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Introduction

Sections 1 and 2 of this problem set are about background for the lectures of Ellen Eischen.
Sections 3 and 4 are about background for the lectures of Zhiwei Yun. We will make frequent
reference to the lecture notes written by both lecturers, as well as several other articles listed
in the bibliography at the end of this document. (Warning: since the lecture notes are
frequently updated, some reference numbers may be off.) This problem set is intended as a
starting point for further exploration, not a comprehensive accounting of the theory invoked
in either lecture. You are highly encouraged to note the parts you find most interesting and
pursue further details in the corresponding references.

1 Double coset spaces for unitary groups

1.1 Unitary groups and their adelic points

Here we check a few properties of the group Ua,b (also sometimes written U(a, b)) defined in
Section 2.1 of [Eis22].

1. Check that Ua,b(R) is compact if and only if either a = 0 or b = 0. (We may write Ua
for Ua,0 ∼= U0,a for short.)

2. (a) Let G be any algebraic group over Q such that G(Qv) is compact for some place
v. Let

Av =
′∏

u6=v

Qu.

Prove that G(Q) is discrete in G(Av). You may use the fact that Q is discrete in
A.

(b) Conclude that if U is a compact open subgroup of Ua(A∞), gUa(Q)g−1 ∩ U is
finite for all g ∈ Ua(A∞).

(c) Show that if U is neat in the sense of Remark 2.2.5 of [Eis22], then gUa(Q)g−1∩U
is trivial for all g ∈ Ua(A∞).
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(d) Show that there exists an integer ea depending only on a with the following
property: U is neat whenever there is a prime l not dividing ea such that the
image of U in Ua(Ql) is pro-l. (Hint: find ea such that every root of unity
that appears as an eigenvalue of an element of Ua(Q) is an eath root of unity.)
Reference: Proposition 4.1.1 of [Che04].

3. As usual, let K be a quadratic imaginary extension of totally real field K+. We will
prove the isomorphism

GU1,1
∼= (GL2 × resK/K+ Gm)/Gm

stated in Section 2.1.1 of [Eis22].

(a) As in Remark 2.1.4, one description of the K+-points of GU1,1 is{
g ∈ GL2(K) | gT

(
0 1
−1 0

)
g = ν

(
0 1
−1 0

)
, some ν ∈ (K+)×

}
.

Show that this condition on g is equivalent to

g =
ν

det g
g.

(b) Use Hilbert’s Theorem 90 to show that (det g)/ν = λ/λ for some λ ∈ K× such
that λg is defined over K+.

(c) Show that the map g 7→ (λg, λ) gives a bijection from GU1,1(K
+) to

(GL2(K
+)×K×)/(K+)×, and conclude.

4. Let K be a quadratic imaginary extension of a totally real field K+, V an n-dimensional
vector space over K, and 〈, 〉 a nondegenerate K-valued Hermitian pairing on V . Check
the statement in Section 2.1.2 that if v splits as ww in K, then U(K+

v ) ∼= GLn(K+
v ).

1.2 Hermitian symmetric domains for unitary groups

We verify the assertions about Hermitian symmetric domains for unitary groups in Section
3.2 of [Lan22]. As in Lan’s and Eischen’s notation, let a ≥ b ≥ 0, and write 1a,b or Ia,b for

the matrix

(
1a
−1b

)
(i.e. the diagonal matrix with a 1s down the diagonal followed by b

−1s. Then by definition

Ua,b = {g ∈ GLa+b(C) | gT1a,bg = 1a,b}.

1. First we work through the details of the bounded realization Da,b.

(a) Lan writes

Da,b =

{
U ∈Ma,b(C) |

(
U 1

)(1a
−1b

)(
U
1

)
= U

T
U − 1b < 0

}
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where Ma,b is the space of a× b matrices and “A < 0” means that A is negative

definite. Check Lan’s assertion that given g =

(
A B
C D

)
∈ Ua,b, the map

U 7→ gU = (AU +B)(CU +D)−1

for U ∈ Da,b gives a well-defined action of Ua,b on Da,b. (Note that this action
comes from the identity(

A B
C D

)(
U
1

)
=

(
AU +B
CU +D

)
∼
(

(AU +B)(CU +D)−1

1

)
where, like Lan, we say for two rank-n m × n matrices X, Y that X ∼ Y if X
can be multiplied on the right by an invertible n × n matrix to give Y . That is,
X ∼ Y if X, Y give rise to the same point in the Grassmannian of n-dimensional
subspaces of an m-dimensional vector space.)

