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The goal of this Arizona Winter School lecture series is to present some complex-

analytic and dynamical techniques that have been useful for studying algebraic and

arithmetic intersection problems. I do not plan to focus on specific Unlikely Intersec-

tion problems – though I will mention several in passing and give explicit examples

in the final lecture – but I want to describe tools that might help us solve more of

these problems.

In choosing a theme for the lectures, I was motivated by recent developments in

arithmetic intersection theory, especially as presented in the manuscript of Yuan

and Zhang [YZ], in the use of height bounds and equidistribution theorems for the

study of abelian varieties and, more generally, families of algebraic dynamical systems

parameterized by a quasiprojective variety defined over Q. For example, in my recent

preprint with Myrto Mavraki [DM], we build on the work of Gauthier-Vigny [GV] and

her earlier work with Schmidt [MS], in combination with an equidistribution theorem

of [YZ], to study the intersections of preperiodic points for families of maps on P1.

Our proof methods are closely related to – and very much inspired by – the recent

works of Kühne [Kü1, Kü2], Dimitrov-Gao-Habegger [DGH1, DGH2], and Gauthier

[Ga]. Some of this theory will be discussed in the final lecture; especially, I want

to emphasize how purely complex-analytic input can force intersections and lead to

“positivity” of an arithmetic nature.

1. Lecture 1. The Lattès family

There is an important class of maps f : P1 → P1, the Lattès examples, that has

inspired many of the developments in arithmetic dynamical systems, building on

parallels between the study of elliptic curves and dynamics in dimension 1. Such a

map f arises as the quotient of an endomorphism of an elliptic curve ϕ : E → E. We

begin by introducing these examples and presenting some fundamental concepts from

1-dimensional complex dynamics. Helpful references include [Mi2, Si1, Mi1, FS].

Date: March 3, 2023.
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1.1. Lattès maps. Take any elliptic curve E defined over C. The identification of a

point P with its additive inverse −P defines a degree 2 projection π : E → P1. Not

that, if E is presented as C/L for a lattice L and if we choose coordinates on P1, the

associated Weierstrass ℘-function can be viewed as the composition of the quotient

C→ C/L with the projection π.

Now let ϕ be an endomorphism of E. For example, let’s take

ϕ(P ) = P + P = 2P.

Since ϕ(−P ) = −ϕ(P ), the map ϕ descends by π to define an endomorphism fϕ on

P1, making the following diagram commute:

(1.1) E

π
��

ϕ // E

π
��

P1
fϕ // P1

The degree of fϕ, as a rational function of one variable, coincides with the degree of

ϕ, which is 4 for my example with ϕ(P ) = 2P .

Note that a point P is torsion on E if and only if it has finite orbit under iteration

of ϕ. That is, the sequence of points

P, 2P, 4P, 8P, . . .

must be finite. And it follows that the projection π(P ) is preperiodic for fϕ if and

only if P is torsion on E. This allows us to use dynamics – and the full power of

machinery developed to study the iteration of holomorphic maps on P1(C) – to study

properties (arithmetic or geometric) of torsion points on elliptic curves.

These rational functions f : P1 → P1 that are quotients f = fϕ of an endomorphism

ϕ : E → E are called Lattès maps. More generally, we call an endomorphism f

Lattès if it arises as the quotient of any morphism ϕ : E → E (not necessarily a

homomorphism) via a finite-degree quotient π (not necessarily of degree 2) as in the

diagram (1.1). A classification and summary of the dynamical features of Lattès maps

is given in [Mi2].

Here’s a concrete example. Consider the elliptic curves in Legendre form,

Et = {y2 = x(x− 1)(x− t)} ⊂ P2(C)

for t ∈ C \ {0, 1}, with the projection π : E → P1 given by π(x, y) = x. Take

endomorphism ϕ(P ) = 2P on E. The action of ϕ on the x-coordinate induces a

rational function ft that depends on the parameter t with formula

(1.2) ft(x) =
(x2 − t)2

4x(x− 1)(x− t)
.

A derivation of this formula can be found in, for example, [Si2, Chapter III].
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1.2. Higher-dimensional Lattès maps. The same basic quotient construction does

not work for general endomorphisms of abelian varieties in higher dimensions, at least

not if we hope to induce a morphism on PN . A classification of Lattès maps in dimen-

sion N = 2 arising as in (1.1) – replacing E with an abelian surface A defined over C
and replacing P1 with P2 – is presented in Section 5 of [Dup], and see the references

given there. Given an abelian surface A, it is rare for a quotient A/G, for a finite

group of automorphisms G of A, to be isomorphic to P2. You will observe that each

A in the table appearing in [Dup, §5.1] is actually the square E × E of an elliptic

curve! The maps are then built from product endomorphisms. Dupont observes (in

his remark 5.1) that examples exist in every degree d > 1 and every dimension N . I

do not know if there is a known classification in dimensions > 2.

On the other hand, though the quotient construction does not always work, we

can often extend an endomorphism ϕ : A → A to a large projective space for any

choice of A. If X is a projective variety over C, then a morphism f : X → X is

said to be polarizable if there is an ample line bundle L on X for which f ∗L ' Ld

for some integer d > 1. If polarizable, there exists an embedding X ↪→ PN so that f

extends to a morphism on all of PN [Fa, Corollary 2.2]. In particular, beginning with

the multiplication-by-2 endomorphism ϕ : A→ A on an arbitrary abelian variety A,

Fakhruddin describes an extension of ϕ in the proof of [Fa, Corollary 2.4]. Note that

the torsion points on A are precisely the points in A with finite forward orbit under

ϕ.

As Fakhruddin points out in [Fa], various questions and conjectures about abelian

varieties can thus be reformulated in dynamical terms. For example, the uniform

boundedness question about torsion points on abelian varieties becomes a special

case of the Morton-Silverman Uniform Boundedness Conjecture for endomorphisms

of PN [MS]; see also [Si1].

