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CHAPTER 1

Introduction

This course is about quaternionic modular forms (QMFs). A QMF is a very special
type of automorphic form, much like holomorphic modular forms (HMFs) are a special
type of automorphic form. In fact, quaternionic modular forms appear to behave very
similarly to holomorphic modular forms, and this is one reason to be interested in them. In
this introduction, I will briefly explain what are QMFs and try to motivate why they are
interesting objects to study. I begin by briefly reviewing holomorphic modular forms.

1.1. Holomorphic modular forms

Suppose G is a semisimple Q group, with symmetric space Xg = G(R)°/K°, where K°
is a maximal compact subgroup of G(R)°. For some groups G, the symmetric space X¢ has
a structure of a complex manifold, for which the G(R)? action is via biholomorphic maps.
This is the caseEI if G(R) is, for example, isogenous to one of the following groups:

(1) Spsn(R)

(2) SO(2,n)

(3) Ulp,q)
In these cases, one can make a classical definition of holomorphic modular forms. The
holomorphic modular forms can be thought of sections of holomorhpic line bundles on I'\ X,
where I' C G(Q) is an arithmetic subgroup. Another way to think of the holomorphic
modular forms is as very special automorphic forms ¢ : G(Q)\G(A) — C.

Compared to general automorphic forms, holomorhpic modular forms are special for at
least a few reasons. One reason is that, in many situationsﬂ, they have a classical Fourier
expansion and corresponding Fourier coefficients. General automorphic forms do not have as
nice of a notion of Fourier coefficients. These Fourier coefficients can contain very interesting
arithmetic information. For example, if 6(q) = >_, .5 ¢" is the classical f-function, which
is a modular form of weight 1/2, then 6(q)* =" _,7%(n)¢" where ri(n) is the number of
ways of writing n as the sum of k squares. So the Fourier coefficients of 6(q)*, which is a
special modular form of weight k/2, see the arithmetically interesting numbers 74(n).

Another reason holomorphic modular forms are interesting is that they are frequently, al-
though certainly not always, the objects for which we can say arithmetically interesting things
about their L-values. To be more precise, automorphic representations 7 have associated
L-functions, L(m,,s). For certain automorphic representations 7, the L-functions L(7, 1, s)
are conjectured to be motivic, i.e., equal to the L-functions of certain motives. One can then
transfer the conjectures about motivic L-functions (e.g., the Deligne and Bloch-Kato con-
jectures) to the automorphic L-functions. For example, one can ask if the special L-values

IThis is not an exhaustive list
2If X is of tube type and G has an appropriate rational parabolic subgroup
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L(m,r,s = sg) are algebraic (after dividing by a certain period) and if they can be p-adically
interpolated. Working with holomorphic modular forms enables one to prove statements of
this sort. For example, there is the recent work of Eischen-Harris-Li-Skinner [EHLS20] who
construct p-adic L-functions for holomorphic modular forms on unitary groups.

Finally, because of their familiarity and extra structure, holomorphic modular forms are
a great testing ground for potentially new phenomena. For theorems about automorphic
forms—whether it be regarding L-values, periods, the trace formula, Galois representations—
the first special cases that are proved are in the context of holomorphic modular forms.
Trying to find and test new phenomena is yet another reason why holomorphic modular
forms deserve special attention.

1.2. Quaternionic modular forms

For most semisimple groups G, the symmetric space X is does not have a G(R)°-
invariant complex structure. Consequently, there are no holomorhpic modular forms on X,
and no obvious notion of very Specialﬂ automorphic forms on G(A). Phrased this way, it
begs the question: Are there a class of groups GG, and a class of very special automorphic on
these groups GG, that can in some ways take the place of holomorphic modular forms?

Quaternionic modular forms are a potential answer to the above question. Their study
was initiated by Gross-Wallach [GW94], Wallach [Wal03], and Gan-Gross-Savin [GGS02].
I have been studying them for the last few years, trying to provide evidence that they behave
like holomorphic modular forms. In this course, I will define quaternionic modular forms and
give some of this evidence that quaternionic modular forms are arithmetic in a way similar
to how holomorphic modular forms are arithmetic.

So, what are the groups G above, and what are the quaternionic modular forms? This
will be described in detail below, but for now let me give a brief indication. Suppose G
is a semisimple group for which X has a G(R)-invariant complex structure. If ¢ is an
automorphic form on G(A) that corresponds to a holomorphic modular form f, of some
integer scalar weight w, then ¢ has two properties:

(1) o(gk) = z(k)™p(g) for all k € K° where 2 : K — U(1) is a certain fixed
surjection;

(2) Depwp(g) =0, where Dep,y, is a certain linear differential operator corresponding
to the fact f,, satisfies the Cauchy-Riemann equation.

And conversely, the automorphic forms ¢ with these properties correspond to holomorphic
modular forms f,, of weight w. One can also make a definition in terms of the representation
theory of real group G(R): At least if w is sufficiently large, ¢ corresponds to a holo-
morphic modular form of weight w if the (g, K°)-module generated by ¢ is a holomorphic
discrete series representation m, and ¢ spans a one-dimensional minimal K%-type in this
representation. In other words, holomorphic modular forms correspond to special vectors in
automorphic representations m = 7y ® ., Where 7 is a special type of representation of
the real group G(R.)°.

3Some notions of special automorphic forms for @, which we do not consider “very special” for this
purpose, are as follows: 1) functorial lifts from smaller groups (not wide enough a class of automorphic
forms); 2) cohomological automorphic forms (too broad a class of automorphic forms)

6



Now, the groups G with holomorphic modular forms have K° such that K° possesses
a surjection to the smallest nontrivial connected compact group, U(1). Gross and Wallach
had the insight to ask the question, “What if G(R)? is such that K° possesses a surjection
to the next smallest compact group, SU(2)/us = SO(3)?” The list of these groups includes
(strictly) the following groups:

° Split G2
e split F)
o E,,,n=06,7,8 (groups of type Eg, E7, Es with real rank four)
e SO(4,n)° with n > 3.
The G for which G(R)? is as above are called quaternionic groups; they possess quaternionic
modular forms. Set V,, = Sym?¥(C?), a representation of SU(2)/ sz, or of K via the surjec-
tion K° — SU(2)/ps. A quaternionic modular form of integer weight w is an automorphic
form ¢ : G(Q)\G(A) — V,, satisfying
(1) (gk) = k™1 p(g) for all k € KY;
(2) Dyp(g) =0, for a certain specific linear differential operator D,,.

Like with holomorphic modular forms, one can also make a definition of quaternionic modular
forms in terms of certain (discrete series) representations of G(R)°. In more detail, if w is
sufficiently large, there is a discrete series representation 7, of G(R)? whose minimal K°-
type is V) ~ V,,. quaternionic modular forms are automorphic forms that correspond to
the (entire) minimal K°-type of 7,,, embedded in the space of automorphic forms on G.

1.3. Why study quaternionic modular forms

From my point of view, the primary purpose of this course is to convince you that
quaternionic modular forms are interesting gadgets which deserve further studyﬂ Let me
briefly indicate some ways in which quaternionic modular forms are interesting, leaving a
more detailed description to the rest of the notes.

1.3.1. Quaternionic modular forms possess Fourier coefficients. One of the first
things to say about quaternionic modular forms is that they have a Fourier expansion and
corresponding Fourier coefficients, very similar to that of holomorphic modular forms. In
other words, associated to a quaternionic modular form ¢, one can define a list of complex
numbers a,(\), where A varies in some lattice A. The proof of the existence of these Fourier
coefficients began with work of Wallach [Wal03], was used by Gan-Gross-Savin [GGS02],
and then was made more complete and explicit in [Pol20al.

The existence and properties of these Fourier coefficients are somewhat miraculous. Here
is, in my mind, an important example: Suppose G; C G5 are two quaternionic groups,
embedded appropriately, and ¢y on G is a quaternionic modular form of weight w. Then
the pullback ¢, of s to (G is again a quaternionic modular form of weight w. Moreover,
one can show that the Fourier coefficients of ¢; are finite sums of the Fourier coefficients
of 5. Note that, for a general automorphic form s, one would not be able to say anything
of content about a Fourier expansion of ¢; from that of ys.

4The secondary purpose of this course is to convince you that exceptional groups are beautiful, and that
you can work with them concretely.



1.3.2. The Fourier coefficients of quaternionic modular forms appear to be
arithmetic. The Fourier coefficients of a quaternionic modular form are defined in a very
transcendental way. Nevertheless, they appear to be highly arithmetic. Here are examples:

(1) There are degenerate Eisenstein series For on Go of even weight 2k. Using work of
Jiang-Rallis [JRO7|, Gan-Gross-Savin [GGS02] showed that if the non-degenerate
Fourier coefficients of the Fy are nonzeroﬂ then they are essentially values of Zeta
functions (g (1 — 2k) of totally real cubic fields E.

