ1(ℚ).

Question 20. Consider the hyperplane

𝑋 ∶= 𝑉 (𝑎0𝑥0 +…+ 𝑎𝑁+1𝑥𝑁+1) ⊂ ℙ𝑁+1

where 𝑎0,… , 𝑎𝑁+1 ∈ ℚ are not all zero. Show that, for each integer 𝑀 ≥ 1,

{𝑃 ∈ 𝑋(ℚ) ∶ 𝐻(𝑃 ) ≤𝑀} ≤ 𝐶(2𝑀 + 1)(𝑁+1)

for some constant 𝐶 > 0. Hint: Construct an isomorphism between 𝑋 and ℙ𝑁 and use Question
19.

Question 21. For 𝑃 = [𝑥0,… , 𝑥𝑁 ] ∈ ℙ𝑁 and 𝑄 = [𝑦0,… , 𝑦𝑀 ] ∈ ℙ𝑀 , define

𝑃 ⋆ 𝑄 = [𝑥0𝑦0, 𝑥0𝑦1,… , 𝑥𝑖𝑦𝑗 ,… , 𝑥𝑁𝑦𝑀 ] ∈ ℙ𝑀𝑁+𝑀+𝑁 .

The map (𝑃 ,𝑄) ↦ 𝑃 ⋆ 𝑄 is called the Segre embedding of ℙ𝑁 × ℙ𝑀 into ℙ𝑀𝑁+𝑀+𝑁 .
Prove that

𝐻(𝑃 ⋆ 𝑄) = 𝐻(𝑃 )𝐻(𝑄)
for any 𝑃 ∈ ℙ𝑁 (ℚ) and 𝑄 ∈ ℙ𝑀 (ℚ).

Question 22. Let 𝑀 =
(𝑁+𝑑

𝑁

)

− 1 and let 𝑓0,… , 𝑓𝑀 be the distinct monomials of degree 𝑑 in the
𝑁 + 1 variables 𝑋0,… , 𝑋𝑁 . For any point 𝑃 = [𝑥0,… , 𝑥𝑁 ] ∈ ℙ𝑁 , let

𝑃 (𝑑) = [𝑓0(𝑃 ),… , 𝑓𝑀 (𝑃 )] ∈ ℙ𝑀 .

The map 𝑃 ↦ 𝑃 (𝑑) is called the 𝑑-uple embedding of ℙ𝑁 into ℙ𝑀 .
Prove that

𝐻
(

𝑃 (𝑑)) = 𝐻(𝑃 )𝑑 = 𝐻
(

[𝑥𝑑0 ,… , 𝑥𝑑𝑁 ]
)

for all 𝑃 = [𝑥0,… , 𝑥𝑁 ] ∈ ℙ𝑁 (ℚ).

✽ Question 23. When 𝑁 = 1, prove that

lim
𝐵→∞

𝜈(𝐵)
𝐵2

= 12
𝜋2
.

where 𝜈 is defined as in (4.3). More generally, prove that the limit

𝐶(𝑁) ∶= lim
𝐵→∞

𝜈(𝐵)∕𝐵𝑁+1

exists, and express it in terms of a value of the Riemann 𝜁 -function. Can you prove the more precise
asymptotic behaviour

𝜈(𝐵) =

{

12
𝜋2
𝐵2 + 𝑂(𝐵 log𝐵), if 𝑁 = 1;

𝐶(𝑁)𝐵𝑁+1 + 𝑂(𝐵𝑁 ) if 𝑁 > 1,
as 𝐵 → ∞?
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5. PRELIMINARIES: NUMBER FIELDS

Our goal will be to recall some of the theory of number fields, which we will need to define
more general heights. This section might have some missing information, so you can look at [4,
Chapter 13] or [3] for details.

Definition 5.1. A number field is a field𝐾 which is a finite extension of ℚ. The degree [𝐾 ∶ ℚ]
of a number field 𝐾 is the dimension of 𝐾 as a ℚ-vector space. An algebraic number is an
element of a number field 𝐾 .

Question 24. Let 𝑖 be the complex number such that 𝑖2 = −1. Show that the subset {𝑎+ 𝑏𝑖∶ 𝑎, 𝑏 ∈
ℚ} of ℂ is a number field of degree 2.

Definition 5.2. The minimal polynomial of an algebraic number 𝛼 is a polynomial 𝑓 (𝑥) ∈ ℤ[𝑥]
of lowest degree such that 𝑓 (𝛼) = 0 and such that the leading coefficient of 𝑓 is positive and the
greatest common divisor of all its coefficients is 1. The union of all algebraic numbers inside ℂ is
an algebraic closure ℚ of ℚ.

Question 25. Prove Gauss’s Lemma: a polynomial 𝑓 ∶= 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + … + 𝑎𝑛 in ℤ[𝑥] is
irreducible if and only if it is irreducible in ℚ[𝑥] and gcd(𝑎0,… , 𝑎𝑛) = 1.

Question 26. Prove that the minimal polynomial of an algebraic number is an irreducible element
of ℤ[𝑥].

Question 27. Suppose that the minimal polynomial 𝑓 ∈ ℤ[𝑥] of 𝛼 factors as

𝑓 (𝑥) = 𝑎0𝑥
𝑛 +…+ 𝑎𝑛 = 𝑎0(𝑥 − 𝛼1)⋯ (𝑥 − 𝛼𝑛)

over ℂ. Then prove that for every 𝑖 between 0 and 𝑛, we have

𝑎𝑖∕𝑎0 = (−1)𝑖
∑

1≤𝑠1<𝑠2<⋯<𝑠𝑖≤𝑛
𝛼𝑠1𝛼𝑠2 ⋯ 𝛼𝑠𝑖 .

Theorem 5.3 ([3, Theorem A.6]). Every number field 𝐾 is of the form ℚ[𝑥]∕(𝑓 (𝑥)) for some irre-
ducible polynomial 𝑓 (𝑥) ∈ ℚ[𝑥]. A root of the polynomial 𝑓 in 𝐾 is called a primitive element.

Question 28. Use Theorem 5.3 to show that every algebraic number field 𝐾 of degree 𝑛 admits
precisely 𝑛 distinct embeddings 𝜎1, 𝜎2,… , 𝜎𝑛∶ 𝐾 → ℂ.

Question 29. This question will introduce you to splitting fields and get you more comfortable
computing with number fields.

Algebraic number Minimal polynomial Number field Degree
𝑎∕𝑏 ∈ ℚ 𝑏𝑥 − 𝑎 ℚ 1

gcd(𝑎, 𝑏) = 1, 𝑏 > 0
𝑖 𝑥2 + 1 ℚ(𝑖) ≅ ℚ[𝑥]∕(𝑥2 + 1) 2

√

2 + 1 (𝑥 − 1)2 − 2 ℚ(
√

2) ≅ ℚ[𝑥]∕(𝑥2 − 2) 2
3
√

2 𝑥3 − 2 ℚ( 3
√

2) ≅ ℚ[𝑥]∕(𝑥3 − 2) 3
𝜁𝑝, a primitive 𝑝-th root 𝜙𝑝(𝑥) ∶=

𝑥𝑝−1
𝑥−1

ℚ(𝜁𝑝) ≅ ℚ[𝑥]∕(𝜙𝑝(𝑥)) 𝑝 − 1
of unity for a prime 𝑝 𝑝-th cyclotomic polynomial 𝑝-th cyclotomic field

(a) For each of the rows of the table, do the following.
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∙ Find all of the roots of the minimal polynomial over the number field. How many roots
do you find?

∙ Factor the minimal polynomial over the number field.
(c) Answer the same questions for the polynomial 𝑓 (𝑥) ∶= 𝑥3−2 over 𝑆 ∶= ℚ[𝑥]∕(𝑥6−108).

You should only get linear factors. We call the number field 𝑆 the splitting field of 𝑓 (𝑥):
the smallest field extension of the base field over which 𝑓 (𝑥) splits (decomposes into linear
factors).

Question 30. Prove that any irreducible polynomial of degree 𝑛 in ℚ[𝑥] has 𝑛 distinct roots in ℂ.