1.3. Julia sets and canonical measures. Suppose that f : C→ C is a polynomial

of degree d > 1. Its filled Julia set is the compact subset of C defined by

K(f) = {z ∈ C : sup
n
|fn(z)| <∞}.

The boundary of K(f) is called the Julia set J(f) of f and turns out to be equal to

the closure of the set of repelling periodic points of f . That is, the points z0 ∈ C for

which fn(z0) = z0 for some n > 0 and so that |(fn)′(z0)| > 1 are all contained in J(f)

and form a dense subset of J(f).

In general, the Julia set J(f) of a (possibly non-polynomial) map f : P1 → P1 can

be defined as the closure of the set of all repelling periodic points.

For Lattès maps, it isn’t hard to see that the Julia set must be all of P1(C). The

torsion points on the elliptic curve E that are periodic for the endomorphism are dense
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in E(C). All of the periodic points are repelling because the original endomorphism

ϕ is everywhere expanding.

For polynomial maps f , the Julia set might be a complicated fractal subset of C,

but there is an easy way to visualize these sets with an escape-time algorithm. That

is, we iterate all the points z in some fine grid and color z according to how many

iterates are required until |fn(z)| is large (where “large” depends on the coefficients

of f). We might color a pixel black if |fn(z)| remains “small” for all iterates tested.

See Figure 1.2.

Figure 1.1. The filled Julia sets for f(z) = z2 − 1 (at left) and for

f(z) = z2 + 0.1 + 0.7i (at right), both of degree d = 2.

The images of Figure 1.2 illustrate more. The color transitions approximate level

curves of the escape-rate function, defined by

Gf (z) = lim
n→∞

1

dn
log+ |fn(z)|

where log+ = max{log, 0}. These level curves are called “equipotential” curves,

because Gf turns out to be the Green’s function (with pole at ∞) for the domain

C \K(f). In particular, its Laplacian – computed in the sense of distributions – is

the equilibrium measure

µf =
1

2π
∆Gf

for the compact set K(f). That is, it gives the “optimal distribution” of an electric

charge (if K(f) were a conducting material in some ideal world), in the sense of

Newtonian potential theory; see, for example, [Ra1]. The measure µf turns out to

also be the unique measure of maximal entropy for f , and so it plays a very important

role in our study of these types of dynamical systems [Br, Ly1, FLM].
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In fact, there is also a potential-theoretic interpretation for the measure of maximal

entropy for any map f : P1 → P1 over C, and even for maps f : PN → PN with N > 1.

Working in homogeneous coordinates, choose a presentation

f = (f0, . . . , fN),

where f0, . . . , fN are homogeneous polynomials in N + 1 variables of degree d >

1, having no common zeroes except at the origin in CN+1. As for polynomials in

dimension 1, we define an escape rate in CN+1 by

(1.3) Gf (z) = lim
n→∞

1

dn
log ‖fn(z)‖.

There is a canonical dynamical “Green current” Tf on PN(C) defined by

(1.4) ddcGf = π∗Tf

in the sense of distributions, where π : CN+1\{0} → PN is the tautological projection;

currents and the operations of ddc and π∗ will be discussed in the second lecture. The

canonical measure µf := (Tf )
∧N on PN(C) turns out to be the unique measure of

maximal entropy for f . As far as I’m aware, this theory was first developed by

Fornaess and Sibony [FS, FS1, FS2].

In the case of a Lattès map arising as the quotient of a morphism on elliptic curve

E as in (1.1), the measure µf on P1(C) is equal to the projection π∗ω of the Haar

measure ω on E.

-2 -1 1 2

-2

-1

1

2

Figure 1.2. Illustrating the distribution µf for the Lattès map of (1.2)

with t = −1+ i. The preimages f−n(a) of any point a ∈ P1(C) are uniformly

distributed with respect to µf as n→∞; here, n = 6 and a = 1.
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1.4. Canonical heights. Let’s finish this section with the important construction

of Call and Silverman that defined canonical heights for endomorphisms of PN [CS].

For simplicity, we return to dimension N = 1. Assume that f : P1 → P1 has degree

d > 1 and is defined over a number field. Let h denote the naive logarithmic Weil

height on P1(Q). The canonical height function associated to f is defined by

ĥf (α) = lim
n→∞

1

dn
h(fn(α))

for all α ∈ P1(Q). It is the unique height function for which

1

d
ĥf ◦ f = ĥf

and for which there exists a constant C = C(f) so that

|ĥf − h| ≤ C

on P1(Q) [CS, Theorem 1.1]. Note, in particular, that ĥf (α) = 0 if and only if

α is preperiodic for f : one implication is clear, and the other is a consequence of

Northcott’s theorem that for any B,D > 0, we have

#{α ∈ Q : h(α) ≤ B and degα ≤ D} <∞.

A local height decomposition of ĥf can be given in terms of the functions Gf of

(1.3), replacing ‖·‖ with appropriately-defined p-adic norms on the affine space A2(Q);

details can be found in [BR, Si1].

Note that, in the case of Lattès maps f , where the projection π of (1.1) has degree

2, we have

ĥf (π(P )) = 2 ĥE(P )

for all P ∈ E(Q), where ĥE is the Néron-Tate canonical height on the elliptic curve

E. See [Si1] for details.

2. Lecture 2. Pluripotential theory

In this lecture, we introduce key tools in the study of complex analysis and dynamics

in dimensions > 1, namely the theory of currents and plurisubharmonic functions.

Unlikely Intersection problems in arithmetic dynamics quickly lead to “intersections”

of unwieldy fractal objects, and we need to build on the intersection theory of currents.