(2) In the works [Pol20b], [Pol20c], it is shown that for two very special quaternionic
modular forms on Ejg 4, their Fourier coefficients are (nonzero) rational numbers.

(3) In the paper [Pol20bl, I gave an example of a quaternionic modular forms on FEg 4
that is distinguished. 1 will define this notion precisely below, but for now let me say
that a distinguished modular form ¢ is one whose non-degenerate Fourier coefficients
ay(A) are 0 unless a certain arithmetic condition on A is satisfied.

(4) In the paper [Pol19], I proved that in every even weight w > 16, there is a nonzero
cuspidal modular form on Gs with all Fourier coefficients algebraic numbers.

(5) In forthcoming joint work with Spencer Leslie, we define the notion of modular
forms of half-integral weight on exceptional groups and prove that they have a
similar notion of Fourier coefficients. Moreover, we construct a modular form of
weight 1/2 on Gy whose Fourier coefficients see the 2-torsion in the narrow class
groups of totally real cubic fields.

Based on the above-mentioned evidence, I want to take this opportunity to make the
following conjecture:

CONJECTURE 1.3.1. Suppose G is a quaternionic exceptional group, and w > 1 is an
integer. Then there exists a basis {p;} of quaternionic modular forms on G of weight w,
such that all the Fourier coefficients a,,(\) of the ¢; are algebaic numbers.

Conjecture says that quaternionic modular forms possess a very surprising arith-
meticity.

REMARK 1.3.2. For the group GLy, the Fourier coefficients are essentially the Satake
parameters, and so algebraicity of Satake parameters implies that of the Fourier coefficients.
For larger groups, the relationship between Satake parameters and Fourier coefficients is
much more elaborate. In particular, algebraicity of Satake parameters does not in any clear
way imply that of the Fourier coefficients.

1.3.3. The representation theory of quaternionic real representations is par-
ticularly nice. I won’t have much to say about this in the course, but I did want to take this
opportunity to reference work of Wallach [Wall15], work of Gross-Wallach [GW94], work of
Loke [Lok99]. Moreover, I also want to mention the work [Wei06| of Marty Weissman and
the recent work [Dal21] of Rahul Dalal, although they are more global in nature and don’t
exactly fit into this category. The paper of Dalal gives a dimension formula for the space of
level one even weight modular forms on Gs.

5T believe one still does not know if these Fourier coefficients are nonzero, although of course it is believed
that they are nonzero. This would be a good project for someone!
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1.3.4. Quaternionic modular forms are potentially a testing ground for new
phenomena. Because of their very rich structure, and because they appear to possess
surprising arithmeticity, quaternionic modular forms behave very much like holomorphic
modular forms. I suspect that they are ripe for study. In particular, like holomorphic
modular forms, they may be a fertile testing ground for as-yet-undiscovered phenomena.

The rest of the notes will try to describe quaternionic modular forms in more detail, and
explain some of the above-mentioned results.



CHAPTER 2
The group G,

In this chapter, we describe the group G5 in ways that generalize to the other exceptional
groups. For deeper reading on the group G5 and modular forms on G5, we refer the reader
to [Poll9].

2.1. The group G-

We begin by defining the group G5. We will define G5 in a way that will generalize to
all the (quaternionic) exceptional Lie groups. We work over a field k of characteristic 0.

Let sl3 be the Lie algebra of SLs. We may identify sl3 with the trace zero 3 x 3 matrices.
Let V3 denote the standard representation of sl3 and V3’ its dual. Then End(V3) ~ V3 ® V3'.
Note that if v € V3 and 6 € V3, then v ® § — @13 has trace 0, so is an element of sl3.

Fix an identification A3V3 =~ k. This gives rise to an identification A?V3 ~ V3’ and
AV, ~ V3. We can describe this identification in bases. Let vy, vs, v3 be the standard basis
of V5 and 01, 92, d3 be the dual basis of V;'. Then we identify v; Av;y; with §;_; (indices taken
modulo 3) and 5j VAN 5j+1 with Vj—1-

Now we set go = sl3 @ V3 @V}, a k vector space of dimension 14. This is a Z/3-grading,
with sl3 in degree 0, V3 in degree 1 and V3’ in degree 2. One defines a Lie bracket on go
as follows. First, if ¢, ¢' € sl3, then [¢, ¢'] is the usual Lie bracket on sl3: ¢ o ¢’ — ¢ o ¢.
Next, if ¢ € sl3, v € V3 and § € V3’, then [¢,v] = ¢(v) € V3 and [¢,d] = ¢(§) € V5.
Here recall that the action on the dual space V3 is defined as ¢(0)(v) = —d(¢(v)), so that
(p(v),0) + (v,¢(0)) = 0, where (, ) is the canonical pairing between V3 and V5.

If v,9' € V3, then [v,v] = 2v AV € A*V3 ~ V,', and similarly, if 6,8 € V3’ then
[0,8'] = 26 A d'in A? V3 =~ V4. Finally, if 6 € V3¥ and v € V3, then [§,v] = 3v® 6 — §(v)13. All
other Lie brackets are determined by linearity and antisymmetry.

PROPOSITION 2.1.1. With these definitions, go is a Lie algebra, i.e., the Jacobi identity
is satisfied.

PRroor. This is a fun exercise, which we leave to the reader. O
PROPOSITION 2.1.2. The Lie algebra go 1s simple.

PRrROOF. Any ideal I of g, will be a representation of sl3, and thus will be a direct sum
of irreducible sl3 pieces. The rest is an exercise. 0

The algebraic group Go is defined as the (identity component of) the automorphism
group of go: For a Lie algebra g, define
Aut(g) = {g € GL(g) : g[X, Y] = [9X, gY] VXY € g}
and G(g) = Aut(g)°, the connected component of the identity. When g is semisimple, G(g) is
a connected algebraic group with Lie algebra g, and of adjoint type. We define Go = G(gs).
10



As a Cartan subalgebra bh, we may take the usual (diagonal) Cartan of sl3. Indeed, it is
clear that this h acts diagonally on g, with distinct nonzero weights.

2.2. The Z/2-grading and the Heisenberg parabolic

The Lie algebra go possesses a 5-step Z-grading, and a closely related Z/2-grading. It
will be useful to review these gradings on go, which we will do presently.
Let Ejj = v; ® 6; € End(V3) >~ V3 ® V3’ be the matrix with a 1 in the (ij) place and 0’s
elsewhere. For the 5-step Z-grading:
e In degree 2, put kF:3
e In degree 1, put kE o + kvy + ki3 + kFEos
e In degree 0, put kdy + b + kv,
e In degree —1, put k'Egg -+ ]{ZU3 + k(51 + kEQl
e In degree —2, put kEj3;.

EXERCISE 2.2.1. Write F;go for the degree i piece. Find an element h € b so that
[h, Fkgg] = k'Fkgg Deduce that [F}gQ,FkQQ] - F}'+kg2.

The degree 0 piece is isomorphic to gl,. Write W for the degree 1 piece.

EXERCISE 2.2.2. Prove that W is isomorphic to the representation Sym® @ det()™! of
gl, > Fogo.

The Z/2-grading is defined as follows: Set gg = F_ogo® Fogo® Fogo and g = F_1go@ F1gs.
It is clear that this is a Z/2-grading.

EXERCISE 2.2.3. Prove that gy ~ sly @ sly and g1 ~ Vo @ W as a representation of gy.

Let P the subgroup of G, that stabilizes the line kE;3. One can show that P is a
parabolic subgroup of Go, with Lie algebra @, Fig2, the part of g, with non-negative
components in the Z-grading. We call P the Heisenberg parabolic of G5. The group P has
a Levi decomposition P = MN with M ~ GL,. The Lie algebra of M is Fygs and the
Lie algebra of N is Figs @ Fage. Set Z = [N, N]. Then one can identify Z with Fygo via
the exponential map, and one can identify N = N/[N, N] = N/Z with W = Fyg, via the
exponential map.

2.3. The Cartan involution

In this section the ground field is the field R of real numbers. We describe the Cartan

involution 6 on gy, and the corresponding decomposition go = £ @ po, where £ = g5=! and
o=—1
Po=92 -

To describe the involution, we use the Z/3-model of gy. Recall that vy, ve, v3 and 1, da, d3
are our fixed bases of V3 and V3.
e On sl3, which we identify with the trace 0 three-by-three matrices, we define 0(X) =
_Xt
e On V3, 6 is given by 6(v;) = §;
e On Vy', 6 is given by 6(6;) = vs.

EXERCISE 2.3.1. Check that 0 is a Lie algebra involution on ga, i.e., 0]X,Y] = [0X,0Y]
for X,Y € gs.