6. HEIGHTS OF ALGEBRAIC NUMBERS

Now we have all of the necessary preliminaries to be able to define a height function for algebraic
numbers!

Definition 6.1. Let 𝛼 be an algebraic number in a number field𝐾 of degree 𝑛with minimal polyno-
mial 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 +…+ 𝑎𝑛 ∈ ℤ[𝑥]. Let 𝛼1, 𝛼2,… , 𝛼𝑛 be the images of 𝛼 under the 𝑛-embeddings
of 𝐾 into ℂ – these are called the 𝑛 conjugates of 𝛼. Define the Weil/absolute height1 𝐻(𝛼) of
𝛼 by

𝐻(𝛼) ∶=

(

|𝑎0|
∏

𝑖
max(1, |𝛼𝑖|)

)1∕𝑛

,

and the Weil/absolute logarithmic height ℎ(𝛼) of 𝛼 by

ℎ(𝛼) ∶= log𝐻(𝛼).

Question 31. In this problem, you will show that 𝐻(𝛼−1) = 𝐻(𝛼).
(a) If 𝛼 is a nonzero algebraic number with minimal polynomial 𝑓 (𝑥) ∶= 𝑎0𝑥𝑛+𝑎1𝑥𝑛−1+…+𝑎𝑛,

then verify that 1∕𝛼 is also an algebraic number with minimal polynomial

𝑓 rev(𝑥) ∶= 𝑥𝑛𝑓 (1∕𝑥) = 𝑎0 + 𝑎1𝑥 +…+ 𝑎𝑛𝑥𝑛

if 𝑎𝑛 > 0, and minimal polynomial −𝑓 rev(𝑥) if 𝑎𝑛 < 0.
(b) Describe the roots of 𝑓 rev(𝑥) in terms of the roots of 𝑓 (𝑥).
(b) Show that 𝐻(𝛼−1) = 𝐻(𝛼). Hint: use Question 27.

Let 𝛼 be an algebraic number with minimal polynomial 𝑎0𝑥𝑛+…+ 𝑎𝑛. We can view 𝛼 as giving
a point [𝑎0 ∶ 𝑎1 ∶ ⋯ ∶ 𝑎𝑛] in ℙ𝑛(ℚ). Using Definition 4.1 of heights of points in ℙ𝑛(ℚ), we can
define

𝐻2(𝛼) ∶= 𝐻([𝑎0 ∶ 𝑎1 ∶ ⋯ ∶ 𝑎𝑛]).

Question 32. Let 𝛼 = 𝜁3 be a primitive third root of unity. Compute 𝐻(𝛼) and 𝐻2(𝛼). Hint: the
minimal polynomial of 𝛼 has degree 2.

✽ Question 33. There is also a third definition of a height function 𝐻3, in terms of the house
and denominator den of an algebraic number 𝛼 (See also [1][§ 3.4]):

1The quantity 𝐻(𝛼)𝑛 ∶= |𝑎0|
∏

𝑖max(1, |𝛼𝑖|) is called the Mahler measure of the polynomial 𝑓 . One can more
generally talk about the Mahler measure for any polynomial in ℂ[𝑥] and there is a formula for it as a contour integral
on the unit circle in ℂ. See [1][§ 3.3]
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(𝛼) ∶= |𝛼| =
𝑛

max
𝑗=1

|𝛼𝑗|

den(𝛼) ∶= min{𝐷 ∈ ℤ ∶ 𝐷 > 0, 𝐷𝛼 has a monic minimal polynomial in ℤ[𝑥]}

𝐻3(𝛼) ∶= den(𝛼) max
(

1, (𝛼)
)

.

Prove that den(𝛼) is well-defined and divides the leading coefficient 𝑎0 of the minimal polynomial
𝑎0𝑥𝑛 +…+ 𝑎𝑛 of 𝛼. Prove explicit inequalities relating 𝐻(𝛼),𝐻2(𝛼) and 𝐻3(𝛼).

Question 34. Fix 𝑚 ≥ 1. Consider the polynomial 𝑔 defined by

𝑔(𝑥) ∶= 𝑎𝑚0 (𝑥 − 𝛼
𝑚
1 )⋯ (𝑥 − 𝛼𝑚𝑛 ).

Show that 𝑔(𝑥) ∈ ℤ[𝑥] and that it is a power of the minimal polynomial of 𝛼𝑚.

Question 35. Consider an algebraic number 𝛼 with minimal polynomial 𝑓 (𝑥) = 𝑎0𝑥𝑛 +…+ 𝑎𝑛 ∈
ℤ[𝑥], and conjuagtes 𝛼1,… , 𝛼𝑛. Let

Disc(𝑓 ) = 𝛼2𝑛−20

∏

𝑖>𝑗
(𝛼𝑖 − 𝛼𝑗)2

be the discriminant of 𝑓 . Show that

1
𝑛
log |Disc(𝑓 )| ≤ log 𝑛 + (2𝑛 − 2)ℎ(𝛼).

✽ Question 36.
(a) Prove Liouville’s inequality, namely that if 𝛼 is an algebraic irrational number of degree

𝑛 ≥ 2, then there is a constant 𝐶 (depending on 𝛼), such that for any rational number 𝑎∕𝑏
with 𝑏 > 0, we have

|

|

|

|

𝛼 − 𝑎
𝑏
|

|

|

|

≥ 𝐶∕𝑏𝑛.

(Hint: Let 𝑓 be the minimal polynomial of 𝛼. Combine a lower bound on the nonzero
rational number 𝑓 (𝑎∕𝑏) and an upper bound for |𝑓 (𝛼) − 𝑓 (𝑎∕𝑏)|∕(𝛼 − (𝑎∕𝑏)) using the
Mean Value Theorem.)

(b) A Liouville number is a real number 𝑥 with the property that for any integer 𝑛, there is a
rational number 𝑎∕𝑏 with 𝑏 > 1 such that

0 < |𝑥 − (𝑎∕𝑏)| < 1∕𝑏𝑛.

Prove that Liouville numbers are transcendental and that Liouville’s constant
∞
∑

𝑘=1

1
10𝑘!

is a Liouville number.
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7. PRELIMINARIES: RINGS OF INTEGERS

We will continue our study of algebraic integers, so you can think of this section as part II of
section 5.

Question 37. Prove that for every algebraic number 𝛼, there is a nonzero integer 𝑚 ∈ ℤ such that
𝑚𝛼 is an algebraic integer.

Question 38.
(1) If 𝛼 is an algebraic integer with minimal polynomial 𝑓 of degree 𝑛, prove that the dis-

criminant of the power basis generated by 𝛼 is precisely the discriminant of the polyno-
mial 𝑓 , and we have Δ(𝛼) ∶= Δ(1, 𝛼,… , 𝛼𝑛−1) = (−1)(

𝑛
2)∏𝑛

𝑖=1 𝑓
′(𝛼𝑖). In particular, if

𝑓 (𝑥) = 𝑥2+𝑎𝑥+𝑏, then the corresponding discriminant is 𝑏2−4𝑎 and if 𝑓 (𝑥) = 𝑥3+𝑎𝑥+𝑏,
then the corresponding discriminant is −4𝑎3 − 27𝑏2.

(2) Let 𝑝 be a prime and let 𝜙𝑝 be the 𝑝-th cyclotomic polynomial. That is

𝜙𝑝(𝑥) =
𝑥𝑝 − 1
𝑥 − 1

= 𝑥𝑝−1 + 𝑥𝑝−2 +⋯ + 𝑥 + 1.

Show that the discriminant of the power basis generated by a primitive 𝑝-th root of unity
𝜁𝑝 is (−1)(

𝑝−1
2 )𝑝𝑝−2. (Hint: Use the equality 𝜙𝑝(𝑥)(𝑥 − 1) = 𝑥𝑝 − 1 and the product rule of

differentiation to simplify 𝜙′
𝑝(𝜁𝑝).)

Question 39. Verify that 2, 3, 1 +
√

−5, 1 −
√

−5 are four mutually non-associate irreducible ele-
ments in the ring ℤ[

√

−5] that are not prime.