(b) What is D1,1?

(c) Check Lan’s assertion that if

(
A B
C D

)
∈ Ua,b and B = 0, then also C = 0, and

hence that the stabilizer of 0 ∈ Da,b is{(
A

D

)
∈ Ua,b

}
∼= Ua × Ub.

2. Now we go through the details of the unbounded realization Ha,b. Like Lan, we define

U ′a,b = {g ∈ GLa+b(C) | gTJa,bg = Ja,b}

where

Ja,b =

 1b
S

−1b


where S is some choice of skew-Hermitian matrix satisfying −iS > 0 (i.e. S

T
= −S

and −iS is positive definite). Let

Ha,b =


(
Z
W

)
∈Ma,b(C) | −i

(
Z W 1

)
Ja,b

Z
W
1

 = −i(ZT − Z +W
T
SW ) < 0


where Z is b× b and W is (a− b)× b.

(a) Check that if g =

A E B
F M G
C H D

 ∈ U ′a,b, the map

(
Z
W

)
7→ g

(
Z
W

)
=

(
(AZ + EW +B)(CZ +HW +D)−1

(FZ +MW +G)(CZ +HW +D)−1

)
gives a well-defined action of U ′a,b on Ha,b. Interpret this action as matrix multi-
plication on points of a Grassmannian as we did for D.
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(b) What is H1,1?

(c) For any b× b matrix Z, let

<(Z) =
1

2
(Z + Z

T
), =(Z) =

1

2i
(Z − ZT

).

Note that these are not the usual real and imaginary parts of Z, but what Lan
calls the “Hermitian” real and imaginary parts, in the sense that <(Z) and =(Z)
are Hermitian and Z = <(Z) + i=(Z). Show that

Hb,b = {Z ∈Mb(C) | =(Z) > 0}.

(d) Let S be the skew-Hermitian matrix inside Ja,b previously chosen. Then −iS
is Hermitian, and by the Spectral Theorem, there is T ∈ GLn(C) such that

TT
T

= −iS. Show that

g 7→

 1√
2

− i√
2

T
1√
2

i√
2

 g

 1√
2

1√
2

T−1
i√
2

− i√
2


gives an isomorphism U ′a,b

∼−→ Ua,b, thatZ
W
1

 7→
 1√

2
− i√

2

T
1√
2

i√
2

Z
W
1


gives an isomorphism Ha,b

∼−→ Da,b taking

(
i1b
0

)
∈ Ha,b to 0 ∈ Da,b, and that

these two isomorphisms are equivariant.

(e) Given any

(
Z
W

)
∈ Ha,b, construct an element of U ′a,b taking

(
Z
W

)
to

(
i1b
0

)
.

Conclude that the actions of Ua,b on Da,b and U ′a,b on Ha,b are transitive.

3. Finally, we modify these Hermitian symmetric domains to look like parts of Shimura
data.

(a) Let

h0 : U1 → Ua,b

x+ yi 7→
(

(x− yi)1a
(x+ yi)1b

)
.

Show that the centralizer of h0(U1) in Ua,b is Ua × Ub, and conclude that Da,b is
isomorphic to the orbit of h0 in Ua,b under conjugation.

(b) Write out the analogous expression for Ha,b as the orbit of h′0 in U ′a,b under con-
jugation, for some h′0 : U1 → U ′a,b.
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(c) Let

GUa,b = {(g, r) ∈ GLa+b(C)× R× | gT1a,bg = r1a,b}
GU ′a,b = {(g, r) ∈ GLa+b(C)× R× | gTJa,bg = rJa,b}.

Describe spaces D±a,b containing Da,b and H±a,b containing Ha,b, along with exten-

sions of h0 to C× → GUa,b and h′0 to C× → GU ′a,b, so that D±a,b is the orbit of h0
in GUa,b under conjugation and H±a,b is the orbit of h′0 in GU ′a,b under conjuga-
tion. (Note that Lan doesn’t write these out, but he writes out the corresponding
extension from Sp2n to GSp2n in Section 3.1.4.)