11



In fact, 6 is a Cartan involution, i.e., the bilinear form By(X,Y) := —B(X,0(Y)) is
positive definite on go, where B is the Killing form.

The group G3(R) has a corresponding maximal compact subgroup: Set Kg, = {k €
Go(R) : k0 = Ok on g, }. Equivalently, K¢, is the subgroup of G3(R)) that also preserves By.
In fact, K¢, ~ (SU(2) x SU(2))/{=x1}.

Set £ =t @ C and p = pg ® C. Then ¢ ~ sl, ® sly and p ~ Vo @ W. For details, see
[Pol19, section 4.1]. In fact, there is an explicit ¢ € G5(C) such that ¢(t) = go ® C and
c(p) = g1 ® C. This is the exceptional Cayley transform, which can be found in [Pol20al].
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CHAPTER 3

Modular forms on G

In this chapter, we describe modular forms on G5, and what is known about them.

3.1. Warm-up: Holomorphic modular forms

We warm up to the definition by first revisiting the definition of holomorphic modular
forms for SLs.

3.1.1. Classical definition. Let h denote the complex upper half-plane. For g =
(2%) € SLy(R) and z € b set j(g,2) = cz+d. A function f : h — C is a holomorphic
modular form of weight ¢ if

(1) f is holomorphic

(2) f(v2) = j(v,2) f(2) for all v € T some congruence subgroup

(3) The function on SLy(R) defined by g + 5(g,4)*f(g-1) is of moderate growth. (See
[BJ79| for the notion of moderate growth.)

Denote the above space of modular forms by M,(T"). Holomorphic modular forms have a

classical Fourier expansion: Assume for simplicity that I" contains the subgroup {(} 1) :n €
Z}. Then f(z) =), ., ar(n)e*™* with the Fourier coefficients as(n) € C.

3.1.2. Semi-classical definition. We now give a semi-classical definition of holomor-
phic modular forms. We say a smooth function ¢ : SLy(R) — C is a holmorphic modular
form of weight ¢ if:

) @ is of moderate growth
) ©(vg) = p(g) for all v € I', some congruence subgroup

(1
( .
(3) p(gky) = e ™ p(g) for all g € SLy(R) and ky = <ZT§((3)) _C(S)lsr(l(e)> € SO(2).
(4) Doryp = 0 where Deg is a linear differential operator described below.
To describe the operator Dog, we proceed as follows. Let X, = (} % )and X _ ( L )
Then sly ® C = € ® p; @ p_, where £ is the complexified Lie algebra of SO(2), and py is

spanned by X1. One defines Doryp = X_¢p, the differential of the right regular action.
Let A,(T) denote the above space of modular forms.

EXERCISE 3.1.1. Prove that the maps f(z) — ¢s(g) :

fo(2) = j(g.,9)0(g.) define inverse bijections between M,(T
g € SLe(R) with g -i = z.

J(g, 1)~ f(g - 1) and ¢(g)
) and A,(T'). Here g, is any

Assume for simplicity that I contains the subgroup (|} %). Then

1z y1/2 >) £/2 27mnx 727rny
¥ _ =y ay
(< 0 1 > ( y 12 ;

13



We can re-express this Fourier expansion as follows. Define the function W, : SLy(R) —

as
Lz y'/? ) ) /2 ,—ild 2minz ,—
Wn B k _ /26 i e27r1n:re 27rny'
(o T e i) =

Then ¢(g) = 3,50 ax(n)Wy(g) with Fourier coefficients a,(n) € C.

3.1.3. Adelic definition. We now give the adelic definition of holomorphic modular
forms and their Fourier expansion.
A smooth function ¢ : SLy(A) — C is a holomorphic modular form of weight ¢ if:
(1) ¢ is of moderate growth
) ¢ is right invariant under and open compact subgroup of SLy(A )

(2) ¢
(3) ¢ is left-invariant under SLy(Q)

— cos(f) —sin(@
(4) p(gky) = e ™ p(g) for all g € SLy(A) and ky = (sin((G)) Cos(é))) € SO(2).
(5) Doryp = 0 where Deg is the linear differential operator described above.

The Fourier expansion of ¢ is

P(9792) = Y (g Wal(geo)

neQ,n>0

for locally constant functions ay,(gf), the Fourier coefficients of . Here g € SLy(Ay) and
Jso € SLQ(R)

3.2. The definition

We now give the definition of modular forms on G5, mimicking the adelic definition of
holomorphic modular forms on SLs.

Let V, = Sym%*(C?) X 1 as a representation of Kg, ~ (SU(2) x SU(2))/£1. Here the
SU(2) factors are ordered so that p ~ C*X W (as opposed to W K C?). To define modular
forms on G5, we need a certain differential operator D, that will take the place of Dog above.

Suppose ¢ : G2(R) — V, is a smooth function, satisfying p(gk) = k7'p(g) for all
g € G3(R) and k € Kg,. We define Dyp : Go(R) — Sym?~1(C?) X W as follows.

First, we define Dy : G2(R) = V, @ p" as:

Dyp = Z X;p0 X/
J
where {X;} is a basis of p and {X} is the dual basis of p¥. Here Xy is the right regular
action of p C g on ¢. One checks easily that 5g<p is still Kg,-equivariant, i.e., if ¢’ = 5g<p,
then ¢'(gk) = k~'¢(g) for all k € K and g € G.
Now, because p ~ pV, we have
V,@pY =~ Sym* T (C*) KW @ Sym* ' (C*) I W.

Let pr: V,®p¥ — Sym?~1(C?) X W be a K¢, equivariant projection (unique up to scalar

multiple). We define Dy = pr o Dj.
DEFINITION 3.2.1. Suppose ¢ > 1 is a non-negative integer. A smooth function ¢ :
G2(A) — V, is a quaternionic modular form of weight ¢ if
(1) ¢ is of moderate growth
14



(2) ¢ is right-invariant under an open compact subgroup of Go(Ay)
(3)  is left G(Q)-invariant, i.e., p(vg) = p(g) for all v € G(Q)

(4) ¢ is Kg,-equivariant, i.e., p(gk) = k~1p(g) for all k € K¢, and
(5) Dyp =0.

Quaternionic modular forms have a Fourier expansion and corresponding Fourier coeffi-
cients. We briefly state the result now, and will discuss it in more detail below. Denote ¢
and @y the constant terms of ¢ along Z and N.

We identify elements of W with four-tuples (a,b, ¢, d) so that (a,b,c,d) = aFs + bvy +
c03+dEs3. Define a symplectic form on W as ((a, b, ¢, d), (a/, ', ,d’)) = ad'—3bc’ +3ct/ —da’.
This form is none other than the commutator of two elements of W, i.e., if w,w’ € W then
[w, w'] = (w,w)Ey3. If w=(a,b,c,d) € W(R), write w > 0 if az® + 3b2% + 3cz + d is never
0 on the upper half plane in C; we say such elements of W(R) are positive semi-definite.

THEOREM 3.2.2 ([Pol19],[Pol20al). Suppose w € W(R) is positive semi-definite. There
is a completely explicit function W, : Go(R) — 'V satisfying the following properties:
(1) Wy(ng) = ™MW, (g) for all n € N(R). Here m denotes the image of n in
N ~ W,
(2) Wy(gk) =k=' - Wy(g) for all k € Kg,.
(3) DWy(g) = 0.
(4) W, is of moderate growth.

Moreover, if v is a modular form on Gy of weight {, then

oz(0) =en(@)+ D tpul(g)Wulge)

we2rW (Q):w>0

for locally constant functions ay,,, on G2(Ay). Additionally, the constant term ¢y is essen-
tially a holomorphic modular form of weight 3¢ on M ~ GLs.

The functions a,,, or sometime their value at gy = 1, are the Fourier coefficients of
. We say a,,,(1) is the Fourier coefficient of ¢ associated to w. When w is in the open
orbit of GLy(R) acting on W (R), these Fourier coefficients were defined by Gan-Gross-Savin
[GGS02], using a multiplicity one result of Wallach [Wal03], even though these authors did
not have the explicit functions W, (g).

Note that in the theorem, the constant terms y are essentially modular forms of weight
3¢ on GLs. So, the Ramanujan cusp form A can (and does) show up, but the cusp form of
weight 16 does not.

3.3. Examples and theorems

We give some examples and theorem about modular forms on Gbs.

3.3.1. Eisenstein series. The easiest family of examples is the degenerate Heisenberg
Eisenstein series. To define these, let 2%, ..., y* be a particular fixed basis of V, that we
will specify in more detail later.