Definition 7.1. Let𝐾 be a number field. An algebraic integer in𝐾 is an element whose minimal
polynomial 𝑓 (𝑥) ∶= 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + … + 𝑎𝑛 ∈ ℤ[𝑥] has 𝑎0 = 1 (i.e. 𝑓 is a monic integral
polynomial). The collection of all algebraic integers in 𝐾 is denoted 𝐾 and is called the ring of
integers of 𝐾 .

Question 40. Let 𝐾∕ℚ be a degree 𝑛 number field.
(a) Prove that if 𝐼 is a nonzero ideal of 𝐾 , then there is a nonzero integer 𝑚 in 𝐼 ∩ ℤ.
(b) Show that every nonzero ideal 𝐼 is a sublattice of 𝐾 of maximal rank, i.e. 𝐼 has finite

index in 𝐾 , and is isomorphic to ℤ𝑛 as an abelian group.

Question 41. Let 𝐾 = ℚ
(
√

−23
)

.

(a) Find 𝐾 .
(b) Prove that the norm map 𝑁 ∶ 𝐾 → ℚ taking 𝛼 → 𝛼𝜎(𝛼), where 𝜎 is complex conjugation,

takes values in ℤ when restricted to 𝐾 .
(c) Show that 2 is irreducible in 𝐾 but not prime. Conclude that 𝐾 is not a UFD.

Definition 7.2. Suppose that 𝛼 is an algebraic number with irreducible polynomial 𝑓 . Assume that
𝑓 factors in ℝ[𝑥] into 𝑟 linear factors and 𝑠 quadratic irreducible factors. Then 𝑟 + 𝑠 = 2𝑛, and the
𝑛-embeddings of𝐾 into ℂ naturally split into 𝑟 real embeddings 𝜎1, 𝜎2,… , 𝜎𝑟∶ 𝐾 → ℝ and 𝑠 pairs
(𝜏1, 𝜏1), (𝜏2, 𝜏2),… , (𝜏𝑠, 𝜏𝑠) of complex conjugate embeddings 𝐾 → ℂ. (Here for each 𝑖 between 1
and 𝑠, the embedding 𝜏𝑖 is the one obtained by composing the embedding 𝜏𝑖∶ 𝐾 → ℂ with complex
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conjugation.) The Minkowski embedding 𝐾 → ℝ𝑛 is given by
𝐾 → ℝ𝑟 × ℂ𝑠 ≅ ℝ𝑟+2𝑠

𝛼 ↦ (𝜎1(𝛼),… , 𝜎𝑟(𝛼),Re(𝜏1(𝛼)), Im(𝜏1(𝛼)),… ,Re(𝜏𝑠(𝛼)), Im(𝜏𝑠(𝛼))),

Question 42. Verify that
√

2 + 1 is a unit in the ring ℤ[
√

2]. Use the Minkowski embedding to
show that

√

2 + 1 has infinite order in the group of units of ℤ[
√

2].

✽ Question 43. Show that the ring ℤ[
√

−2] is a UFD (Hint: it suffices to show that it is a Euclidean
domain).

Question 44. Consider the elliptic curve 𝐸 ∶ 𝑦2 = 𝑥3 − 2. In this exercise, we will find all integer
points on this curve. Fix any 𝑥, 𝑦 ∈ ℤ satisfying 𝑦2 = 𝑥3 − 2.

(a) Show that 𝑦 is odd.
(b) Note that if we work in the ring ℤ[

√

−2], then we can write

(𝑦 +
√

−2)(𝑦 −
√

−2) = 𝑥3.

Take for granted the fact that ℤ[
√

−2] is a UFD (see Question 43), and show that 𝑦+
√

−2
and 𝑦 −

√

−2 are coprime.
(c) Show that there must exist some unit 𝑢 ∈ ℤ[

√

−2]× and some 𝛼 ∈ ℤ[
√

−2] so that

𝑦 +
√

−2 = 𝑢𝛼3.

(d) Show that we can always take 𝑢 = 1 above (Hint: if 𝛼 ∈ ℤ[
√

−2] ⊂ ℂ, its complex norm
|𝛼| is an integer. Use this to compute ℤ[

√

−2]×.)
(e) At this point, 𝑦 +

√

−2 must be a cube in ℤ[
√

−2]. Directly compute all (finitely many)
possible values of 𝑦, and then use this to find all integral points of 𝐸 (See footnote for the
end result2).

Question 45. Let 𝐾 = ℚ
(
√

7,
√

−2
)

. Enlarge the finite index subgroup of 𝐾 spanned by

1,
√

7,
√

−2,
√

−14 to a ℤ-basis for 𝐾 .

Question 46. Let𝐾 be a number field of degree 𝑛 and 𝛽1,… , 𝛽𝑛 beℚ-linearly independent algebraic
integers in 𝐾 . Show that the lattice Λ spanned by the images of the 𝛽𝑖 has rank 𝑛 in ℝ𝑛 and that
the fundamental domain of Λ has volume 2−𝑠

√

|Δ(𝛽1, 𝛽2,… , 𝛽𝑛)|, where 𝑠 is the number of pairs
of complex embeddings of 𝐾 .

Definition 7.3. A Galois extension 𝐾∕𝐹 is a field extension 𝐹 ⊆ 𝐾 such that
(1) the extension is finite: the dimension of 𝐾 as a vector space over 𝐹 , denoted by [𝐾 ∶ 𝐹 ],

is finite.
(2) the extension is algebraic: for every 𝛼 ∈ 𝐾 , there is a nonzero polynomial with coefficients

in 𝐹 such that 𝛼 is a root of this polynomial;
(3) the extension is normal: Every polynomial in 𝐹 [𝑥] that has a root in 𝐾 has all roots in 𝐾;
(4) the extension is separable: For every 𝛼 ∈ 𝐾 , its minimal polynomial is separable (does not

have repeated roots).
2You should find that the only integer solutions to 𝑦2 = 𝑥3 − 2 are (𝑥, 𝑦) = (3,±5)
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Equivalently, an extension𝐾∕𝐹 is Galois if and only if𝐾 is the splitting field of some separable
polynomial over 𝐹 . If 𝐾∕𝐹 is Galois, then we define Gal(𝐾∕𝐹 ), the Galois group of𝐾∕𝐹 , to be
the group Aut(𝐾∕𝐹 ). This is, Gal(𝐾∕𝐹 ) is the group of field automorphisms of 𝐾 that fix 𝐹 . For
details, see [4, Chapter 14].

Question 47. Consider the natural action of 𝑆𝑛 on ℤ[𝑥1, 𝑥2,… , 𝑥𝑛], namely the permutation action
on the indices of the variables. Let 𝑟𝐷 =

∏

𝑖<𝑗(𝑥𝑖 − 𝑥𝑗) ∈ ℤ[𝑥1, 𝑥2,… , 𝑥𝑛] and let 𝐷 = 𝑟2𝐷.
(1) Let 𝜎 ∈ 𝑆𝑛. Show that 𝜎(𝐷) = 𝐷 for all 𝜎 ∈ 𝑆𝑛 and that 𝜎(𝑟𝐷) = 𝑟𝐷 if and only if 𝜎 ∈ 𝐴𝑛.
(2) Now let 𝑝 be an irreducible cubic polynomial in ℚ[𝑥]. Let 𝐸 be the splitting field of 𝑝 over

ℚ, let 𝛼1, 𝛼2, 𝛼3 be the roots of 𝑝 in 𝐸 and let 𝐺 ∶= Gal(𝐸∕ℚ). Show that 𝐺 is either 𝐴3 or
𝑆3.

(3) Let 𝐺 be as above. show that 𝐺 = 𝐴3 if and only if 𝑟𝐷(𝛼1, 𝛼2, 𝛼3) ∈ ℚ. (In other words, the
discriminant of the polynomial 𝑝 is a square in ℚ if and only if the splitting field of 𝑝 is a
cubic Galois 𝐴3 extension.) 3

Question 48.
(1) Let 𝑞(𝑥) = 𝑥3 − 21𝑥 − 7. Show that 𝑞 is an irreducible polynomial in ℤ[𝑥]. (Caution:

Remember that there is one extra step in going from being irreducible in ℚ[𝑥] to being
irreducible in ℤ[𝑥]). Graph the polynomial 𝑞 and show that all its roots are real.