4. What happens when b = 0?

1.3 PEL data

1. Here we check the statements in Section 5.1.1 of [Lan22] translating PEL data into
abelian varieties with Polarization, Endomorphism, and Level structure. Suppose we
have an integral PEL datum (O, ∗, L, 〈, 〉, h) as in Section 2.2 of [Eis22] or Section 5.1.1
of [Lan22].

(a) Let V = L⊗Z R, A = V/L, and

H : V × V → C

(x, y) 7→ 1

2πi
(〈x, y〉 − i〈x, h(i)y〉).

As in Section 2.1 of [Lan12], check that h gives A the structure of a complex torus
and that H is a positive definite Hermitian form such that =(H) is integral on
L×L. It is standard that this data is necessary and sufficient to make A into an
abelian variety.

(b) Let
L# = {x ∈ L⊗Z Q | 〈x, y〉 ∈ 2πiZ for all y ∈ L}.

Let A∨ = (L ⊗Z R)/L#. It turns out that A∨ is indeed the dual abelian variety
of A and that the map λ : A→ A∨ induced by the natural inclusion L ⊂ L# is a
polarization of A. Following Section 2.2 of [Lan12], check as many details as you
would like to convince yourself that λ really is a polarization.

(c) Describe a natural embedding ι : O → EndC(A) satisfying the Rosati condition
that

λ ◦ ι(b∗) = (ι(b))∨ ◦ λ

as maps A→ A∨.

(d) Check as many details as you would like to convince yourself that the natural
isomorphism L/nL

∼−→ A[n] gives rise to a principal level-n structure in the sense
of Definition 1.3.6.1 of [Lan13].
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2. Let K be a quadratic imaginary extension of a totally real field K+. Let V1, . . . , Vm
be K-vector spaces equipped with Hermitian pairings 〈, 〉V1 , . . . , 〈, 〉Vm . Check that the
tuple (D, ∗,OD, V, 〈, 〉, L, h) described in Section 2.2.2 of [Eis22] (with D = Km, etc.)
really is a PEL datum of unitary type as defined in Section 2.2.

3. As in Example 5.1.3.5 of [Lan22], let O be an order in an imaginary quadratic extension
E of Q, with fixed isomorphism E ⊗Q R ∼= C. Let ∗ be complex conjugation of E over
Q. Let L = Oa+b with a ≥ b ≥ 0. Let ε ∈ O be such that −iε ∈ R>0 and let

〈·, ·〉 : L× L→ Z
(x, y) 7→ trO/Z(xTJa,by)

where Ja,b =

 1b
ε1a−b

−1b

. Let G be the group over Z given by

G(R) = {(g, r) ∈ EndO(L⊗Z R)×R× | 〈gx, gy〉 = r〈x, y〉 for all x, y ∈ L⊗Z R}

for each ring R. Let

h : C× → G(R)

reiθ 7→ r

cos θ − sin θ
e−iθ

sin θ cos θ

 .

Check that h is well-defined, that G(R) ∼= GU ′a,b, and that the orbit of h in G(R) under
conjugation is H±a,b.

2 Automorphic forms on unitary groups

2.1 Small cases

Here we explore the definitions of automorphic forms given in Section 3 of [Eis22] for small
groups.

1. Recall that a Hecke character or Grössencharacter of a field K is a continuous group
homomorphism

K×\A×K → C×.

(a) Check that a Hecke character of Q is the same as an automorphic form on GL1.

(b) Check that if K is a quadratic imaginary extension of a totally real field, and GU1

the corresponding general unitary group, a Hecke character of K is the same as
an automorphic form on GU1.

2. For the case of GL2 (classical modular forms), write out as explicitly as possible the
constructions of automorphic forms given in
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(a) Definition 3.1.6 (as functions on a Hermitian symmetric domain).

(b) Definitions 3.2.6, 3.2.7, and 3.3.1 (as functions on spaces of abelian varieties).
Also write out the correspondence in Lemma 3.2.2 in this particular case.

(c) Definition 3.4.2 (as functions on GL2(R).

(d) Definition 3.4.7 (as functions on GL2(A)).

3. Repeat the previous problem for Ua.

4. For the case of GL2, work through the details in Section 3.4.1 giving the bijection
between automorphic forms defined as in Definition 3.1.6 (as functions on a Hermitian
symmetric domain) and 3.4.7 (as functions on GL2(A)). (Also see e.g. the introduction
of [LW12].)