Let P C G be the Heisenberg parabolic, with v : P — GL; the character given by p-Ei3 =
v(p)E13. If £ > 2 is even, there is a weight ¢ modular form associated to inducing sections

in Ind%(|v|*1). In more detail, let f,(g) € Indgggmﬂ”l) be the unique K-equivariant,
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V-valued section whose value at ¢ = 1 is zfy*. Let now fp. € Indggij:;(M“l) be an

arbitrary element. Set f(g) = fre(gr)fe(9o0) and E(g, f) = >_ cpqneq [ (79)- The sum
converges absolutely using that ¢ > 2. Then it can be shown that the value F(g, f) is a
quaternionic modular form of weight ¢. More generally, both for even and odd ¢, one can

make quaternionic modular forms by starting with inducing sections in / ndiéig ((xov)|v|*h),

¢
where y : GL;(Q)\ GL;(A) — C* is an automorphic character satisfying () = (ﬁ) =

sgn(t)*.

Another way to create modular forms is to use Heisenberg Eisenstein series with nontrivial
inducing data. One can take a classical holomorphic modular form ® of weight 3¢ on M ~
GLs, and from it produce a weight ¢ modular form E(g,®) on G if ¢ is sufficiently large.
This is spelled out in [Pol20al.

Here are some interesting open questions about Eisenstein series:

(1) Do the degenerate Eisenstein series F(g, f) have rational or algebraic Fourier coef-
ficients, when fy. is spherical?

(2) Say that w € W(R) is non-degenerate if w is in the open orbit of M(C) on W (C).
Are the non-degenerate Fourier coefficients of the Eisenstein series E(g, f) nonzero?

(3) If the modular form ® on GL, has algebraic Fourier coefficients, does the same
occur for E(g, ®)? In the setting of holomorphic modular forms on tube domains,
an analogous result is due to Harris [Har81l, [Har84]. Nothing is known in the
quaternionic case.

Recall (see [GGS02]) that there is a correspondence between GLy(Z) orbits of integral
binary cubic forms and cubic rings. If ¢ is a level one modular form on G,, and w =
(a,b/3,¢/3,d) corresponds to the integral binary cubic form au® + buv + cuv? + dv3, then
we can consider the Fourier coefficient a,,,(1). If ¢ is of even weight, and v € GLy(Z), it is
easy to check that a, (1) = ap~.0(1). Let A(w) be the cubic ring corresponding to the orbit
GLy(Z) - w. Thus, following [GGS02], we can define a,(A(w)) = ay, (1) to be the Fourier
coefficient of ¢ associated to the cubic ring A(w). We use this definition in the statement of
the following theorem, and also in the subsection below on L-functions.

THEOREM 3.3.1 (Gan-Gross-Savin [GGS02|, Jiang-Rallis [JROT]). For ¢ > 4 even, let
E(g) be the spherical weight ¢ Eisenstein series on Gy. Assume the non-degenerate Fourier
coefficients of Ey(g) are nonzerd), Let w = (a,b/3,¢/3,d) € W correspond to the totally real
cubic ring A(w), via the correspondence between binary cubic forms and cubic rings. If A(w)
is mazimal, then the Fourier coefficient of E¢(g) corresponding to w is Caw)(1 =€), up to a
nonzero constant independent of w.

We will have more to say later about some examples of modular forms constructed in
IGGS02].

3.3.2. Cusp forms. We now explain what is known about cusp forms.
The following is the main theorem of [Pol21].

IFor each ¢, one only needs to assume that a certain purely archimedean integral (that depends on /) is
nonzero
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THEOREM 3.3.2. [Pol21] Let w > 16 be even. Then there are nonzero cuspidal modular
forms on Gy of weight w, all of whose Fourier coefficients are algebraic integers.

In fact, in weight 20, there is nonzero cuspidal level one modular form on G5, all of whose
Fourier coefficients are integers.

Recently, Dalal has given a dimension formula for the level one cuspidal quaternionic
modular forms on Gs.

THEOREM 3.3.3 (Dalal [Dal21]). There is an explicit formula for the dimension of level
one cuspidal modular forms on Go. In particular, the smallest nonzero level one cuspidal
modular form on Gy is in weight 6.

Here are some questions:

(1) Can the cuspidal weight 6, level one quaternionic modular form of Dalal be con-
structed explicitly?

(2) Let w = (0,1/3,—1/3,0) so that A(w) ~ Z x Z x Z. Do level one quaternionic
modular forms with nonzero w Fourier coefficient exist? Do they exist in abundance?

3.3.3. L-functions. Nothing is known about L-functions of quaternionic modular forms
on groups bigger than G5. However, on (G5, one can say a bit about the standard L-function
of quaternionic modular forms.

Thus let 7 = 7y ® Ty be a cuspidal automorphic representation of Go(A) for which
T 1S the quaternionic discrete series having minimal K¢,-type Vy. Let ¢ be the level one
cuspidal modular form associated to . Then one can write the standard L-function of 7 as
a Dirichlet series in the Fourier coefficients of ¢.

THEOREM 3.3.4. iDD"21] Let a,(T') denote the Fourier coefficient of ¢ corresponding
to the cubic ring T. Then

Z ap(Z+nT) () L(m, Std, s — 20+ 1)
[Z3 : T)s=tins — "9 7 ((s — 204+ 2)2¢(25 — 40+ 2)

TCZ3n>1
Here the sum is over the subrings T of . X Z X Z and integers n > 1.
It is also known that the completed L-function has a functional equation, if a,(Z?*) # 0.
To state the result, define the archimedean L-factor as
LOO(T('&OO, S) = Fc(S + 0 — 1)Fc<8 + g)Fc(S + 20 — 1)FR(8 + 1)
Here
Tr(s) =7 */*T(s/2) and Tc(s)=2(2m)"*T(s),
where I' is the usual gamma function.
The completed L-function is given by
A(m, Std, s) = Loo (700, ) L(m, Std, s).

THEOREM 3.3.5. [iDD™21] Suppose that ¢ is a level one cuspidal modular form on Gy
of positive even weight ¢ that generates the cuspidal automorphic representation w. Further,
assume that the Fourier coefficient of ¢ corresponding to the split cubic ring Z X 2 X 7 is
nonzero. Then

A(m, Std, s) = A(m, Std, 1 — s)
for all s € C.
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The proof of the theorems above is based on a refined analysis of the Rankin-Selberg
integral in [GS15].
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CHAPTER 4

Exceptional algebra

In this chapter we will work our way up to defining the quaternionic exceptional group
of type Es. We begin with some exceptional algebra: composition algebras and cubic norm
structures. Our aim is just to give the necessary definitions. For many of the omitted proofs
in this chapter, the reader is encouraged to see my course notes [Pol, Chapters 1 and 2].

4.1. Composition algebras

Suppose k is a field, not of characteristic 2. In this section we discuss composition
algebras, which we are about to define. For more on composition algebras, one can see

[SV00] in addition to [Pol].

DEFINITION 4.1.1. Suppose C'is a not-neccessarily-associative k algebra with unit 1, and
that C' comes equipped with non-degenerate quadratic form n¢o : C' — k. Then C' is said to
be a composition algebra if n¢ is multiplicative, i.e., no(zy) = ne(x)ne(y) for all z,y € C.

Composition algebras can be classified, and in fact are always dimension 1, 2,4 or 8 over
the ground field. Every dimension four composition algebra is a quaternion algebra.

EXAMPLE 4.1.2. C' = k with ng(x) = 22 is a composition algebra.

EXAMPLE 4.1.3. C = E, an etale quadratic extension of k, with nc(x) = Ng/(z) the
norm.

EXAMPLE 4.1.4. C' = B, a quaternion k-algebra, with no(z) the reduced norm.

There is a way of defining an involution % on a composition algebra, as follows. Let
(x,y) = nc(z +y) — nc(x) — ne(y) be the non-degenerate bilinear form associated to ne.
Note that 1 satisfies (1,1) = 2 # 0. Let C° be the perpendicular space to 1 under the bilinear
form. Define * on C as (z1 +y)* =z —yif # € k and y € C°. In other words,

2= (z,1)1 -z
for z € C.

Note that z + z* € k- 1 for all z € C. Also note that ng(z) = ne(z*) for all z € C.

THEOREM 4.1.5. The map * satisfies

(1) 2z =ne(z) for all z € C.

(2) Moreover, x is an algebra involution, i.e., (xy)* = y*x* for all x,y € C.
DEFINITION 4.1.6. An octonion algebra © is an eight-dimensional composition algebra.
Octonion algebras exist. We give two different constructions, called the Zorn model and

the Cayley-Dickson construction.
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DEFINITION 4.1.7 (The Zorn model). Denote by V5 the three-dimensional defining rep-
resentation of SLy and by V2" its dual representation. Recall that we identify A*V3 ~ VY
and A?V;Y ~ V3. Denote by © the set of two-by-two matrices (¢ q) with a,d € k, v € V3 and
¢ € V3 with multiplication

a v a v\ aa' + ¢'(v) av' +dv—¢p N
¢ d ¢ d ) \ do+d¢ +vnd o(v') + dd’ '

. . . a v\ d —v . a v
The involution * is < 6 d ) = ( 6 a > and the norm is n@(( 6 d )) = ad —
o(v).
The Cayley-Dickson construction starts with a quaternion algebra B and an element
v € k>, and defines © = B & B with multiplication as follows.