(2) Compute the discriminant of the polynomial 𝑞 and show that the splitting field of 𝑞 is a
cubic Galois 𝐴3 extension of ℚ. 4 (Hint: use Question 47).

(3) Show that if the splitting field of an irreducible cubic polynomial over ℚ is an𝐴3 extension,
then all the roots of the cubic in ℂ are real. (Remark: The converse is not necessarily true,
but an explicit example does not come to mind. Let me know if you find one!)

✽ Question 49. Consider the affine elliptic curve with equation 𝑦2 − 𝑥3 + 𝑥 ∈ ℂ[𝑥, 𝑦] and its
associated affine coordinate ring 𝑆 ∶= ℂ[𝑥, 𝑦]∕(𝑦2 − 𝑥3 + 𝑥).

(1) Let 𝑎 be a complex number. Prove that if 𝑎 ∉ {−1, 0, 1}, then 𝑆∕(𝑥 − 𝑎)𝑆 has exactly two
prime ideals, whose lifts 𝔭1, 𝔭2 to 𝑆 satisfy (𝑥−𝑎)𝑆 = 𝔭1𝔭2 (the "completely split" case),
and that if 𝑎 ∈ {−1, 0, 1}, then 𝑆∕(𝑥 − 𝑎)𝑆 has a unique prime ideal 𝔭 and (𝑥 − 𝑎)𝑆 = 𝔭2

(the "ramified" case).
(2) Show that every nonzero prime ideal of 𝑆 is of the form (𝑥 − 𝑎, 𝑦 − 𝑏) for some complex

numbers 𝑎 and 𝑏. (Hint: Show that the intersection of a nonzero prime ideal of 𝑆 with ℂ[𝑥]
is a nonzero prime ideal of ℂ[𝑥], and hence of the form (𝑥 − 𝑎) for some complex number
𝑎.)

✽ Question 50. Let 𝑝 be a prime number, and let 𝐾 = ℚ(𝜁𝑝), where 𝜁 = 𝜁𝑝 is a primitive 𝑝th root
of unity. In this problem, we want to compute the ring of integers 𝒪𝐾 . First, recall from Question
38 that ℤ[𝜁𝑝] has discriminant ±(power of 𝑝). Recall also from lecture that

Δ(𝜁𝑝) = [𝒪𝐾 ∶ ℤ[𝜁𝑝]]2Δ𝐾 .
(1) Deduce that the index of ℤ[𝜁𝑝] in 𝒪𝐾 is a power of 𝑝. Suppose that (𝑝𝒪𝐾 ∩ℤ[𝜁𝑝]) = 𝑝ℤ[𝜁𝑝].

Use this to show that 𝒪𝐾 = ℤ[𝜁𝑝].
3See sections 14.6 and 14.7 of Dummit and Foote for explicit solutions to cubic and quartic polynomials over ℚ

by radicals. The explicit forms of the solutions can be used to give an alternate proof for the problem above.
4This is one of the extensions that shows up when you try to write down a primitive 7-th root of unity explicitly in

terms of radicals.
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(2) Note that the minimal polynomial of 𝜁 − 1 is

𝑓 (𝑥) = 𝜙𝑝(𝑥 + 1) =
(𝑥 + 1)𝑝 − 1

𝑥
.

Show that 𝑓 (𝑥) is 𝑝-Eisenstein5. Use this to show that (𝜁 − 1)𝑝−1 ∣ 𝑝 in ℤ[𝜁 ].
(3) Show that (𝑝𝒪𝐾 ∩ℤ[𝜁𝑝]) = 𝑝ℤ[𝜁𝑝] (Hint: ℤ[𝜁 ] = ℤ[𝜁 −1], so any 𝑥 ∈ 𝑝𝒪𝐾 ∩ℤ[𝜁𝑝] can be

written as
𝑥 = 𝑐0 + 𝑐1(𝜁 − 1) +⋯ + 𝑐𝑑(𝜁 − 1)𝑑

where 𝑑 = [𝐾 ∶ ℚ] − 1 = 𝑝 − 2 and 𝑐𝑖 ∈ ℤ. Inductively show that 𝑝 ∣ 𝑐𝑖).

It turns out that for any number field 𝐾 , the ring of integers 𝐾 is Dedekind domain. This is,
any ideal of 𝐾 can be written uniquely as a product of prime ideals. In particular, let 𝑝 be a prime
number, then the ideal 𝑝𝐾 can be factored as a product of prime ideals

𝑝𝐾 = 𝔭𝑒11 … 𝔭𝑒𝑟𝑟 .

Definition 7.4. The exponent 𝑒𝑖 of the prime ideal 𝔭𝑖 appearing in the factorization of 𝑝𝐾 is called
the ramification index of 𝔭𝑖 over 𝑝, and is also denoted 𝑒(𝔭𝑖|𝑝).

Question 51. Let 𝐾 = ℚ(𝛼) be a number field. Let 𝑓 be the minimal polynomial of 𝛼, and let 𝑝 be
a prime that does not divide the index [𝐾 ∶ ℤ[𝛼]]. Suppose 𝑓 factors as

𝑓 (𝑥) ≡ 𝑓1(𝑥)𝑒1 … 𝑓𝑟(𝑥)𝑒𝑟 mod 𝑝,

where 𝑓𝑖(𝑥) ∈ ℤ[𝑥] such that 𝑓𝑖(𝑥) mod 𝑝 are pairwise distinct irreducible polynomials in 𝔽𝑝[𝑥].
Let 𝔭𝑖 ∶= (𝑝, 𝑓𝑖(𝛼)) for each 𝑖. Verify that 𝔭𝑖 is a prime ideal.

Question 52. Let 𝐾 be a number field and 𝐾 be its ring of integers.
(1) Show that if 𝐼 is a nonzero ideal of 𝐾 , then 𝐼 ∩ℤ is a nonzero ideal of ℤ. Use this to show

that 𝐼 has finite index in 𝐾 .
(2) Show that if 𝔭 is a prime ideal of 𝐾 , then 𝔭 ∩ ℤ is a prime ideal of ℤ.
(3) Prove that every finite integral domain is a field. (Hint: To prove that a nonzero element 𝛼

has a multiplicative inverse, consider the set {𝛼, 𝛼2,…}.)
(4) Combine the previous three parts to show that if 𝔭 is a nonzero prime ideal of 𝐾 , then

𝔭 is in fact a maximal ideal. If 𝑝 is a generator for the ideal 𝔭 ∩ ℤ, then 𝐾∕𝔭 is a finite
extension of the finite field 𝔽𝑝.

Definition 7.5. Let 𝔭 be a prime ideal of 𝐾 . The inertia degree of 𝔭 is the degree of the extension
𝐾∕𝔭.

Note that this is well defined because of Question 52.

Question 53. Let 𝐾 be a number field and let 𝑝 be a prime number that does not divide the index
[𝐾 ∶ ℤ[𝛼]]. If 𝔭𝑖 is the prime ideal associated to the irreducible polynomial 𝑓𝑖(𝑥) appearing in
the factorization of 𝑓 modulo 𝑝, show that the inertial degree of 𝔭𝑖 is the degree of the polynomial
𝑓𝑖.

Question 54. Let 𝔭 be a prime ideal of 𝐾 , where 𝐾 is a number field.
(1) Show that 𝔭𝑖 ≠ 𝔭𝑖+1 for any integer 𝑖.
5i.e. 𝑓 (𝑥) = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 +⋯ + 𝑎𝑛 where 𝑝 ∤ 𝑎0, 𝑝2 ∤ 𝑎𝑛, but 𝑝 ∣ 𝑎𝑖 for all 𝑖 > 0 (including 𝑖 = 𝑛)
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(2) Let 𝛼 ∈ 𝔭𝑖 ⧵ 𝔭𝑖+1. Show that the map of 𝐾-modules 𝐾∕𝔭 → 𝔭𝑖∕𝔭𝑖+1 induced by sending
1 to 𝛼 is an isomorphism.