5. Use the isomorphism in Section 2.1.1 of [Eis22] (proven in Section 1.1, Problem 3 of
this problem set) to explain the relationship between automorphic forms on GU1,1 and
forms on GL2.

2.2 More general observations

We check some details in Section 3 of [Eis22].

1. Check the statement in Remark 3.1.5 that the defined automorphy factor Mg(z)T maps
the lattice pgz(L) from Remark 2.2.8 to pz(L).

2. Check the last sentence in the proof of Lemma 3.2.2: that the map f 7→ Ff defined in
the proof is well-defined and provides the inverse to the map F 7→ fF in the statement
of the Lemma.

3 Structure of BunG

3.1 An elementary proof of Grothendieck’s theorem

In this section, we work through an elementary proof of Grothendieck’s theorem that every
vector bundle on P1 is isomorphic to a direct sum of line bundles

⊕
i O(ni) for a unique

multiset {ni}. We follow [HM82].

1. First we reduce the statement to an elementary one about matrices.

(a) Let k be any field and spec(k[s]) = A1
k ⊂ P1

k. Let E be a vector bundle of rank m
over P1

k. By looking at the transition functions of E , explain why E is determined
by an m×m matrix A(s, s−1) which has coefficients in k[s, s−1].

(b) Explain why we may assume that det(A(s, s−1)) is sn for some n ∈ Z.
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(c) Show that A(s, s−1) and A′(s, s−1) give rise to isomorphic vector bundles iff there
exist polynomial invertible m × m matrices U(s), V (s−1) over k[s] and k[s−1]
respectively such that

A′(s, s−1) = V (s−1)A(s, s−1)U(s).

(Note that we really mean that U(s) is invertible in Mm×m(k[s]), not just
Mm×m(k[s, s−1]), and similarly for V (s−1). In particular det(U(s)) and
det(V (s−1)) are nonzero constants.) In this case, we will say that A(s, s−1) and
A′(s, s−1) are equivalent.

(d) Let D(r1, . . . , rm) be the diagonal matrix with diagonal entries sr1 , . . . , srm . De-
scribe the vector bundle associated toA(s, s−1) = D(r1, . . . , rm). Hence argue that
Grothendieck’s theorem is equivalent to the following statement: for any m×m
matrix A(s, s−1) which has coefficients in k[s, s−1] and determinant equal to sn

for some n ∈ Z, there exist polynomial invertible m × m matrices U(s), V (s−1)
over k[s] and k[s−1] respectively such that

V (s−1)A(s, s−1)U(s) = D(r1, . . . , rm)

with r1 ≥ r1 ≥ · · · ≥ rm ∈ Z, and the ris are uniquely determined by A(s, s−1).

2. Now we prove the uniqueness statement in 1(d).

(a) Suppose that A(s, s−1) is equivalent (in the sense of 1(c)) to both D(r1, . . . , rm)
and D(r′1, . . . , r

′
m). Observe that then we could find polynomial matrices with

constant nonzero determinant U(s), V (s−1) such that

V (s−1)D(r1, . . . , rm) = D(r′1, . . . , r
′
m)U(s).

For a matrix A, let Ai1,...,ikj1,...,jk
be the minor of A given by the rows i1, . . . , ik and the

columns j1, . . . , jk. The Cauchy-Binet formula says that

(AB)i1,...,ikj1,...,jk
=

∑
r1<···<rk

Ai1,...,ikr1,...,rk
Br1,...,rk
j1,...,jk

.

Using this, find some i1 < · · · < ik such that r′1 + · · ·+ r′k ≤ ri1 + · · ·+ rik .

(b) Using the conclusion of 2(a), prove that ri = r′i for all i.

3. Finally, we prove the existence statement in 1(d). We proceed by induction.

(a) Choose n so that snA(s, s−1) is a polynomial matrix B(s). Explain why we may
assume that B(s) satisfies b11 = sk1 for some k1 ∈ Z≥0 and b′1i = 0 for i = 2, . . . ,m.