DEFINITION 4.1.8. Let * denote the involution on the quaternion algebra B. Then the
multiplicaton on © = B & B is

(1, Y1) (22, y2) = (2122 + VY31, Y21 + Y125).
The involution * on © is (z,y)* = (*, —y) and the norm is ne((x,y)) = np(r) — yns(y).

The Cayley-Dickson construction and the Zorn model produces composition algebras.

PROPOSITION 4.1.9. The Zorn model is a special case of the Cayley-Dickson construction,
with B = My(k) and v = 1.

PROPOSITION 4.1.10. The Zorn model and the Cayley-Dickson construction define octo-
nion algebras, i.e., the norms are multiplicative.

4.2. Cubic norm structures

In this section we define another algebraic gadget, which is called a cubic norm structure.
For more on cubic norm structures, one can see [McCO04] in addition to [Pol]. You can think
of cubic norm structures as generalizations the pair (3 x 3 matrices, the determinant map).
We will jump straight into the definition, and then give the examples.

Thus suppose k is a field of characteristic 0 and J is a finite dimensional k£ vector space.
That J is a cubic norm structure means that it comes equipped with a cubic polynomial
map N : J — k, a quadratic polynomial map # : J — J, an element 1; € J, and a
non-degenerate symmetric bilinear pairing (, ) : J ® J — k, called the trace pairing, that
satisfy the following properties. For z,y € J, set © x y = (z + y)¥ — 2% — y# and denote
(,,):J®J®J — k the unique symmetric trilinear form satisfying (z,z,x) = 6N (z) for
all z € J. Then

(1) NAy)=1,1% =15, and 1; x 2 = (1;,2) —z for all z € .J.

(2) (2#)# = N(x)z for all x € J.

(3) The pairing (z,y) = (1,15, 2)(1s, 15, y) — (15, 2, y).

(4) One has N(z +y) = N(z) + (2%, y) + (z,y*) + N(y) for all z,y € J.

There is a weaker notion of a cubic norm pair. In this case, the pairing ( , ) is between
J and JV, the linear dual of J, the adjoint map # takes J — JY and JY — J, and each
J,JY have a norm map Ny :J — F and Nyv : JV — F. The adjoints and norms on J and
JV satisfy the same compatibilities as above in items (2) and (4).
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EXAMPLE 4.2.1. Let J = k with N(2) = 23, 2% =22, 1; = 1, and (z,y) = 3xy.

EXAMPLE 4.2.2. Let J = Ms(k) with N(z) = det(x), ¥ the adjoint matrix, (i.e.,
% = det(x)z~! for invertible z), (x,y) = tr(xy), 1; = 1;.

EXAMPLE 4.2.3. J = kx S with S a pointed quadratic space. In more detail, take 15 € S
with ¢(1g) = 1. Define an involution ¢ on S fixing 1g and acting as minus the identity on
(k-1g)*. The norm on J is N;(f3,s) = Bqs(s), one has 1; = (1,1g), and the adjoint map is
(8. 5)% = (gs(s), Bu(s)). Finally, the pairing is (8. ), (7'.)) = 5 + (1, u(t').

PROPOSITION 4.2.4. With data as defined above J =k x S is a cubic norm structure.

Set J = H3(C) the Hermitian 3 x 3 matrices with coefficients in the composition algebra
C. We make J = H3(C) into a cubic norm structure, with the following choice of data:
¢ T3 5
(1) Nj(X)=Ny | 25 co x1 | = crcacs—cine(xy)—cane(ra)—csne(zs)+tro(r1w923).
Ty X] C3
cacs —ne(xy)  x5xT — cgwry x3w — CQTh
(2) X#* = T1Ty — c3xy ey —ne(xe)  xirh — cxy
TiTh — comy  Tox3 — 1T c1cg — ne(w3)
(3) The pairing (X, X’), in obvious notation, is

(X, X') = a1c) + cady + e3¢y + (21, 27) + (22, 25) + (23, T5).

THEOREM 4.2.5. With data described above, J = H3(C') is a cubic norm structure.

4.3. The group M;

If J is a cubic norm structure, we define the algebraic k-group M; to be the group of
linear automorphisms of J that preserve the norm form N up to scaling. On k-points, one
has

My(k) ={(\ g) € GLi(k) x GL(J) : N(9X) = AN(X) for all X € J}.
We set M7 the subgroup of Mj consisting of those g with A(g) = 1 and we set A; the
subgroup of M} that also stabilizes the element 1; € J. It follows that A; preserves the
bilinear pairing ( , ): if a € Ay, then (ax,ay) = (z,y) for all x,y € J. The group Ay is
the automorphism group of J. If a € A, then one also has (ax) x (ay) = a(x x y) for all
x,y € J.
Let

m(J) = {(p, @) € kx End(J) : (P(21), 20, 23) + (21, P(22), 23) + (21, 22, P(23)) = pu(z1, 22, 23) }

Then m(J) is the Lie algebra of M ;. We define an M j-equivariant map J ® J¥ — m(J). See
[Spr62] and [Rum97].
For v € JY and = € J, define the element @, , € End(J) as

Dy 0(2) = =y x (x x 2) + (7, 2)7 + (7, 2)z.
PROPOSITION 4.3.1. [Rum97, Equation (9)] One has
(Pr2(21), 22, 23) + (21, Pra(22), 23) + (21, 22, Poa(23)) = 2(7, @) (21, 22, 23)
for all 1,20, 23 in J. In particular, ®. , € m(J).
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Note that @, ,(z) = ®,.(z). One sets @, =, , — 2(7,z). Then &/ , € m(J)°, the Lie
algebra of M}.

PROPOSITION 4.3.2. The map ® : J ® JY — m(J) is equivariant, i.e., if g € M; then
Ad(9)Ps.2 = () g(a)-

4.4. The Z/3 grading on g(J)

In this subsection we recall elements from the paper [Rum97| (in different notation).
Rumelhart constructed a Lie algebra g(J) out of a cubic norm structure J, as follows.

Denote by V3 the defining representation of sls, and by V5’ the dual representation. One
defines

g(J)=shom()) ' oVzeJeVy e J.
We consider V3, V" as left modules for sl3, and J, J¥ as left modules for m(J)°. This is a
Z/3-grading, with sl3 ®m(J)° in degree 0, V3® J in degree 1 and V;Y & JV in degree 2. Note
that when J =k, m(J)? = 0 and g(J) becomes gs.

4.4.1. The bracket. Following [Rum97], a Lie bracket on g(.J) is given as follows.
First, because V3 is considered as a representation of sl3, there is an identification A?V3 ~ V3",
and similarly A3V, ~ V3. If vy, v5, v3 denotes the standard basis of V3, and 4, d, d3 the dual
basis of V3, then vy Avy = 83, 61 Ady = v3, and cyclic permutations of these two identifications.

Take ¢3 € sl3, ¢; € m(J)°, v,0' € V5, 6,8 € V', X, X' € J and 7,7 € JY. The Lie
bracket on g(J) is defined as

(03,0 @ X +5@7] = ¢3(v) @ X + ¢3(8) @ .
(95,00 X +6@9] =v®@¢;(X)+d@ds(7)

L@ X veXT=@WwAr)® (X x X
@7, @y]=(A)(yx7)
®7,v@X]=(X,7)v®d+(v)P,x —dv)(X,7)

—(X,7) (v %6 — %5(0)) +6(0) (@W,x - %(X, 7)) |

Note that v ® 6 — 3(v) € sl and &, x — 2(X,7) = @/, x € m(J)°.

THEOREM 4.4.1. [Rum97| The vector space g(J) is a Lie algebra, i.e., the Jacobi identity
18 satisfied.

EXAMPLE 4.4.2. When J =k, g(J) = go.
EXAMPLE 4.4.3. When J = Hj3(k), g(J) is of type 4.

EXAMPLE 4.4.4. When J = H3(F) with E a quadratic etale extension of k, g(J) is of
type eg.

EXAMPLE 4.4.5. When J = H3(B) with B a quaternion algebra, g(.J) is of type e7.