(3) Verify that the dimension of 𝐾∕𝔭𝑟 as a 𝔽𝑝 vector space is 𝑟𝑓 (𝔭|𝑝).

Question 55. Assume that 𝐾 is a number field.
(1) Show that every ideal of 𝐾 is generated by at most two elements.
(2) Show that 𝐾 is a PID if and only if it is a UFD.

8. HEIGHTS IN ℙ𝑁 (𝐾)

In this section, we will use absolute values to define a height function on ℙ𝑁 (𝐾).

Definition 8.1. An absolute value on a field 𝐾 is a function | ⋅ |∶ 𝐾 → ℝ such that for all
𝑥, 𝑦 ∈ 𝐾 , we have

(1) |𝑥| ≥ 0, and |𝑥| = 0 if and only if 𝑥 = 0. (non-negativity and positive-definiteness)
(2) |𝑥𝑦| = |𝑥| ⋅ |𝑦|. (multiplicativity)
(3) |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|. (triangle inequality)

If an absolute value satifies the strong triangle inequality |𝑥+𝑦| ≤ max(|𝑥|, |𝑦|) (which implies the
weaker inequality 3), we say | ⋅ | is non-Archimedean (or ultrametric) absolute value. Otherwise,
| ⋅ | is called Archimedean.

Question 56. This is a sanity check. Show that the usual absolute value on ℂ is an absolute value.
Can you prove that it is Archimedean?

Question 57. Let 𝔭 be a nonzero prime ideal in a number field 𝐾 , with 𝑝ℤ = 𝔭∩ℤ. Show that the
function | ⋅ |𝔭 defined by

| ⋅ |𝔭∶ 𝐾∗ → ℝ
0 ↦ 0
𝑥↦ 𝑝−𝑓 (𝔭|𝑝)𝜈𝔭(𝑥) if 𝑥 ≠ 0

is a non-Archimedean absolute value on 𝐾 .

Note that every absolute value on a field 𝐾 gives 𝐾 the structure of a metric space where

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|.

This gives a topology on the field 𝐾 .

Definition 8.2. We say that two absolute values are equivalent if they induce the same topology on
𝐾 . A place of 𝐾 is an equivalence class of a nontrivial absolute value on 𝐾 . The collection of all
places of a field 𝐾 is denoted 𝑀𝐾 . Archimedean places are also called infinite places, and non-
Archimedean places are also called finite places. Moreover, MSpec(𝐾) is the set of maximal
ideals of 𝐾 .

Question 58. Show that the two different embeddings 𝐾 ∶= ℚ
(
√

2
)

→ ℝ induce different
topologies on 𝐾 . (Hint: Can you construct a sequence of elements of 𝐾 that converges to 0 in one
topology but does not converge in the other?)
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✽ Question 59. Prove the product formula for number fields: for 𝑥 ∈ 𝐾∗ we have
(

∏

𝔭∈MSpec(𝐾 )
|𝑥|𝔭

)(

𝑟
∏

𝑖=1
|𝜎𝑖(𝑥)|ℝ

)(

𝑠
∏

𝑗=1
|𝜏𝑗(𝑥)|2ℂ

)

= 1.

(Hint: Let 𝑥 ∈ 𝐾 ⧵ {0}. Compute the size of 𝐾∕𝑥𝐾 in two ways: (1) Show that it equals the
product of the terms coming from the Archimedean places. (2) Show that if 𝑥𝐾 = 𝔭𝑒11 … 𝔭𝑒𝑟𝑟 and
𝔭𝑖 ∩ℤ = 𝑝𝑖ℤ with 𝑝𝑖 > 0, then #𝐾∕𝑥𝐾 =

∏

𝑝𝑒𝑖𝑓𝑖𝑖 ). This is analogous to the proof of the product
formula over ℚ.

Definition 8.3. Let 𝐾 be a number field. Define the height function 𝐻 ∶ ℙ𝑛(𝐾) → ℝ as follows.
Let 𝑃 ∈ ℙ𝑛(𝐾) be a point with a representative [𝑥0 ∶ 𝑥1 ∶ … ∶ 𝑥𝑛] with 𝑥𝑖 ∈ 𝐾 , not all zero (i.e.
homogeneous coordinates for 𝑃 ). The relative height of 𝑃 (relative to 𝐾)𝐻𝐾(𝑃 ) is defined
to be the product

∏

𝔭∈MSpec(𝐾 )
max(|𝑥0|𝔭,… , |𝑥𝑛|𝔭)

(

𝑟
∏

𝑖=1
max(|𝜎𝑖(𝑥0)|ℝ,… , |𝜎𝑖(𝑥𝑛)|ℝ)

)(

𝑠
∏

𝑗=1
max(|𝜏𝑗(𝑥0)|2ℂ,… , |𝜏𝑗(𝑥𝑛)|2ℂ)

)

.

The absolute height of 𝑃 is
𝐻(𝑃 ) ∶= 𝐻𝐾(𝑃 )1∕[𝐾∶ℚ].

Question 60. Let 𝐾 = ℚ
(
√

−1
)

. Compute the relative height 𝐻𝐾 of 𝑃 ∶= [5, 6]. Use this to
compute 𝐻(𝑃 ).

Question 61. Prove that if 𝛼 ∈ 𝐾 for a number field 𝐾 , then 𝐻(𝛼) = 𝐻([𝛼∶ 1]).

✽ Question 62. Prove that if 𝑃 ∈ ℙ𝑛(𝐾) with homogeneous coordinates [𝑥0 ∶ 𝑥1 ∶ … ∶ 𝑥𝑛],
where 𝑥𝑖 ∈ 𝐾 for 𝑖 ∈ {0,… , 𝑛} and one of the coordinates is equal to 1, then

𝐻(𝑃 ) ≥

(

𝑛
∏

𝑖=0
𝐻(𝑥𝑖)

)1∕𝑛

.

Question 63. Let 𝐾∕ℚ be a finite Galois extension (as in Definition 7.3). Show that if 𝜎 is an
automorphism of 𝐾 in Gal(𝐾∕ℚ) and 𝑃 = [𝑥0 ∶ … ∶ 𝑥𝑛] ∈ ℙ𝑛(𝐾). Then,

𝐻𝐾(𝜎(𝑃 )) = 𝐻𝐾(𝑃 ),

where 𝜎(𝑃 ) = [𝜎(𝑥0) ∶ … ∶ 𝜎(𝑥𝑛)].

✽ Question 64 (Generalized Liouville’s inequality). Let𝐿∕𝐾 be an extension of number fields and
𝑆 be a finite set of primes in 𝐿. Let 𝛼, 𝛽 be elements of 𝐿 with 𝛼 ≠ 𝛽.

(a) Show that 𝐻(𝛼 − 𝛽) ≤ 2𝐻(𝛼)𝐻(𝛽).
(b) Show that

∏

𝔭∈𝑆 |𝛼|𝔭 ≤ 𝐻(𝛼)𝑛.
(c) Show that

(2𝐻(𝛼)𝐻(𝛽))−𝑛 ≤
∏

𝔭∈𝑆
|𝛼 − 𝛽|𝔭 ≤ (2𝐻(𝛼)𝐻(𝛽))𝑛.

[Hint: For the lower bound use that 𝐻(𝛾) = 𝐻(1∕𝛾) for any 𝛾 ∈ ℚ.]
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9. HEIGHTS ON ELLIPTIC CURVES

We are now ready to define heights on elliptic curves! This is not where the theory of heights
ends, but will be the last topic we cover. If you are curious about other height functions or applica-
tions, please ask!

Definition 9.1. The Weil height function of an elliptic curve 𝐸 defined over a number field 𝐾
is the function

ℎ𝐸 ∶ 𝐸(ℚ) → ℝ
𝑃 ↦ ℎ(𝑥(𝑃 )).