(b) Assuming that the statement of 1(d) holds for (m − 1) × (m − 1) matrices, find
matrices U1(s), V1(s

−1) satisfying the usual conditions so that V1(s
−1)B(s)U1(s)

has the form 
sk1 0 · · · 0
c2 sk2 · · · 0
... 0

...
...

cm 0 · · · skm


where k1 is the same as in 3(a), k2, . . . , km ∈ Z≥0, and ci ∈ k[s].
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(c) Consider all matrices of the form in 3(b) which are equivalent to B(s). Show that
there exists one for which k1 is maximal. Show that in this case, we must have
k1 ≥ ki for i = 2, . . . ,m.

(d) Assuming as in 3(c) that k1 ≥ ki for i = 2, . . . ,m, explain how to eliminate
c2, . . . , cm and complete the argument.

3.2 Weil’s equivalence

This is a more detailed version of Exercise 1.2.2 in [Yun22]. We keep Yun’s notation. As
in Section 1.2.1 of [Yun22], let G = GLn and let Vecn(X) be the groupoid of rank n vector
bundles over X. Yun defines a map

eS :
∏
x∈S

G(Fx)→ Vecn(X)

for any finite subset S ⊂ |X|.

1. As in Exercise 1.2.2(1), show that the image of an element of
∏

x∈S G(Fx) under eS
really is a vector bundle of rank n.

2. As in Exercise 1.2.2(2), combine the eS as S varies to give a well-defined map e :
G(AF )→ Vecn(X).

3. As in Exercise 1.2.2(3), show that e is left invariant under G(F ) and right invariant
under K\.

4. Now we show that e is an equivalence of groupoids. First we check that the induced
map G(F )\G(AF )/K\ → Vecn(X) is a bijection of sets.

(a) Check that this map is injective as follows: let S ⊂ |X| be finite. Suppose that
(gx), (g

′
x) ∈ G(AF ) are both nontrivial only at places in S and that eS((gx)) = V ,

eS((g′x)) = V ′. If f : V → V ′ is an isomorphism, use f to find an element
h ∈ GLn(OU) ⊂ GLn(F ), where U = X \ S, such that (g′x)

−1hgx ∈ GLn(Ox) for
all x ∈ S. Then use h to conclude that (gx), (g

′
x) are in the same double coset.

(b) Check that this map is surjective as follows: given a vector bundle V on X, find
an open set U ⊂ X on which V is trivial. Check that the stalk of V over any
x ∈ X \ U is of the form gxO⊕nx for some gx ∈ GLn(Fx). Thus find an element of
G(AF ) which maps to V under e.

(c) Check that this map is an isomorphism of groupoids, with the following groupoid
structure on G(F )\G(AF )/K\:

Hom(g1, g2) = {g0 ∈ G(F ) | g0g1 ∈ g2K\} = G(F ) ∩ g2K\g−11 .
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3.3 Birkhoff decomposition

This is a more detailed version of Exercise 1.2.8 in [Yun22], proving a more general version
of the results in Section 3.1 from a more conceptual viewpoint. We keep Yun’s notation. We
will construct a canonical bijection of sets

BunG(k) ∼= X∗(T )/W.

You can assume that G = GLn if you want.

1. As in Exercise 1.2.8(1), show that the map X∗(T ) → T (AF ) taking λ ∈ X∗(T ) to the
element tλ of T (AF ) which is λ(t) at the place 0 ∈ spec(k[t]) ⊂ P1 and 1 elsewhere
induces a bijection

X∗(T )
∼−→ T (F )\T (AF )/K\ ∩ T (AF ).

Note that you can check this one diagonal coordinate at a time, since we are assuming
that G is split.

2. As in Exercise 1.2.8(2), check that the map

T (F )\T (AF )/K\ ∩ T (AF )→ G(F )\G(AF )/K\

is W -invariant.

3. We will now show, as in Exercise 1.2.8(2), that this map is surjective.

(a) Use the Chinese Remainder Theorem to show that AF = F + K\ (i.e. every
element of AF can be written as the sum of an element of F and an element of
K\).

(b) Recall from the notation in Section 1.1.2 of [Yun22] that B is a Borel subgroup
containing T . Let N be the corresponding unipotent subgroup. Use AF = F +K\

to show that N(AF ) = N(F )(N(AF ) ∩K\).

(c) Using the Iwasawa decomposition for G, show that T (F )\T (AF )/K\ ∩ T (AF )→
G(F )\G(AF )/K\ is surjective.