Helpful references: [DS, Dem, Kl, FS], and [Ra1, BR] for 1-dimensional potential

theory (including non-archimedean!).
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2.1. What is a current? A summary of the basics can be found in [DS] (without

proofs) or in Chapter I of [Dem]. Let Ω be an open subset of RN . For integer p with

0 ≤ p ≤ N , a p-current (or a current of degree p) on Ω is a continuous linear functional

on the space DN−p(Ω) of smooth (N − p)-forms on Ω with compact support. The

continuity is with respect to the C∞ topology on this space of forms. If the current

defines a bounded linear functional with respect to the C0-topology, then it extends

to the space of compactly-supported forms with continuous coefficients, and we say

that the current has order 0. Thus, an N -current is the same thing as a distribution,

and an N -current with order 0 is the same as a measure µ on Ω.

Example 2.1. A smooth p-form ω on Ω defines a p-current by

〈ω, α〉 :=

∫
Ω

ω ∧ α

for all α ∈ DN−p(Ω).

Example 2.2. An oriented, closed, C∞ submanifold Y in Ω of codimension p defines

a p-current by

〈[Y ], α〉 :=

∫
Y

α

for all α ∈ DN−p(Ω). It is called the current of integration on Y .

The exterior derivative d acts on p-currents T by duality with its action on forms:

〈dT, α〉 := (−1)p+1〈T, dα〉

for all α ∈ DN−p−1(Ω), so that dT is a (p + 1)-current. As with forms, we say the

current is closed if dT = 0. A p-current can naturally be pushed forward by a smooth

map F : Ω→ V which is proper, meaning that the preimage F−1(K) of any compact

set in V is compact in Ω. We simply set

〈F∗T, α〉 := 〈T, F ∗α〉

for all α ∈ DdimV−(N−p)(V ), so F∗T is a (p − N + dimV )-current on V . A pullback

operation on currents is more delicate, but if the map F : Ω → V is a submersion,

then there is a sensible way to push forward a form (by integrating it over the fibers

of F ). If T is a p-current on V , then we can define F ∗T as a p-current on Ω by

〈F ∗T, α〉 := 〈T, F∗α〉.

This was the meaning of π∗ mentioned in (1.4) in Lecture 1.

In complex manifolds or complex algebraic varieties, recall that a smooth form α

has bidegree (p, q) if it can be expressed in local coordinates as

α =
∑

|I|=p,|J |=q

αI,J dz
I ∧ dz̄J
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where dzI = dzi1 ∧ · · · ∧ dzip and dz̄J = dz̄j1 ∧ · · · ∧ dz̄jq , with dz = dx + i dy and

dz̄ = dx− i dy. Note that i dz ∧ dz̄ = 2 dx ∧ dy in R2 = C.

A (p, q)-current on a complex manifold X of dimension N is a continuous linear

functional on the space D(N−p,N−q)(X) of smooth (N − p,N − q)-forms with compact

support. Recall that the d operator can be decomposed as

d = ∂ + ∂̄ =
∑
j

∂

∂zj
dzj +

∑
k

∂

∂z̄j
dz̄k

in local coordinates. We define

dc =
1

2πi
(∂ − ∂̄),

so that

ddc =
i

π
∂∂̄.

2.2. Positive (1,1)-currents. Positivity is introduced in Chapter III of [Dem]. A

(p, p)-current T on a complex manifold X of dimension N is said to be positive if

〈T, α〉 ≥ 0 for all positive test forms

α = (iα1 ∧ ᾱ1) ∧ · · · ∧ (iαN−p ∧ ᾱN−p)

with αi ∈ D(1,0)(X). Positivity implies the current has order 0 [Dem, Proposition

1.14].

An important class of examples of bidegree (1,1) comes from plurisubharmonic

functions. Suppose Ω is a domain in CN . An upper-semi-continuous (usc for short)

function u : Ω → R ∪ {−∞} is plurisubharmonic (or psh for short) if u|L∩Ω is sub-

harmonic on every complex line L in CN . Recall that, in one complex dimension, a

function u is subharmonic if it is usc and

u(x0) ≤ 1

2π

∫ 2π

0

u(x0 + r eiθ) dθ

for all closed balls B(x0, r) in the domain of u. (It follows that u ∈ L1
loc if u is not

the contant −∞ function.) Equivalently, if you assume that u ∈ L1
loc and usc on a

domain Ω ⊂ C, then u is subharmonic if the Laplacian

∆u :=
∂2u

∂x2
+
∂2u

∂y2
,

defined in the sense of distributions, is non-negative. Note that, in dimension 1, we

have
1

2π
∆u dx ∧ dy = ddcu.

In particular, for any plurisubharmonic function u on an open set Ω ⊂ CN ,

T = ddcu
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is a closed and positive (1, 1)-current. A Poincaré-type lemma for ddc implies the con-

verse: A closed, positive (1, 1)-current T on a complex manifold X can be expressed,

locally, as T = ddcu for a plurisubharmonic function u : Ω→ R ∪ {−∞}, where Ω is

an open neighborhood in X, identified with a domain in CN . See, for example, [Dem,

Chapter III §1.18]. The function u is called a local potential function for T .

As a special case, consider u(z) = log |z| in C. Then

ddcu = δ0

in the sense of distributions. In other words,

1

2π

∫
C
u∆ϕdx ∧ dy = ϕ(0)

for all smooth functions ϕ : C → R with compact support. In higher dimensions, if

f : Ω → C is holomorphic and not ≡ 0, then u(z) = log |f(z)| is plurisubharmonic,

and ddcu is the current of integration along the analytic hypersurface {f(z) = 0}.

2.3. Intersection of currents and Monge-Ampère. We would like to have a good

theory of intersecting currents that extends the notions in the context of Examples

2.1 and 2.2: given two smooth forms ω1 and ω2, we have a smooth form ω1 ∧ ω2, and

given two smooth subvarieties Z1 and Z2 in a complex manifold X, we may consider

their intersection Z1 ∩ Z2 (in some appropriate sense).