Definition 9.2 (Tate). The canonical or Néron-Tate height on an elliptic curve 𝐸 over a number
field 𝐾 is the function

ℎ̂𝐸 ∶ 𝐸(ℚ) → ℝ

𝑃 ↦ lim
𝑁→∞

ℎ𝐸(2𝑁𝑃 )
2 ⋅ 4𝑁

Question 65. Show that the canonical height function is well-defined. You can follow the proof of
this fact in [2, Chapter 8, Proposition 9.1].

Question 66. Show that the canonical height function ℎ̂𝐸 ∶ 𝐸(ℚ) → ℝ satisfies the following
properties:

(a) (Northcott) |2ℎ̂𝐸 − ℎ𝐸| is a bounded function on 𝐸(ℚ). Hence, the set of points of 𝐸(ℚ)
with bounded canonical height is finite.

(b) (Parallelogram law) Let 𝑃 ,𝑅 ∈ 𝐸(ℚ) be any two points of 𝐸(ℚ). Then, we have

ℎ̂𝐸(𝑃 + 𝑅) + ℎ̂𝐸(𝑃 − 𝑅) = 2ℎ̂𝐸(𝑃 ) + 2ℎ̂𝐸(𝑅).

In particular, for any positive integer 𝑚, we have

ℎ̂𝐸(𝑚𝑃 ) = 𝑚2ℎ̂𝐸(𝑃 ) (canonicity),

and
ℎ̂𝐸(𝑃 + 𝑅) ≤ 2ℎ̂𝐸(𝑃 ) + 2ℎ̂𝐸(𝑅).

(c) (Uniqueness) Any function ℎ̂′∶ 𝐸(ℚ) → ℝ satisfying Northcott and canonicity for any
one integer 𝑚 ≥ 2 is equal to ℎ̂𝐸 .

Question 67. Let 𝑃 ∈ 𝐸(ℚ). Show that ℎ̂𝐸(𝑃 ) ≥ 0. Furthermore, show that ℎ̂𝐸(𝑃 ) = 0 if and
only if 𝑃 is a torsion point.

Question 68. Let𝐾 be a number field, and let 𝐸∕𝐾 be an elliptic curve defined over𝐾 . Prove that
the group 𝐸(𝐾)tors of torsion 𝐾-points is finite.

The next two questions ask you to adapt the construction of the canonical height function on an
elliptic curve to a dynamical setting.

Question 69. Let 𝑓 ∶ ℙ𝑛 → ℙ𝑛 be a morphism of degree 𝑑 ≥ 2 defined over a number field 𝐾 .
Recall from lecture that ℎ(𝑓 (𝑃 )) = 𝑑ℎ(𝑃 ) + 𝑂(1) for any 𝑃 ∈ ℙ𝑛(ℚ), say

|ℎ(𝑓 (𝑃 )) − 𝑑ℎ(𝑃 )| ≤ 𝐶
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for any 𝑃 ∈ ℙ𝑛(ℚ). Use a telescoping sum argument to show that
|

|

|

|

ℎ(𝑓 ◦𝑁 (𝑃 ))
𝑑𝑁

−
ℎ(𝑓 ◦𝑀 (𝑃 ))

𝑑𝑀
|

|

|

|

≤ 𝐶
(𝑑 − 1)𝑑𝑀

for all 𝑁 > 𝑀 ≥ 0. Conclude from this that the function

ℎ̂𝑓 (𝑃 ) ∶= lim
𝑁→∞

ℎ(𝑓 ◦𝑁 (𝑃 ))
𝑑𝑁

is well-defined, i.e. that the limit always converges.

Question 70. Let 𝐸 be an elliptic curve over a number field 𝐾 . Consider the two statements.
(1) For all 𝑃 ,𝑄 ∈ 𝐸(ℚ), we have

ℎ𝐸(𝑃 +𝑄) + ℎ𝐸(𝑃 −𝑄) = 2ℎ𝐸(𝑃 ) + 2ℎ𝐸(𝑄) + 𝑂(1),
where the implied constants in 𝑂(1) depend on 𝐸, but are independent of the pair of points
𝑃 ,𝑄.

(2) For any integer 𝑚 ∈ ℤ, we have
ℎ𝐸(𝑚𝑃 ) = 𝑚2ℎ𝐸(𝑃 ) + 𝑂(1),

where the implied constants in the 𝑂(1) notation depend only on 𝐸 and 𝑚 and not on the
point 𝑃 .

Show that 2 follows from 1.

✽ Question 71. Let 𝛼1,… , 𝛼𝑛 be any 𝑛 algebraic numbers (not necessarily conjugate), and let
𝑓 (𝑥) = (𝑥 − 𝛼1)… (𝑥 − 𝛼𝑛) = 𝑥𝑛 + 𝑎1𝑥𝑛−1 +⋯ + 𝑎𝑛−1𝑥 + 𝑎𝑛 ∈ ℚ̄[𝑥].

Also set 𝑎0 = 1. Show that

−𝑛 log(2) +
𝑛
∑

𝑖=1
ℎ(𝛼𝑖) ≤ ℎ([1 ∶ 𝑎1 ∶ ⋯ ∶ 𝑎𝑛]) ≤ (𝑛 − 1) log 2 +

𝑛
∑

𝑖=1
ℎ(𝛼𝑖).

Hint: Fix a place 𝑣, and use induction on 𝑛 = deg𝑓 to show that

𝑐−𝑛𝑣

𝑛
∏

𝑗=1
max{1, ||

|

𝛼𝑗
|

|

|𝑣
} ≤ max

0≤𝑖≤𝑛
|

|

𝑎𝑖||𝑣 ≤ 𝑐𝑛−1𝑣

𝑛
∏

𝑗=1
max{1, ||

|

𝛼𝑗
|

|

|𝑣
},

where 𝑐𝑣 = 1 if 𝑣 is non-archimedean, but 𝑐𝑣 = 2 if 𝑣 is real, and 𝑐𝑣 = 4 if 𝑣 is complex. In the
induction step, you’ll want to write 𝑓 (𝑥) = (𝑥 − 𝛼𝑘)𝑔(𝑥) with 𝑘 chosen to maximize |

|

𝛼𝑘||𝑣.

✽ Question 72. This problem will give you a way of computing 2 ⋅𝐸(𝐾) to use the Descent method
for 𝐸(𝐾). 6 Let 𝐸 be an elliptic curve defined over 𝐾 . Consider the ring 𝑅 ∶= 𝐾[𝑥]∕𝑓 (𝑥)𝐾[𝑥].
Define the map 𝜙 ∶ 𝐸(𝐾) → 𝑅×∕(𝑅×)2 given by

𝜙(𝑃 ) = 𝑥(𝑃 ) − 𝑥
Show the following

(1) 𝜙 is a homomorphism
(2) ker(𝜙) = 2 ⋅ 𝐸(𝐾)

Use the map 𝜑 to show that if 𝐸 ∶ 𝑦2 = 𝑓 (𝑥) and 𝑓 (𝑥) ∈ ℚ[𝑥] has three rational roots, then
𝐸(𝑄)∕2𝐸(𝑄) is finite.

6This problem comes from Section 7 of this REU paper
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✽ Question 73. Let 𝐺 be an abelian group. Show that 𝐺 is finitely generated if and only if
(1) 𝐺 admits a norm (as an abelian group). This is, there is a map | ⋅ | ∶ 𝐺 → ℝ≥0 such that

(i) ∣ 𝑚𝑝 ∣=∣ 𝑚 ∣∣ 𝑝 ∣ for all 𝑔 ∈ 𝐺 and 𝑚 ∈ ℤ,
(ii) ∣ ℎ + 𝑔 ∣≤ |ℎ| + |𝑔| for all ℎ, 𝑔 ∈ 𝐺,

(iii) for each 𝑐 ∈ ℝ the set 𝐺𝑐 ∶= {𝑔 ∈ 𝐺 ∣ |𝑝| ≤ 𝑐} is finite.
(2) 𝐺∕𝑚𝐺 is finite for some integer 𝑚 > 1.