4. Use Section 3.1, Exercise 2 to show that when G = GLn, this map is injective. Then
check (if you want) that injectivity holds for all G.

3.4 Miscellaneous

1. Do Exercise 1.2.5 in [Yun22] describing PGLn-torsors over X in terms of line bundles.

2. Do Exercise 1.2.6 in [Yun22] describing Sp2n- and SOn- torsors over X in terms of line
bundles.

3. If E = e((gy)y∈|X|), let E (x) = e((g′y)y∈|X|) where g′x = x−1gx and g′y = gy for y 6= x.
This is an example of a “modification” of a vector bundle. Prove the formula in Section
1.2.9 describing the action of the spherical Hecke algebra in terms of modifications
of vector bundles. What is the analogy with the Hecke operator action on classical
modular forms?
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4 The affine Grassmannian

Let GrG be the affine Grassmannian of G, described briefly in Section 4.2 of [Yun22] and in
more detail in Section 2 of [Zhu16]. As in our sources, define the k-presheaves LG and L+G
by

LG(R) = G(R((t)))

L+G(R) = G(RJtK)

for any k-algebra R. Then we have GrG = LG/L+G. L+G acts on GrG by left translation
and its orbits correspond to elements of

G(kJtK)\G(k((t))/G(kJtK) ∼= X∗(T )/W ∼= X∗(T )+.

We write DR = specRJtK, D×R = specR((t)). We often work with the data of two G-torsors
E1,E2 over D = Dk along with an isomorphism β : E1|D×

∼−→ E2|D× . This data is associated
to an element

Inv(β) ∈ G(kJtK)\G(k((t))/G(kJtK) ∼= X∗(T )+.

4.1 Schubert varieties are closed

In this section, we work through the proof of Proposition 2.1.4 in [Zhu16]. The statement is
that for a given (E1,E2, β), X = specR, and µ ∈ X∗(T )+, the set

X≤µ = {x ∈ X | Inv(βk(x)) ≤ µ}

is Zariski-closed in X. We will focus on the case of G = GLn, but you can think about more
general G if you want.

1. For a given (E1,E2, β), let x ∈ X≤µ. Let ρχ : G → GL(Vχ) be a finite dimensional
highest weight representation of G of highest weight χ, and for i = 1, 2 let Vχ,Ei =
Ei ×G Vχ. Explain why x satisfies

ρχ(βx)(Vχ,E1) ⊂ t−〈χ,µ〉(Vχ,E2).

2. Explain why the set XVχ,≤µ of those x satisfying the containment in 1 is Zariski closed.

3. In the case G = GLn, show that

X≤µ =
⋂
Vχ

XVχ,≤µ

where the intersection is taken over all finite dimensional highest weight representations
of G. Conclude that X≤µ is closed. (Optional: think about, or look up, how to conclude
for more general G.)
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4.2 L+G-orbits

In this section, we work through the proof of Proposition 2.1.5 in [Zhu16]. Let

Grµ = Gr≤µ \
⋃
λ<µ

Gr≤λ.

1. Show that Grµ forms a single L+G-orbit.

2. Show that Grµ is smooth.

3. Show that the tangent space of Grµ at tµ can be written in the form⊕
〈α,µ〉≥0

gα(O)/t〈α,µ〉gα(O),

where α ranges over all positive roots of G and gα is the root space corresponding to
α. Conclude that dimGrµ = 〈2ρ, µ〉 where 2ρ is the sum of the positive roots of G.

4. Now we show that if λ ≤ µ, then Grλ is contained in the Zariski closure of Grµ. Let
α be a positive coroot such that µ− α is dominant and λ ≤ µ− α ≤ µ (such a coroot
always exists).

(a) Explain why it suffices to construct a curve C in Gr≤µ such that tµ−α ∈ C and
C \ {tµ−α} ⊂ Grµ.

(b) For any integer m, let tλm =

(
tm 0
0 1

)
and

Km = Adtλm (L+SL2) ⊂ LSL2.

Let iα : SL2 → G be the homomorphism corresponding to the coroot α and
m = 〈µ, α〉 − 1. Let

Cµ,α = Liα(Km)tµ.

Check that Cµ,α ∼= P1.

(c) Check that Cµ,α contains tµ−α and that C \ {tµ−α} ⊂ Grµ.
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