In the case of positive (1, 1)-currents with locally-bounded potentials, this can be

done. Let Ω be an open subset of CN . If T is a closed and positive (p, p)-current, and

if u : Ω→ R is a bounded plurisubharmonic function, then we can set

ddcu ∧ T := ddc(uT )

where the right-hand-side is defined in the sense of distributions. By a continuity

argument, it was proved in [BT] that this is the “right” definition, as it extends the

notion for smooth forms. The wedge product is again a closed and positive current

of bidegree (p+ 1, p+ 1).

Working inductively, we can define the (complex) Monge-Ampère measure

(ddcu)N = ddcu ∧ · · · ∧ ddcu

of a locally-bounded plurisubharmonic function u on a complex manifold X of di-

mension N . As pointed out in [Dem, Chapter III, §3], if u is smooth, then this is

simply

(ddcu)N = det

(
∂2u

∂zj∂z̄k

)
N !

πN
(i dz1 ∧ dz̄1) ∧ · · · ∧ (i dzN ∧ dz̄N).

Plurisubharmonic functions u satisfying (ddcu)N = 0 are called maximally plurisub-

harmonic; see [Kl] for an extensive treatment of these functions.
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2.4. Dynamics. Returning to the setting of morphisms f : PN → PN over C, we now

have the language to talk about the concepts introduced in §1.3. The function Gf is

plurisubharmonic and continuous on CN+1 (as a locally uniform limit of plurisubhar-

monic functions away from 0). Note that Gf (βz) = Gf (z) + log |β| for all β ∈ C∗; we

say that Gf is log-homogeneous.

Positive (1,1)-currents on PN (of mass 1) are in a natural 1-to-1 correspondence

with log-homogeneous psh functions on CN+1, up to the addition of a constant. That

is, given any log-homogeneous psh u on CN+1, we can define a current on a local

chart U ⊂ PN by Tu = ddc(u ◦ s) for any holomorphic section s of the projection

π : CN+1\{0} → PN over U . These definitions patch together by the log-homogeneity

of u, as log |ψ| is harmonic for any non-vanishing holomorphic function ψ. Then one

can check that ddcu = π∗Tu. For the converse, see [FS, Theorem 5.9].

Thus, the dynamical Green current Tf is well-defined by setting π∗Tf = ddcGf .

Moreover, it is the unique positive (1,1)-current on PN(C) (of total mass 1, with

bounded potentials) such that
1

d
f ∗Tf = Tf .

Caution: f is not a submersion, so this pullback is first defined for the covering map

f : PN \ f−1(f(C))→ PN \ f(C) where C is the critical locus of f and then extended

to all of PN ; see page 159 of [FS]. Moreover, the measure

µf := Tf ∧ · · · ∧ Tf

plays an important role: it is the unique measure of maximal entropy and – as in

dimension N = 1 – is the limiting distribution of the repelling periodic points of f or

of iterated preimages of (typical) points in PN(C) [BD1, BD2].

3. Lecture 3. Dynamical stability

We introduce the dynamical concept of structural stability for families of maps.

We illustrate this concept in the setting of the Lattès family and other important

examples on P1, and we show that certain rigidity theorems for stable families can

force (likely) intersections. Helpful references include [De3] [Mc2, Chapter 4] [BB].

3.1. Structural stability and J-stability. Suppose we have a continuously varying

family of continuous maps ft : Xt → Xt on compact metric spaces, for t in a parameter

space S (with, for example, topology of uniform convergence on the family). We

say the family is structurally stable at t0 ∈ S if there exists a continuous family

ϕt : Xt0 → Xt of homeomorphisms so that ft = ϕt ◦ft0 ◦ϕ−1
t for all t near t0. That is,

all the maps – up to a continuous change of coordinates – define the “same” dynamical

system.
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A holomorphic family of maps

ft : P1 → P1

for t in a complex manifold S, is a holomorphic map f : S × P1 → S × P1 that

preserves the fibers of the projection to S. (This definition implies that the family ft
is continuous in the topology of uniform convergence, so in particular they all have

the same degree, and the coefficients of ft are holomorphic functions of t.) Assume

the degree of ft is > 1. We will say that the family ft is periodic-point stable at t0 ∈ S
if every periodic point of ft can be holomorphically parameterized in a neighborhood

of t0 without collisions. That is, the graphs of these infinitely-many periodic points fit

together like leaves of a foliation in S×P1. Note: by the Implicit Function Theorem,

for each individual periodic point z0 of period n, to solve the equation fnt (z) = z

for z = z(t) with z(t0) = z0, we require that (fn)′(z0) 6= 1. The stability condition

requires that this can be done uniformly in a neighborhood for all periodic points and

without collisions.

Theorem 3.1. [MSS, Ly2] A holomorphic family of maps ft with degree > 1 is

periodic-point stable at t0 ∈ S if and only if it is structurally stable on the Julia set

J(ft) in a neighborhood of t0. Moreover, these conditions hold on an open and dense

subset of S.

If the family ft satisfies these stability conditions at t0, we shall say that ft0 is J-

stable. See [Mc2, Chapter 4] for an exposition of the proof of this theorem, along with

additional characterizations of J-stability.

In practice, neither condition – periodic-point stability nor structural stability on

J(f) – is easily checkable. We often work with a third equivalent notion of stability,

namely critical point stability. In a neighborhood of a point t0, we can pass to a

(finite, branched) cover on which we can holomorphically parameterize the critical

points of ft near t0, as c1(t), . . . , c2d−2(t). Then critical point stability means that

the sequence of functions {t 7→ fnt (ci(t))} form normal families in a neighborhood of

t0, for each i. That is, every sequence of iterates has a subsequence that converges

uniformly on compact subsets of the neighborhood of t0.