Does your proof determine explicitly a set of generators? Note that this is analogous to the descent
method used in the lectures to show that 𝐸(𝐾) is finitely generated, where 𝐸 is an elliptic curve
defined over a number field 𝐾 .

Question 74. Let 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 be the defining equation for an elliptic curve 𝐸, where 𝐴, 𝐵
are constants in 𝐾 such that 4𝐴3 + 27𝐵2 ≠ 0. Assume that 𝑃 and 𝑄 are points on 𝐸 such that
𝑥(𝑃 ) = [𝑥1 ∶ 1], 𝑥(𝑄) = [𝑥2 ∶ 1], 𝑥(𝑃 +𝑄) = [𝑥3 ∶ 1] and 𝑥(𝑃 −𝑄) = [𝑥4 ∶ 1] (where 𝑥𝑖 = ∞ if
the corresponding point is infinity on ℙ1). Show that the following identities hold.

(a) 𝑥3 + 𝑥4 =
2(𝑥1 + 𝑥2)(𝐴 + 𝑥1𝑥2) + 4𝐵

(𝑥1 + 𝑥2)2 − 4𝑥1𝑥2
.

(b) 𝑥3𝑥4 =
(𝑥1𝑥2 − 𝐴)2 − 4𝐵(𝑥1 + 𝑥2)

(𝑥1 + 𝑥2)2 − 4𝑥1𝑥2
.

Question 75. Let 𝐴 and 𝐵 be elements of 𝐾 such that 4𝐴3 + 27𝐵2 ≠ 0. Let 𝑔0, 𝑔1, 𝑔2 in 𝐾[𝑡, 𝑢, 𝑣]
be defined as follows:

𝑔0(𝑡, 𝑢, 𝑣) ∶= 𝑢2 − 4𝑡𝑣,
𝑔1(𝑡, 𝑢, 𝑣) ∶= 2𝑢(𝐴𝑡 + 𝑣) + 4𝐵𝑡2,
𝑔2(𝑡, 𝑢, 𝑣) ∶= (𝑣 − 𝐴𝑡)2 − 4𝐵𝑡𝑢.

(a) Show that if 𝑡 = 0, then 𝑢 = 𝑣 = 0.
(b) Assume 𝑡 ≠ 0. Define 𝑧 ∶= 𝑢∕2𝑡. Using 𝑔0 = 0, show that 𝑧2 = 𝑣∕𝑡.
(c) Define𝜓(𝑧) ∶= 4𝑧(𝐴+𝑧2)+4𝐵 and𝜙(𝑧) ∶= (𝑧2−𝐴)2−8𝐵𝑧. Show that 𝑔1(𝑡, 𝑢, 𝑣) = 𝑡2𝜓(𝑧)

and 𝑔2(𝑡, 𝑢, 𝑣) = 𝑡2𝜙(𝑧).
(d) Verify that (12𝑧2 + 16𝐴)𝜙(𝑧) − (3𝑧3 − 5𝐴𝑧 − 27𝐵)𝜓(𝑧) = 4(4𝐴3 + 27𝐵2).
(e) Conclude that 𝜓 and 𝜙 cannot simultaneously vanish, and hence 𝑔0, 𝑔1, 𝑔2 have no common

zero with 𝑡 ≠ 0.
Conclude that if (𝑡, 𝑢, 𝑣) is a common zero of 𝑔0, 𝑔1 and 𝑔2, then 𝑡 = 𝑢 = 𝑣 = 0.

Question 76. Let 𝐾 be a number field, and let 𝐸∕𝐾 be an elliptic curve with canonical height
ℎ̂𝐸 ∶ 𝐸(ℚ) → ℝ. Consider the pairing

⟨𝑃 ,𝑄⟩ ∶= 1
2

[

ℎ̂𝐸(𝑃 +𝑄) − ℎ̂𝐸(𝑃 ) − ℎ̂𝐸(𝑄)
]

on 𝐸(ℚ) × 𝐸(ℚ).
(1) Show that ⟨𝑃 ,𝑄⟩ is symmetric, bilinear, and satisfies ⟨𝑃 , 𝑃 ⟩ = ℎ̂𝐸(𝑃 ). The is sometimes

called the height pairing on 𝐸.
Hint: first show that ℎ̂𝐸 satisfies an exact parallelogram law.

(2) If you know about tensor products, then show that ⟨−,−⟩ extends to a positive definite inner
product on the real vector space 𝐸(ℚ)⊗ℤ ℝ.
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We will see an application of (a generalization of this) in Question 80.

Question 77. The Hilbert’s Nullstellensatz is an essential theorem in algebraicc geometry. The
most common version of this theorem is given as follows. Let 𝑘 be an algebraically closed field
and consider an ideal 𝐽 ⊆ 𝑘[𝑋0,… , 𝑋𝑛]. Define

𝑉 (𝐽 ) ∶= {𝑥 ∈ 𝑘𝑛+1 ∶ 𝑓 (𝑥) = 0 for all 𝑓 ∈ 𝐽}.

The Hilbert Nullstellensatz states that if 𝑓 ∈ 𝑘[𝑋0,… , 𝑋𝑛] is a polynomial such that 𝑓 (𝑥) = 0 for
all 𝑥 ∈ 𝑉 (𝐽 ), then there must be 𝑒 ∈ ℤ≥0 such that 𝑓 𝑒 ∈ 𝐽 .

Suppose 𝐹 ∶ ℙ𝑁 → ℙ𝑀 is a morphism of degree 𝑑 over a number field 𝐾 , i.e.
𝐹 (𝑃 ) = [𝑓0(𝑃 )∶ … ∶ 𝑓𝑀 (𝑃 )],

where the 𝑓𝑖 are homogeneous polynomials of degree 𝑑 in 𝑁 + 1 variables with coefficients in 𝐾 .
Assume that the 𝑓𝑖 have no common zeros in ℚ

𝑁+1
⧵ (0, 0,… , 0). Use Hilbert’s Nullstellensatz

to show that if [𝑋0,… , 𝑋𝑁 ] are coordinates for ℙ𝑁 , then there is an exponent 𝑒 ∈ ℤ≥0 and there
are polynomials 𝑔𝑖𝑗 ∈ 𝐾[𝑥0,… , 𝑥𝑁 ] for 𝑖 ∈ {0,… , 𝑁} and 𝑗 ∈ {0,… ,𝑀} such that for every
𝑖 ∈ {0,… , 𝑁}, we have

𝑥𝑒𝑖 =
𝑀
∑

𝑗=0
𝑔𝑖𝑗𝑓𝑗 .

Definition 9.3. For 𝐾 a number field, 𝑣 a place of 𝐾 , and 𝑔 ∈ 𝐾[𝑥0,… , 𝑥𝑛] a polynomial, we let
|𝑔|𝑣 denote the maximal absolute value of any of its coefficients, i.e. if 𝑔 =

∑

𝐼 𝑎𝐼𝑥𝐼 with 𝐼 ranging
over all multi-indices (𝑐0,… , 𝑐𝑛) ∈ ℤ𝑛+1

≥0 with 𝑐0 +⋯ + 𝑐𝑛 ≤ deg 𝑔,7 then |𝑔|𝑣 = max𝐼 ||𝑎𝐼 ||𝑣.

Question 78. In this problem, we will show that for a morphism 𝐹 = [𝑓0,… , 𝑓𝑀 ] ∶ ℙ𝑁 → ℙ𝑀 of
degree 𝑑 over a number field 𝐾 , one has

ℎ(𝐹 (𝑃 )) = 𝑑ℎ(𝑃 ) + 𝑂(1)

if the polynomials 𝑓𝑖 ∈ 𝐾[𝑥0,… , 𝑥𝑁 ] have no common zero other than (𝑥0,… , 𝑥𝑁 ) = (0,… , 0).
(1) Let 𝑔 ∈ 𝐾[𝑥0,… , 𝑥𝑁 ] be homogeneous of degree 𝑑, and let 𝑣 be a place of 𝐾 . If 𝑣 is

archimedean, show that

|𝑔(𝑃 )|𝑣 ≤
(

𝑁 + 𝑑
𝑑

)

|𝑔|𝑣 max
0≤𝑖≤𝑁

|

|

𝑥𝑖||
𝑑
𝑣 for all 𝑃 = [𝑥0,… , 𝑥𝑁 ] ∈ ℙ𝑁 (ℚ).