EXAMPLE 4.4.6. When J = H3(©) with © an octonion algebra, g(.J) is of type es.
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Let G; = Aut(g(J))° be the identity component of the automorphisms of the Lie algebra
g(J). Then G, is a connected adjoint algebraic group of the above types. When k£ = R,
the norm form on the composition algebra C' is positive definite, and J = H3(C'), G;(R) is
the adjoint quaternionic exceptional group of the above types. You can take this to be the
definition of the quaternionic exceptional groups.
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CHAPTER 5

The Freudenthal construction

In the previous section, we gave a construction of the exceptional Lie algebras g(J), via a
Z/3Z-grading. In order to discuss quaternionic modular forms on G; = Aut’(g(.J)), we will
require a 5-step Z-grading on g(J). The purpose of this chapter is to give some preliminaries
needed for the description of this 5-step Z-grading.

Throughout this chapter, the omitted proofs can be found in [Pol, Chapter 3].

5.1. The Freudenthal construction

Suppose that J is a cubic norm structure, or that .J, JV is a cubic norm pair, over a field
k of characteristic 0. Define a vector space W; = k& J @ JY @ k. The space W; comes
equipped with a symplectic pairing (, ) and a quartic form ¢, which are defined as follows.
We write a typical element in W as v = (a, b, ¢,d), so that a,d € k, b € J and ¢ € JY. Then

{(a,b,c,d), (a',V,c,d)) =ad — (b,¢) + (c,b) — da’
and
q((a,b,c,d)) = (ad — (b,c))* + 4aN(c) + 4dN(b) — 4(b%, c*).

The definition of this algebraic data goes back to Freudenthal.
We now define a group

H;(k) = {(g9,v) € GL(W,;)xGLy(k) : {(gv, gv') = v(v,v) Vu,v" € W; and q(gv) = v*q(v) Vv € W}

The element v is called the similitude. More generally, we let H; be the algebraic group
of linear automorphisms of W that preserve the symplectic form (,, ) and the quartic form
g up to appropriate similitude. We set H} = kerv : H; — GL;.

In general, the identity component HY of H; will be a Levi subgroup of a maximal
parabolic subgroup of G;.

ExAMPLE 5.1.1. When J =k, H; ~ GLs.
EXAMPLE 5.1.2. When J = Hs(k), H; ~ GSpg.

EXAMPLE 5.1.3. When J = H3(E) with E a quadratic etale extension of k, H; is of type
As.

EXAMPLE 5.1.4. When J = H3(B) with B a quaternion algebra, H is of type Ds.
EXAMPLE 5.1.5. When J = H3(©) with © an octonion algebra, H is of type F.

Denote by (, , , )w, the unique symmetric four-linear form normalized so that (v, v, v,v)w, =
2q(v). Define t : W; x Wy x Wy — Wy as (w,z,y, 2) = (w,t(z,y, 2)) and set v* = t(v,v,v).
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5.2. Rank one elements

If J is a cubic norm structure, there is a notion of rank of elements of J, which we now

define.

DEFINITION 5.2.1. All elements of J are of rank at most 3. If N(z) = 0, then = has rank
at most 2. If 27 = 0, then z has rank at most one. If z = 0, then = has rank 0.

If J = Hj(k), the above definition reduces to the usual notion of rank of a 3 x 3 symmetric
matrix. There is a related notion of rank of elements of Wj.

DEFINITION 5.2.2. All elements of W are of rank at most 4. If ¢(v) = 0, then v has
rank at most 3. If v = 0, then v has rank at most two. If (v, v,w’,w) = 0 for all w’ € (kv)*,
then v has rank at most one. If v = 0, then v has rank 0.

ExAMPLE 5.2.3. If a,d # 0, then (a,0,0,d) has rank 4. If x € J has rank 7 = 0,1,2,3,
then (0,x,0,0) has rank j in in W).

EXAMPLE 5.2.4. The element (1,0,0,0) of W, has rank one. If v = (1,0, ¢, d) has rank
one, then ¢ =d = 0.

We will need a definition of certain elements of End(Wj), constructed from two elements
of WJ.

DEFINITION 5.2.5. For w,w’ € W, define ®,,,, € End(WW;) as follows:

Py () = 6t(w,w', ) + (W', z)w + (w, x)w'.

One can show that v has rank at most one if and only if @, ,(z) := 3t(v, v, z)+ (v, z)v = 0

for all x € W;. (Note that this condition implies the rank one condition of the definition,

but the converse is not at all obvious.)
It is clear that the set of rank one elements is an H;-set. In fact,

PROPOSITION 5.2.6. There is one Hj-orbit of rank one lines.
Let h(J)°? denote the Lie algebra of HY.

PROPOSITION 5.2.7. For w,w’ € Wy, the endomorphism @, is in b(J)°, i.e., it pre-
serves the symplectic and quartic form on W;. Furthermore, if ¢ € h(J)°, then [¢, Pyu] =
cbqﬁ(w),w’ =+ (I)w,¢>(w’)'

5.3. The exceptional upper half-space

When the ground field £ = R and the pairing (, ) on J is positive definite, the group H
has an associated Hermitian symmetric space. This space is H; = {Z = X +Y : Y > 0}.
Here Y > 0 means that Y = y? for some y € J with N(y) # 0.

5.3.1. The positive definite cone.

THEOREM 5.3.1. The following statement are equivalent:
(1) Y € J is positive-definite, i.e., Y = y* for some y € J with N(y) # 0.
(2) There exists a € Ay with aY diagonal with positive entries
(3) tr(Y),tr(Y#) and N(Y) are all positive.
THEOREM 5.3.2. Let C' denote the set of Y in J with'Y > 0. Then C is connected and
convez.
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5.3.2. The upper half space. We now define how H;(R)° acts on H,.
To do this, suppose Z € Jg. Define r7o(Z) = (1,—Z,Z%,—N(Z)). Then one has the
following proposition.

PROPOSITION 5.3.3. Suppose Z € Hy, so that Im(Z) is positive definite. Suppose
moreover that g € H;(R)°. Then there is j(g,Z) € C* and gZ € H; so that gro(Z) =
J(g, Z)ro(gZ). This equality defines the factor of automorphy j(g,Z) and the action of
H;(R)® simultaneously.

Suppose J is a cubic norm structure. Let ¢ : J <> JY be the identification given by the
symmetric pairing on J. Define Jy : W; — W as Jy(a,b,c,d) = (d,—u(c),t(b), —a). One
checks that J, € Hj.

We will now explain the stabilizer of i1, inside of H}.

PROPOSITION 5.3.4. Suppose g € H}(R) stabilizers il; € $;. Then g commutes with
J.

5.3.3. Modular forms. As an aside, we now define holomorphic modular forms on
E;5. To do so, let J = H3(©) be as above, where © is an octonion algebra with positive
definite norm form. Define G = H}(R). It turns out that the group G is connected, so it
acts (transitively) on H .

Following Baily [Bai70], a discrete subgroup I' C G is defined as follows. Let Oy C © be
Coxeter’s ring of integral octonions; see, e.g., loc cit. Define Jy C J to be the integral lattice

¢ T3 5
consisting of matrices X = | 25 c2 23 with ¢y, co,c3 € Z and xq, 29,13 € Oy. Define
Ty T] C3
W;, € W to be the lattice Wy, = Z @& Jo @ Jy @ Z. Then T is defined to be the subgroup
of HY(Q) that preserves W, .
A modular form for I' of weight ¢ > 0 is a holomorphic function f: H; — C satisfying
(1) f(vZ) = j(7,2)" f(Z) for all v € T" and
(2) the function ¢; : I'\G — C defined by ¢;(g) = j(g,7) “f(g - i) is of moderate
growth.

Some results about modular forms on G can be found in [Bai70], [Kim93|, [GL97],
[KY16].
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CHAPTER 6

The quaternionic groups

In this chapter we discuss more about the quaternionic exceptional groups. A reference
for this material is [Pol, Chapter 4] and [Pol20a].

6.1. The Z/2-grading

Previously, we defined the Lie algebra g(J) via a Z/3-grading. In this section, we redefine
g(J) via a Z/2-grading. I believe the construction of the Lie algebra g(J) in this section
essentially goes back to Freudenthal.

Denote by V5 the defining two-dimensional representation of sl,. We have an identification
Sym?(Vy) =~ sly as (v-v')(x) = (v, z)v+ (v, z)v'. Here (, ) is the standard symplectic pairing

" (@), (e, d)"y = (a b)(_1 1)(2>:ad—bc.

g9(J) =g(J)o @ g(J)1 := (shah(J)°) & (Vo W,).
Here g(J)o = sly @ h(J)? is the zeroth graded piece of g(J), and g(J); = Vo ® W is the first
graded piece of g(J).
6.1.0.1. The bracket. We define a map [, ] : g(J) ® g(J) — g(J) as follows: If ¢, ¢ €
g(J)o =5l ®h(J)°, v, € Vs, and w,w’ € W, then

(600w, (6 o'0)] = (16,0 + 5w, 0o ) + 00N Bu 0 80 = S0 0) )

With this definition, we have the following fact.

We define

PROPOSITION 6.1.1. The bracket |, ,] on g(J) satisfies the Jacobi identity.