As a simple application of Montel’s Theorem on normal families, the family z2 + t

for t ∈ S = C, is J-stable for all t0 6∈ ∂M, where

M = {t ∈ C : sup
n
|fnt (0)| <∞}

is the famous Mandelbrot set, and ∂M is its topological boundary. See Figure 3.1.

Note that J-stability does not imply that ft is structurally stable on all of P1. A

simple example is given by the family ft(z) = z2 + t at t0 = 0. The map f0(z) = z2 is

periodic-point stable, but it is not structurally stable on all of P1: the critical point

c = 0 is a fixed point at t0 = 0, while it is not fixed for any t 6= 0. The orbit structure
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Figure 3.1. The Mandelbrot set.

of a critical point must be preserved under topological conjugacy. On the other hand,

it turns out that this critical orbit requirement is the only obstruction to extending

the conjugacies to all of P1 [McS].

3.2. Stability in the Lattès family. Now suppose that ft is a family of Lattès

maps, such as the ones given by (1.2) for t ∈ S = C \ {0, 1}. As we have already

observed, all of the periodic points of ft are repelling. They can be followed holo-

morphically with t over the entire parameter space (though with some nontrivial

monodromy as you move around the three punctures of S). Viewing the graphs of

these points in S×P1, they form a countable, dense subset of the leaves of a holomor-

phic foliation of S×P1. This foliation coincides with the quotient of the Betti foliation

of the elliptic surface E. See, for example, [ACZ, CDMZ, UU1, UU2] for information

about the Betti foliation. In a family of elliptic curves – or of abelian varieties – one

can identify (diffeomorphically) each element of the family with a given real torus

of Tm = Rm/Zm of appropriate dimension. The leaves of the Betti foliation are, by

definition, the fibers of this “horizontal” projection to Tm, and they are holomorphic.

3.3. Rigidity and intersections. It turns out that the Lattès maps are the only

families that can be everywhere stable, at least when working with algebraic families.

For simplicity, let us assume throughout this subsection that S is a smooth, ir-

reducible quasi-projective curve over C. We will say f : S × P1 → S × P1 is an

algebraic family of maps on P1 if the coefficients define meromorphic functions on a

compactification S of S. Equivalently, f is defined by a rational function over the

function field C(S), and we assume that the induced map on S × P1 is regular.



ARITHMETIC DYNAMICS AND INTERSECTION PROBLEMS AWS 2023 13

Theorem 3.2. [Mc1] Suppose that f : S×P1 → S×P1 is an algebraic family of maps

of degree d > 1. Then f is J-stable on all of S if and only if it is either isotrivial or

a Lattès family.

The map f is isotrivial if all elements of the family ft are conjugate by a Möbius

transformation.

McMullen’s theorem is proved in two steps. The stability is analyzed by studying

the orbit behavior of the critical points of f , and he deduces that stability on S

implies each critical orbit must be finite, persistently, for all ft in the family. Then

the conclusion that a non-isotrivial such f is Lattès follows from the rigidity theorem

of Thurston [DH].

The critical-orbit part of McMullen’s theorem was extended to treat individual

critical points, and later arbitrary points. A holomorphic map a : S → P1 defines

a marked point over S. A pair (f, a) is stable at t0 ∈ S if the sequence of functions

{t 7→ fnt (a(t))} forms a normal family in a neighborhood of t0.

Theorem 3.3. [De2, DF] Suppose that f : S × P1 → S × P1 is an algebraic family

of maps of degree d > 1. Suppose that a ∈ P1(C(S)) defines a marked point over S.

The pair (f, a) is stable on all of S if and only if it is either isotrivial or persistently

preperiodic.

A pair (f, a) is isotrivial if all elements of the family ft are conjugate by a Möbius

transformation to a single map f0 and the point a in this new coordinate system is

constant.

We can immediately deduce from Theorem 3.3 that intersections must take place

between algebraic curves in S × P1 and the preperiodic curves for f in S × P1, as

follows. A curve V in S × P1 is preperiodic if there exists n > m ≥ 0 so that

fn(V ) = fm(V ). There are infinitely many preperiodic curves in S × P1 because

there are infinitely many preperiodic points for each ft with t ∈ S. Let V(f) denote

the union of all preperiodic curves in S × P1.

Corollary 3.4. [De2, Theorem 1.6] Let S be a smooth and irreducible quasi-projective

curve over C. Suppose that f : S × P1 → S × P1 is a non-isotrivial algebraic family

of maps of degree d > 1, and suppose that C is any algebraic curve in S × P1. Then

the set of all preperiodic points in C, namely⋃
V ∩V(f)

C ∩ V,

is an infinite subset of C.

Proof. We may assume that C is irreducible. If C is vertical, meaning a fiber of the

projection S × P1 → S, then the conclusion is clear, because each ft has infinitely

many preperiodic points. Otherwise, we apply Theorem 3.3 to the pair (f, a) where
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a ∈ P1(k) for a finite extension k of C(S), where C becomes the graph of a over

a finite branched cover of S. The non-isotriviality of f implies that the pair (f, a)

will be either persistently preperiodic (in which case C is itself a preperiodic curve)

or unstable. In the latter case, we apply Montel’s Theorem on normal families to

deduce that the orbits of C must intersect the elements of V(f); see, for example,

[De2, Proposition 5.1]. �

3.4. Intersections in Lattès families. We apply Corollary 3.4 in a well-known

setting: Suppose that ft is a Lattès family, such as given in (1.2), parameterized

by S = C \ {0, 1}. Let C be an algebraic curve in S × P1. Then C is either a

preperiodic curve itself or it must intersect infinitely many of the preperiodic curves.

In particular, lifting this C to the corresponding elliptic surface defined by the family

Et over S, this shows that the only closed (i.e., algebraic) leaves of the Betti foliation

are the torsion points. This is well known and has several different proofs.