If 𝑣 is non-archimedean, show that

|𝑔(𝑃 )|𝑣 ≤ |𝑔|𝑣 max
0≤𝑖≤𝑁

|

|

𝑥𝑖||
𝑑
𝑣 for all 𝑃 = [𝑥0,… , 𝑥𝑁 ] ∈ ℙ𝑁 (ℚ).

Use this to conclude that
ℎ(𝐹 (𝑃 )) ≤ 𝑑ℎ(𝑃 ) + 𝐶2 for all 𝑃 = [𝑥0,… , 𝑥𝑁 ] ∈ ℙ𝑁 (ℚ),

where 𝐶2 = [𝐾 ∶ ℚ] log
(𝑁+𝑑

𝑑

)

+ ℎ(𝐹 ), where |𝐹 |𝑣 ∶= max0≤𝑗≤𝑀
|

|

|

𝑓𝑗
|

|

|𝑣
and ℎ(𝐹 ) ∶=

∑

𝑣 log |𝐹 |𝑣.
8

7Here, 𝑥𝐼 ∶= 𝑥𝑐00 𝑥
𝑐1
1 … 𝑥𝑐𝑛𝑛 and 𝑎𝐼 ∈ 𝐾 is just some choice of coefficient associated with 𝐼 .

8This ℎ(𝐹 ) is the height of the projective point whose coordinates are given by the collection of coefficients of the
𝑓𝑗’s
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(2) Hilbert’s Nullstellsatz (See Question 77) guarantees the existence of an exponent 𝑒 and
polynomials 𝑔𝑖𝑗 ∈ 𝐾[𝑥0,… , 𝑥𝑁 ] such that for every 𝑖 ∈ {0,… , 𝑁}, we have

𝑥𝑒𝑖 =
𝑀
∑

𝑗=0
𝑔𝑖𝑗𝑓𝑗 .

For a place 𝑣, let |𝐺|𝑣 ∶= max𝑖,𝑗
|

|

|

𝑔𝑖𝑗
|

|

|𝑣
. To avoid breaking into archimedean and non-

archimedean cases, we now introduce

𝜖𝑣 ∶=

{

1 if 𝑣 archimedean
0 otherwise.

To ease notation even further, for a point 𝑃 = [𝑥0,… , 𝑥𝑁 ] in projective space, we define
|𝑃 |𝑣 ∶= max0≤𝑖≤𝑁 |

|

𝑥𝑖||𝑣. Now, arguing as in (1), show that

|𝑃 |𝑒𝑣 ≤ (𝑀 + 1)𝜖𝑣
(

max
𝑖,𝑗

|

|

|

𝑔𝑖𝑗(𝑃 )
|

|

|𝑣

)

|𝐹 (𝑃 )|𝑣 ≤ 𝐶 ′
|𝐹 (𝑃 )|𝑣 |𝑃 |

𝑒−𝑑
𝑣 for any 𝑃 ∈ ℙ𝑁 (ℚ),

where 𝐶 ′ ∶= (𝑀 + 1)𝜖𝑣
(𝑁+𝑒−𝑑

𝑁

)𝜖𝑣
|𝐺|𝑣. Use this to conclude that

𝑑ℎ(𝑃 ) + 𝐶1 ≤ ℎ(𝐹 (𝑃 )) for all 𝑃 ∈ ℙ𝑁 (ℚ),

where 𝐶1 = [𝐾 ∶ ℚ]
(

log(𝑀 + 1) + log
(𝑁+𝑒−𝑑

𝑁

)

)

+ ℎ(𝐺), where ℎ(𝐺) ∶=
∑

𝑣 log |𝐺|𝑣.

Question 79. Consider the degree 2 rational map

𝐹 ∶ ℙ2 ⟶ ℙ2

[𝑥, 𝑦, 𝑧] ⟼ [𝑥2, 𝑥𝑦, 𝑧2].

Note that 𝐹 above is not a morphism, so Question 78 does not apply to it. Show in fact there are
infinitely many points 𝑃 ∈ ℙ2(ℚ) such that ℎ(𝐹 (𝑃 )) = ℎ(𝑃 ).

✽ Question 80. This question will assume some familiarity with algebraic curves and their jaco-
bians. In addition to the Mordell-Weil Theorem (that the group of rational points on an elliptic curve
is finitely generated), another celebrated application of heights is in Vojta’s proof of the Mordell
Conjecture9. This conjecture states that any curve of genus 𝑔 ≥ 2 defined over a number field
𝐾 has finitely many 𝐾-points. After assuming some hard facts about heights on curves and their
jacobians, we will ask you to prove this statement.

Let 𝐾 be a number field, let 𝐶∕𝐾 be a curve of genus 𝑔 ≥ 2, and let 𝐽 = Jac(𝐶) be its jacobian.
Assume that 𝐶(𝐾) ≠ ∅, so we may define an Abel-Jacobi embedding 𝑗 ∶ 𝐶 ↪ 𝐽 . We take for
granted the following facts.

(1) There exists a height function ℎ̂ ∶ 𝐽 (ℚ) → ℝ which satisfies both the Northcott property
and that ℎ̂(𝑚𝑥) = 𝑚2ℎ̂(𝑥) for any 𝑚 ∈ ℤ and 𝑥 ∈ 𝐽 (ℚ). 10

9This conjecture was originally proved by Faltings.
10For those more familiar with the Weil height machinery, on 𝐽 , there is a so-called theta divisor Θ ∶=

𝑗(𝐶) +⋯ + 𝑗(𝐶)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

(𝑔−1) summands

⊂ 𝐽 . The function ℎ̂ alluded to here is a canonical version of the height function associated to

the divisor Θ + [−1]∗Θ, where [−1] ∶ 𝐽 → 𝐽 is negation in 𝐽 ’s group law.
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In particular, the points of height 0 are exactly the torsion points of 𝐽 . Furthermore, the
map ⟨−,−⟩ ∶ 𝐽 (ℚ) × 𝐽 (ℚ) → ℝ defined by

⟨𝑥, 𝑦⟩ ∶= 1
2

[

ℎ̂(𝑥 + 𝑦) − ℎ̂(𝑥) − ℎ̂(𝑦)
]

is a symmetric, bilinear pairing satisfying ⟨𝑥, 𝑥⟩ = ℎ̂(𝑥). Inspired by this, we introduce the
notation

‖𝑥‖ ∶=
√

⟨𝑥, 𝑥⟩ =
√

ℎ̂(𝑥)

for 𝑥 ∈ 𝐽 (ℚ).
(2) The group 𝐽 (𝐾) ⊂ 𝐽 (ℚ) of 𝐾-points on the jacobian is finitely generated, and the pairing

⟨−,−⟩ considered above gives a positive definite inner product on the finite dimensional
vector space 𝑉 ∶= 𝐽 (𝐾)⊗ℤ ℝ.

(3) For any 𝜖 > 0, there exists constants𝐵 > 0 and 𝜅 ≥ 1 such that for any distinct𝑃 ,𝑄 ∈ 𝐶(ℚ)
satisfying both11

‖𝑗(𝑃 )‖ ≥ ‖𝑗(𝑄)‖ > 𝐵 and
⟨𝑗(𝑃 ), 𝑗(𝑄)⟩
‖𝑗(𝑃 )‖‖𝑗(𝑄)‖

≥ 3
4
+ 𝜖,

one has
‖𝑗(𝑃 )‖ ≤ 𝜅‖𝑗(𝑄)‖.

This is called Vojta’s inequality.
Use the above 3 facts in order to prove that 𝐶(𝐾) is finite. Hint: look at the image of 𝐶(𝐾) in
𝑉 , and split 𝑉 into (finitely many!) cones s.t. any two points in a given cone have a small angle
between them.
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