PROOF. To check the Jacobi identity > .[X, [V, Z]] = 0, by linearity it suffices to check
it on the various Z/2-graded pieces. Then there are four types identities that must be
checked. Namely, if 0,1,2 or 3 of the elements X,Y,Z are in g(J); = Vo @ W;. If all
three of X,Y, Z are in g(J)o = sly @ h(J)?, then the Jacobi identity is of course satisfied. If
two of XY, Z are in g(J)o, then the Jacobi identity is satisfied. This fact is equivalent to
the fact that the bracket [, |, defines a Lie algebra action of g(J)o on g(J)1: [¢, ¢'](x) =
o(d'(z)) — ¢ (¢p(z)) for x € g(J); and ¢, ¢" € g(J)o. If one of XY, Z is in g(J)o, then the
Jacobi identity is satisfied by the equivariance of the map g(J); ® g(J)1 — g(J)o. Finally,
when XY, Z are all in g(J)1, a simple direct computation shows that > .[X,[Y, Z]] = 0.

In more detail, suppose X; = v1 ®@wq, Xo = v9@wsy and X3 = v3®@ws3. We must evaluate:

—2) (X1, [Xo, Xs]] =2 [v2 ® wn, v3 ® w](v) @ wy)

cyc cyc
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= Z ((v2, U3) Doy 1wy + (W2, W3)Va - V) (V1 @ w1 )

cyc

= Z (Va, v3)v1 @ (6t(w1, W, ws) + (w3, wi)ws + (W2, wi)ws)

cyc

+ > (wa, ws) (v, v1)vs + (v2,01)v3) @ wy.

cyc

The term ¢(w,w’, w”) drops out right away because it is symmetric by applying the
identity chc (vg,v3)v1 = 0 for vy, vy, v3 € V4. The other cyclic sums cancel in pairs. O

One can give an explicit identification between the Lie algebra g(J) defined in this section
and the one defined via the Z/3-grading, which is why we have given both Lie algebras the
same name. See [Pol20al Proposition 4.2.1].

6.2. The Heisenberg parabolic

We assume in this subsection that the Lie algebra g(.J) is defined over a ground field F' of
characteristic 0. Recall that the group G, is defined to be the connected component of the
identity of the automorhpism group of g(JJ). This is a connected reductive adjoint group.

For notation, we write eg, hg, fo for the usual sly-triple inside sly C g(.J)o, so that ey =
(98), ho=(*_y),and fo = (99). Set e = (1,0)" and f = (0,1)" the standard basis of V5.

6.2.0.1. The 5-grading. We now define the 5-grading on g(.JJ). Namely, the components
of g(J) in each graded piece are

e In degree —2: spanned by fy
e In degree —1: f @ W;

e In degree 0: Fhy ® bh(J)°

e In degree 1: e®@ W

e In degree 2: spanned by eg.

Note that this is the grading associated to the eigenvalues of hy on g(.J). The degree 0 piece
Fho@®b(J)? is the Lie algebra h(J), via the map ahg + ¢g — aldy, + ¢o, where ¢g € bh(J)°
and Idy, denotes the identity on W;.

6.2.0.2. The Heisenberg parabolic. We now define the Heisenberg parabolic of G;. Define
P C Gy to be the g € GG stabilizing the line Fey generated by eg. Then P is parabolic.
For instance, the variety G/P is the subset of the projective space P(g(.J)) consisting of
those X with [X, [X,y]] + 2B4(X,y)X =0 for all y € g(J). Thus G/P is cut out by closed
conditions, so is projective.

Equivalently, define py.;s C g(J) to consist of the elements X so that [X, eg] € Fey. Then
the Heisenberg parabolic is equivalently defined to be the g € G ; satisfying gpgeis = Preis-
Furthermore, pp.;s consists exactly of the element of g(J) non-negative degree in the 5-
grading.

The Lie algebra of P is pye;s. Define a Levi subgroup M of P to be the subgroup of P
that preserves the 5-grading. Equivalently, M is the subgroup of P that also fixes the line
spanned by fo. The Levi subgroup M is exactly the group HY, as we now prove.
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LEMMA 6.2.1. The map M — GL; x GL(W);) defined by the conjugation action of M
on the degree 2 and degree 1 pieces of the 5-grading defines an isomorphism M ~ H;. The
GL1-projection is the similitude.

PROOF. See [Pol20al Lemma 4.3.1]. O

Let N denote the unipotent radical of the Heisenberg parabolic P. Then the center Z of
N is the exponential of the one-dimensional space F'eg. The group Z is also the commutator
subgroup [N, N] of N. Consequently, the abelianization of N is naturally identified with
W, via the map w — exp(w) — exp(w), where exp(w) € N and for n € N, 1 denotes the
image of n in N/Z.

In case G = G, the Heisenberg parabolic is the (standard) maximal parabolic with
two-step unipotent radical.

6.3. The Cartan involution
In this section, we discuss the Cartan involutions on various relevant groups.

6.3.1. The Cartan involution on Sp,,. Suppose W = F*, J, = (_{ '), and
Sp(W) = {g € Aut(W) : 'gJ,g = J,}. In other words, assume that the sympletic form
on W is defined by (wy,wy) = 'wiJywy for wy,wy column vectors in W = F?". Then
J, € Sp(W). This induces an involution © on Sym?(W) via O(ww') = (J,w)(Jw'). If
the ground field F' = R, this is a Cartan involution and (wy,ws) = (J,w;, wy) defines a
symmetric positive definite form on W.

6.3.2. The Cartan involution on SO(V). The Killing form is

Bso(w Nx,y N Z) = (377 y)<w7 Z) o (wv y)(xv Z)'
This is a symmetric so(V') invariant form on so(V'); if the ground field F' = R, it is a positive
multiple of the Killing form.

Suppose F' = R.. Suppose ¢ : V' — V is an involution, for which the quadratic form (v, v)
is positive definite on the subspace of V' for which ¢ is +1, and is negative definite where
¢ is —1. Further assume that ¢ defines an element of the orthogonal group O(V'). Then
(v, t(w)) is a positive definite symmetric bilinear form on V. Associated to ¢, one can define
a Cartan involution ©, on the Lie algebra so(V) ~ A?V. Namely, one sets O, : A2V — A%V
via O, (v Aw) = t(v) A v(w).

6.3.3. The Cartan involution on M. In the next several subsections, we assume
the trace pairing on J is positive definite. This occurs if J = H3(C), with C' a composition
algebra with positive-definite norm form nc.

Recall that the pairing on J gives rise to an ¢ : J — JV and thus an involution ©,, on m(.J)
via On(¢) = 17! o ¢ o1, where ¢ denotes the action of ¢ on JV. One computes immediately
that On(Pye) = —Pu(2)u(1)- If the ground field FF = R, O, is a Cartan involution on m(J).

6.3.4. The Cartan involution on H;. Suppose the ground field F' = R. Consider
the map Jy on Wy, given by Jo(a, b, c,d) = (d, —t(c),t(b), —a). Define a symmetric pairing
on Wy via (vi,vq) := (Jovy,ve). Since Jp is in H}, there is an associated involution on b
given by Oy(¢) = JopJy . One has Oy (P ) = Pyw sy Then Oy is a Cartan involution
on h(J)°. .
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6.3.5. The Cartan involution on (; I. We abuse notation and also write J, =
(_1') € SLy. (There is a natural map SLy — HJ, and the image of J, € SLy is the
Jo € H})

Using J2, we define an involution ©4 on g(J) as

@g(gbz + ¢J, VR ’lU) = (J2¢2J2_1 + J2¢JJ2_1, JQ’U & JQ’LU)

Here ¢y € sly, ¢5 € H(J)°, v € Vo and w € W, Tt is clear that O, is an involution on g(.J).
If the ground field ' = R then O, defines a Cartan involution on g(.J).

6.3.6. The Cartan involution on G; II. We now express the Cartan involution ©,
on g(J) via the definition of g(.J) in terms of its Z/3-grading. To do this, we endow V5 with
the positive definite symmetric form given by (v,v’) = 'vv’. In other words, we make the
standard basis vq, vo, v3 of V3 orthonormal. This induces an identification ¢+ between V3 and

Define an involution O, on g(J) as follows: On sl3 it is X — —X*. Onm(J)" it is ©,,. On
Vi@ Jitisv®X — (v)@uX) e Vy'®@JY andon VY @ JY itis 6@y — 1(0) ®@u(y) € Vs® J.
The map Oy is a Cartan involution.
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CHAPTER 7

Quaternionic modular forms

In this chapter, we explain a bit about what is known regarding quaternionic modular
forms beyond the case of Gbs.