3.5. Higher-dimensional stability theory. For holomorphic families of maps on

PN , there is also a theory of J-stability, though there are still lots of interesting

questions about how many of the equivalences described above for P1 can carry over

to higher dimensions. See [BBD] and the survey [BB] for definitions and comparisons

to the dimension 1 case.

4. Lecture 4. Geometric heights, bifurcation measures, and

arithmetic equidistribution

Working over number fields, we broaden the notion of dynamical stability into the

general framework of the theory of adelic line bundles on quasiprojective varieties.

We present results from the recent work of Yuan-Zhang [YZ, §6] and Gauthier-Vigny

[GV]. We conclude in §4.5 with an application of these ideas to an unlikely intersec-

tions problem, with a sketch of a proof from [DM].

4.1. Geometric heights and polarized endomorphisms. I just wrote that we

would work over number fields, but let me first say a few things about the function

field setting (in characteristic 0). Specifically, we can relate concepts from the previous

Lecture to statements about canonical height values.

More precisely, let S be a smooth, quasiprojective algebraic curve over C, and recall

that a pair (f, a), consisting of an algebraic family f : S×P1 → S×P1 of degree d > 1

and a marked point a : S → P1 is stable if the sequence of functions {t 7→ fnt (a(t))}
is normal on all of S. It turns out this holds if and only if the (geometric) canonical

height

ĥf (a) = lim
n→∞

1

dn
h(fn(a))



ARITHMETIC DYNAMICS AND INTERSECTION PROBLEMS AWS 2023 15

is equal to 0 [De2, Theorem 1.1]. Here, we view f(z) ∈ k(z) as one rational function

defined over the function field k = C(S), where S is a compactification of S, and h

is the naive logarithmic Weil height on P1(k). In other words, viewing an element

b ∈ P1(k) as a map b : S → P1, we have h(b) = deg (b : S → P1). This equivalence

between stability and ĥf -height 0 over k was used in [De2] to give an alternative proof

of Baker’s theorem that – assuming the family f is not isotrivial – a point a ∈ P1(k)

has canonical height 0 if and only if it has finite orbit [Ba]. (Recall from §1.4 that for

f : P1 → P1 defined over Q, the canonical height of a point in P1(Q) vanishes if and

only if the point is preperiodic; this follows easily from the Northcott property of the

height on Q but that argument fails for the naive geometric height.)

Gauthier and Vigny have recently given a new proof of Baker’s theorem and of

Theorem 3.3 above, and they extended the results to a much more general context.

(See also [CH1] for a model-theoretic approach.)

Theorem 4.1. [GV, Theorem A] Suppose that S is a smooth and irreducible quasipro-

jective variety over C, π : X → S a family of projective varieties Xt for t ∈ S(C),

and

f : X → X

an algebraic family of polarized endomorphisms. Then a section a : S → X of π

is stable if and only if ĥf (a) = 0 if and only if a is either preperiodic or lies in an

“isotrivial part” of f in X .

There is a lot to define here. Recall that polarizable endomorphisms f : X → X of

a projective variety over C were introduced in §1.2; this means that there is an ample

line bundle L so that f ∗L ' Ld for some d > 1. Here we work with an endomorphism

f : X → X defined over k = C(S), with π : X → S a model over C, and we

assume there is a relatively ample line bundle L on X providing a polarization on

Xt = π−1(t) for each t ∈ S(C). Stability of the pair (f, a) may be defined in terms of

normal families, as for maps on P1. The isotrivial part is defined as you might expect,

though I will avoid technicalities: there is an f -invariant subvariety of X over S along

which which the restricted family is isotrivial. The canonical height ĥf is defined on

X(k), starting with a choice of Weil height h on k = C(S).

Note that Theorem 4.1 includes the case of polarized endomorphisms on a family

A of abelian varieties, for example taking multiplication by 2 on each fiber At, with

ĥA the Néron-Tate canonical height. Thus, the theorem extends known results in the

setting of abelian varieties [LN] to this more general setting of polarized endomor-

phisms.

4.2. Bifurcation currents. The proof of Theorem 4.1 (and the proof of Theorem

3.3) involves a study of certain positive closed currents on the parameter space S.
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We continue to work with a quasiprojective variety S defined over C and a projective

X defined over the function field k = C(S), as in Theorem 4.1.

Suppose that Z ⊂ X is a subvariety of dimension ` defined over k = C(S), and

suppose that Z is a (flat) family of subvarieties in the model X over S. Following

[GV], we may define

(4.1) T̂f,Z := π∗

(
(T̂f )

∧(`+1) ∧ [Z]
)

where π : X → S is the projection; it is a positive (1,1)-current on S with continuous

potentials. The current T̂f is a positive (1,1)-current on X defined analogously to the

dynamical Green current in §2.4. Namely, we choose a smooth (1,1)-form ω on X
which represents the class c1(Lt) for the polarization Lt on each fiber Xt. We have

T̂f = lim
n→∞

1

dn
(fn)∗ω

where d is the polarization degree. When Z = a is a single point, it is not hard to

see that T̂f,a = 0 if and only if the pair (f, a) is stable on S. More generally, we can

say that the pair (f, Z) is stable over S if T̂f,Z = 0. (Note that the stability definition

makes sense over any complex manifold S, while the canonical height in Theorem 4.1

is a “global” notion.)

The current T̂f,Z extends the notion of bifurcation current introduced in [De1] to

study J-stability as defined in Lecture 3. More precisely, we consider a holomorphic

family f : S × P1 → S × P1 with critical locus Crit(f) ⊂ S × P1, and we set

(4.2) T̂f,bif := π∗

(
T̂f ∧ [Crit(f)]

)
where π : S ×P1 → S is the projection. Then the family ft for t ∈ S is J-stable at t0
if and only if the current T̂f,bif vanishes in a neighborhood of t0 [De1, Theorem 1.1].

Towards proving Theorem 4.1, Gauther and Vigny proved that the geometric

canonical height of Z ⊂ X (of dimension `, defined over the function field k = C(S))

is given by

(4.3) ĥf (Z) =

∫
X

(T̂f )
∧(`+1) ∧ [Z] ∧ (ωS)dimS−1

where Z is the corresponding variety in X over S, and ωS is the pull-back to X of a

certain Kähler form on S. This integral formula was known in the case where X is an

elliptic surface [CDMZ] and a version appears also in [CGHX] for families of abelian

varieties.

Gauthier and Vigny also describe conditions on the dynamics of the map f that

guarantee positivity of the current T̂f,Z (so also of ĥf (Z)) and its higher wedge powers

[GV, Lemma 4.8]. Their instability criterion has its origins in proofs that powers of

the current T̂f,bif of (4.2) are positive [BB, BE] and the general theory of stability for

families of higher-dimensional maps [BBD].
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4.3. Arithmetic equidistribution. Now we are ready to study varieties and heights

– and (unlikely) intersection problems – over Q. Building on a series of works study-

ing the geometry of points of small height on projective varieties, starting with the

work of Szpiro-Ullmo-Zhang for abelian varieties [SUZ] and generalizing the recent

equidistribution results of Kühne [Kü1] and Gauthier [Ga], Yuan and Zhang recently

proved:

Theorem 4.2. [YZ, Theorem 5.4.3] Suppose that X is a quasi-projective variety over

a number field K. Let L be a nef adelic line bundle on X for which degL̃(X/K) is

positive. Suppose that {xm} ⊂ X(K) is a generic sequence with

hL(xm)→ hL(X).

Then for each place v of K, the Galois orbits Gal(K/K) · xm are equidistributed in

the Berkovich analytification Xan
v with respect to the measure µL,v, as m→∞.

Without going into all the details and definitions, it is important to note that

(4.4) degL̃(X/K) =

∫
Xan

v

c1(L)∧nv

at any place v, and µLv
is the probability measure 1

degL̃(X/K)
c1(L)∧nv [YZ, Lemma

5.4.4]. Here, n = dimX and c1(L)v is the positive (1,1)-current associated to L (i.e.,

the curvature form, if the metrics were smooth) at the place v. In particular, the

positivity of degL̃(X/K) can be formulated complex-analytically, by working at an

archimedean place, where we might understand the current c1(L) best.

When working with particular examples of adelically-metrized line bundles L on a

quasiprojective variety X, it is not always clear when this positivity of degL̃(X/K)

holds. But for dynamical examples, we can now use the positivity of bifurcation

currents and their wedge powers, as described in §4.2, to show that the hypotheses

of Theorem 4.2 are satisfied.

4.4. Example application: Post-critically finite maps on P1. Yuan-Zhang

present an important dynamical example in §6 of [YZ], which was also proved by

Gauthier in [Ga] (and certain cases were known earlier). Namely, we work in the

moduli space Md of all maps f : P1 → P1 of degree d > 1. This is an affine algebraic

variety, defined over Q, which parameterizes the PGL2C-conjugacy classes of maps

on P1. See [Si3] for background. Within Md, we are interested in the geometry and

distribution of the post-critically finite (or PCF) maps f ; namely, the maps for which

each critical point has a finite forward orbit. The PCF maps are known to form a

Zariski dense subset of Md; see, for example, [De3, Theorem A]. Note that all Lattès

maps are PCF, though these constitute only 1-parameter families in Md (for square
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degrees d) and finite sets in Md (coming from elliptic curves with complex multipli-

cation). Outside of those “flexible” Lattès maps, all PCF maps can be defined over

Q, as a consequence of Thurston’s Rigidity Theorem [DH].

Theorem 4.2 implies that the PCF maps are uniformly distributed with respect to

the bifurcation measure

(4.5) µbif := (T̂f,bif)
∧(2d−2),

where f is the universal family of all maps of degree d and dim Md = 2d− 2. Indeed,

Silverman introduced a critical height function on Md given by

ĥcrit(f) =
∑
ci

ĥf (ci),

where the ci are the critical points of f . This height is associated to a nef adelically

metrized line bundle L. To apply Theorem 4.2, we need positivity of degL̃(Md), but

(4.4) tells us that it suffices to know the positivity of the measure µbif . This positivity

was first proved in [BB] by observing that the (continuous) potential function for

T̂f,bif has an isolated minimum at each rigid Lattès maps (i.e., the quotient of a rigid

endomorphism on an elliptic curve with complex multiplication).

4.5. Example application: Pairs of elliptic curves. Questions were posed and

studied in [BT, BFT] about the geometry of torsion points in pairs of elliptic curves.

Given elliptic curves E1, E2 defined over C, and degree-two projections πi : Ei → P1

satisfying πi(P ) = πi(−P ) for every P ∈ Ei, an application of the Manin-Mumford

theorem of Raynaud [Ra2] implies that either

π1(E1[∞]) = π2(E2[∞]) or # π1(E1[∞]) ∩ π2(E2[∞]) <∞.

Here Ei[∞] denotes the set of all torsion points in Ei(C). The first case holds if and

only if there exists an isomorphism ϕ : E1 → E2 so that π2 ◦ ϕ = π1. Otherwise

finiteness comes from considering the diagonal ∆ ⊂ P1 × P1 and the torsion points

lying on its preimage (π1 × π2)−1(∆) in the abelian surface E1 ×E2. Bogomolov-Fu-

Tschinkel asked: Is there a uniform bound on the size of the intersection π1(E1[∞])∩
π2(E2[∞]), assuming the sets do not coincide?

The existence of a uniform bound has recently been established by Poineau [Po],

and it can also be deduced from the recent results of Kühne [Kü2] and Gao-Ge-Kühne

[GGK]; see also [DKY] treating a certain 2-parameter family of pairs. Note that a

(moduli) space of all pairs ((E1, π1), (E2, π2)) has dimension 5.

In [DM], Mavraki and I presented yet another proof of the uniform bound on

the size of π1(E1[∞]) ∩ π2(E2[∞]), related to the ideas of this lecture series, that

I will outline here. We rely on Theorem 4.2, and we followed the general proof

outline appearing in Mavraki’s earlier work with Schmidt [MS] (where they treated

1-parameter families of pairs of maps (f, g) acting on P1 × P1). We work with pairs
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(f, g) of Lattès maps acting on P1 × P1, parameterized by a 5-dimensional space S

of pairs ((E1, π1), (E2, π2)).

It is first worth observing that the intersections π1(E1[∞]) ∩ π2(E2[∞]) are not

generally empty. In fact, by repeated application of Theorem 3.3 and Corollary 3.4

(similar to what is done in §3.4), it is possible to prove that

# π1(E1[∞]) ∩ π2(E2[∞]) ≥ 5

for a Zariski-dense set of pairs ((E1, π1), (E2, π2)) in S. In fact, the method also

shows that the 5-tuples of points from these intersections form a Zariski-dense subset

of S × (P1)5. See [DM, Theorem 1.5].

For the uniform upper bound on # π1(E1[∞])∩π2(E2[∞]), we study the bifurcation

current T̂∆ of (4.1), associated to the diagonal ∆ ⊂ P1 × P1 over S and the family

(f, g) of Lattès pairs. We prove that the top wedge power µ∆ := (T̂∆)∧5 is non-

zero on S, using Theorem 3.3 and a dynamical criterion for instability that was also

used in [GV] (and, as mentioned above in §4.2, this criterion was originally used to

study positivity of traditional bifurcation currents and measures). This turns out

to imply positivity of an associated measure µ∆5 on the product space S ×∆5 and,

consequently, positive degree of a certain adelically-metrized line bundle L on S×∆5;

the line bundle L is defined so that the zeroes of the associated height function hL
in (S ×∆5)(Q) are precisely the 5-tuples of points in π1(E1[∞]) ∩ π2(E2[∞]) over a

parameter s ∈ S(Q). As observed above, these zeroes form a generic sequence (being

Zariski dense) in S ×∆5 ' S × (P1)5. Now we are in a setting where we can apply

Theorem 4.2. (A subtle point: we passed to ∆5 so that we could get positivity of this

degree; it fails to be positive on S ×∆m for m < 5.)

Now suppose there is no uniform bound on the cardinality of π1(E1[∞])∩π2(E2[∞])

for a generic sequence of points in S. This implies that, for every positive integer m

– and not just the m ≤ 5 case we already know – the m-tuples common preperiodic

points for the Lattès maps (f, g) form a generic subset of the space S×∆m. We take

m = 6 and construct two metrized line bundles on this space with height functions

hL,f (t, x, y) := hL(t, x) + ĥft(y) and hL,g(t, x, y) := hL(t, x) + ĥgt(y)

for coordinates (t, x, y) ∈ S ×∆5 × P1. Applying Theorem 4.2 to these line bundles,

we obtain equidistribution of the 6-tuples of common torsion projections with respect

to two measures µ∆5 ⊗ T̂f and µ∆5 ⊗ T̂g on S × ∆6 ' S × ∆5 × P1. Consequently,

these two measures must now be equal. By slicing this measures, we would find that

the canonical measures on P1 of §1.3 satisfy µft = µgt for a positive µ∆-measure set

of parameters t in S.

But recall from Lecture 1 that the measure µf for a Lattès map f is simply the

image of the Haar measure on E from the projection π∗ : E → P1 of (1.1). In

particular, the measure µf knows the branch points of π and so the isomorphism
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class of the elliptic curve E. In particular, we deduce that µft = µgt if and only if

π1(E1[∞]) = π2(E2[∞]) if and only if the elliptic curves pairs are the same (up to

isomorphism) with the same projection. As this holds for a positive-measure set in

S, and since the measure µ∆ is built from a current with bounded potentials, we know

that the support of µ∆ is itself Zariski dense in S, from which we can deduce that E1

is isomorphic to E2 for all pairs in S. This is nonsense. So we conclude that there is

a uniform bound on π1(E1[∞])∩π2(E2[∞]) over a Zariski open subset of S. Working

inductively on the dimension of S, we see that the uniform bound can only fail when

π1(E1[∞]) = π2(E2[∞]).
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[MSS] R. Mañé, P. Sad, and D. Sullivan. On the dynamics of rational maps. Ann. Sci. Ec. Norm.

Sup. 16(1983), 193–217.

[MS] Niki Myrto Mavraki and Harry Schmidt. On the dynamical Bogomolov conjecture for

families of split rational maps. Preprint, arXiv:2201.10455v3 [math.NT].

[Mc1] Curtis T. McMullen. Families of rational maps and iterative root-finding algorithms. Ann.

of Math. (2) 125(1987), 467–493.

[Mc2] Curtis T. McMullen. Complex Dynamics and Renormalization. Princeton University Press,

Princeton, NJ, 1994.

[McS] Curtis T. McMullen and Dennis P. Sullivan. Quasiconformal homeomorphisms and dynam-

ics. III. The Teichmüller space of a holomorphic dynamical system. Adv. Math. 135(1998),

351–395.

[Mi1] John Milnor. Dynamics in One Complex Variable, volume 160 of Annals of Mathematics

Studies. Princeton University Press, Princeton, NJ, Third edition, 2006.

[Mi2] John Milnor. On Lattès maps. In Dynamics on the Riemann sphere, pages 9–43. Eur. Math.
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