7.1. The differential equation

We begin with the definition of quaternionic modular forms. Thus suppose J is a cubic
norm structure with positive definite trace pairing, and G is the associated quaternionic
group. Recall that we have identified a Cartan involution ©4 on g(J) ® R. Let K C G;(R)
be the associated maximal compact subgroup. We assume G ; is of an exceptional Dynkin
type; this insures that G ;(R) is connected. Our assumptions let us uniformly describe the
maximal compact subgroup K as K = (SU(2) x L)/us for a certain group L (that depends
on J). We write g = £ @ p for the Cartan decomposition. As a representation of K, one has
p = Vo )W, where V; is the standard representation of SU(2) and W is a certain symplectic
representation of L. See [GW96] and [Pol20a).

For an integer ¢ > 1, let V, = Sym?/(V5) X 1, as a representation of K. Now suppose
¢ : Gj(R) = V, is a smooth function, satisfying p(gk) = k~'p(g) for all g € G;(R) and
k € K. We define a differential operator Dyp : G(R) — Sym?~1(V,) KW as follows.

First, we define Dyp : G(R) = V, ®p" as:

Dip=3 Xjo® X
J
where {X;} is a basis of p and {X} is the dual basis of p¥. Here Xy is the right regular
action of p C g on ¢. One checks easily that lN)ggo is still K-equivariant, i.e., if ¢/ = lN)gcp,
then ¢'(gk) = k™ '¢(g) for all k € K and g € G;(R).
Now, because p ~ pV, we have

Ve@p¥ = Sym* (Vo) BW @ Sym? ' (Vo) K W.
Let pr : V, @ p¥ — Sym?~1(V3) KW be a K equivariant projection (unique up to scalar

multiple). We define Dy, = pr o D,.

DEFINITION 7.1.1. Suppose ¢ > 1 is a non-negative integer. A smooth function ¢ :
G;(A) — V, is a quaternionic modular form of weight ¢ if

(

1) ¢ is of moderate growth

(2)  is right invariant under an open compact subgroup of G;(Ay)
(3) ¢ is left G(Q)-invariant, i.e., p(vg) = ¢(g) for all v € G(Q)

(4) ¢ is K-equivariant, i.e., ¢(gk) = k~'p(g) for all k € K and
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7.2. Representation theory

One can also define quaternionic modular forms from the lens of representation theory.
In this section, we briefly explain this representation-theoretic approach and its relationship
to the definition above.

To begin, we start with the quaternionic representations of the group G ;(R). These were
defined and studied by Gross-Wallach [GW94, [GW96]. We sayf] an irreducible represen-
tation 7 of G;(R) is quaternionic of weight ¢ if

(1) 7 contains the K-type V) ~ V, with multiplicity one

(2) 7 does not contain the K-type Sym?2~(Vy) X W.
Gross-Wallach [GW94, [GW96| constructed quaternionic representations m, of G;(R),
which at least for ¢ sufficiently large are moreover discrete series representations of G ;(R).
Let S ~ SU(2) € K be the normal subgroup that is the kernel of the map K — L/us.
Gross-Wallach also showed that the 7, are admissible when restricted to .S. The above prop-
erties make the 7, analogous to the so-called holomorphic (discrete series) representations of
the groups that have an associated Hermitian symmetric space.

Suppose 7 is a quaternionic representation of G;(R) of weight ¢. Suppose ¢, : 7 —
A(G ) is homomorphism of (g, K)-modules, from 7 to the space of automorphic forms on
G;. In the parlance of [GGSO02], such a map is a modular form of weight ¢. To relate
the maps @, to the ¢’s of the previous section, one proceeds as follows. Restricting @,
to the K-type V| of m, one obtains a map ¢, : V)/ — A(G,), or equivalently, a function
v G;(QN\Gs(A) — V,. Because @, is K-equivariant, so is the function . Moreover,
because 7 does not contain the K-type Sym?~1(V,) X W, one can check that D,p = 0.
Consequently, out of a map &, : 7 — A(G), one obtains a modular form ¢ of weight /.

7.3. The Fourier expansion

In this section, we describe the Fourier expansion of quaternionic modular forms. Suppose
¢ is a quaternionic modular form. One can take the constant term of ¢ along Z, and then
Fourier expand the result along N/Z:

(1) 0z(9) =on(9)+ Y. @ulg)

weW 7,w#0

where ¢,(g) = | N(Q)\N(A) Y({w,m)) " tp(ng) dn. The Fourier expansion we explain in this
section is a reﬁnement of () for quaternionic modular forms.

The existence of the Fourier expansion that we describe is based on the following the-
orem, which is the main result of [Pol20a]. To state the theorem, we need a couple def-
initions. Say a nonzero element w € W;(R) is positive semi-definite, written w > 0, if
(w,(1,—Z,Z%,—N(Z))) is never 0 for Z in the upper half space h; = {Z = X +iY : X,Y €
J,Y > 0}. (It is mildly remarkable that such w exist!)

We now define generalized Whittaker functions. If y is a character of N(R), we say a
function F': G;(R) — Vy is a generalized Whittaker function of type y if it satisfies

o F'(ng) = x(n)F(g) for all n € N(R)
o F(gk)=Fk 'F(g) forall k € K

IThis is an ad-hoc definition that is suitable for our purposes
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[} DgF =0
If w € Wy and x(n) = xu(n) = e“™  we alternatively say that F is a generalized Whittaker
function of type w.

THEOREM 7.3.1. Suppose w € W;(R) is nonzero. Then the space of moderate growth
generalized Whittaker functions of type w is at most one-dimensional. Moreover:

(1) Suppose w is not positive semi-definite. Then every moderate growth generalized
Whittaker function of type w s 0.
(2) Suppose w is positive semi-definite. Then there is a completely explicitly function
W, : G; — V, satisfying:
(a) W, is a moderate growth generalized Whittaker function of type w
(b) If F' is a moderate growth generalized Whittaker function of type w then F =
AW, for some A\p € C.

When w € W;(R) is rank four, the first two statements of the Theorem (i.e., the theorem
without the explicit function W,,) are due to Wallach [Wal03].
An immediate corollary is the Fourier expansion of quaternionic modular forms:

COROLLARY 7.3.2. Let w € W, be nonzero, let ¢ be a quaternionic modular form of
weight ¢, and let p,, be as in . Then
(1) If w is not positive semi-definite, ©,(g) = 0.
(2) Ifw is positive semi-definite, then there is locally constant function ¢, : G;(Ay) — C
so that @w(gfgoo> == Cw(gf)W27rw<goo)-

The locally constant functions ¢,(gs), or sometimes their values at gy = 1, are called the
Fourier coefficients of ¢. When w is rank four, Gan-Gross-Savin [GGS02] had defined these
Fourier coefficients without the use of the explicit functions W, but instead using Wallach’s
results in [Wal03].

We now describe the functions W,. Because of the equivariance properties of W,,, to
describe it completely it suffices to give a formula for W, on the Levi H; of the Heisenberg
parabolic. Let e, hy, fr be the basis of the long root sly of ¢ from [Pol20al. Let x,y be
a basis of its standard representation C?, so that hyr = x, hyy = —y and fix = y. We
write V, for the 2/th symmetric power representation of this sly, which we also consider as
a representation of K. The space V, has as basis the elements z‘*Vy = for —¢ < v < /.

Let ro(i) € W; ® C be the element r4(:) = (1, —i, —1,). Then if m € Hy,

xf—‘rv l—v

Watm) = om) o) 3 (e ) R o)

(w,m - ro(i))

7.4. Examples of quaternionic modular forms

In this section, we give results and examples about quaternionic modular forms and their
Fourier coefficients that go beyond Gs.

7.4.1. Eisenstein series. The easiest family of examples of quaternionic modular forms
is the degenerate Heisenberg Eisenstein series. Thus let P C G ; be the Heisenberg parabolic,
with v : P — GL; the character given by p - ey = v(p)eg. There is a weight £ modular form
associated to inducing sections in Ind%(v*|v|). In more detail, suppose £ > 0 is even,
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and let fi(g,s) € 1 ndgggﬂyﬁ) be the unique K-equivariant, V-valued flat section whose

value at ¢ = 1 is z‘y’. Let now fp. € Indggig(\y\s) be an arbitrary flat section. Set

f(ga 8) = ffte(gfa S)ff(gooa S) and E(97 f7 S) = ZVEP(Q)\G(Q) f(797 8)' The sul converges
absolutely if Re(s) > 1+ dim(W;)/2. Suppose s = ¢ + 1 is in the range of absolute
convergence, so that ¢ > dim(W,)/2. Then it can be shown that the value E(g, f,s = (+1)
is a quaternionic modular form of weight ¢.

Another way to create modular forms is to use Heisenberg Eisenstein series with nontrivial
inducing data. One can take a classical holomorphic modular form & of weight n on H;
(weight 3n on G3), and from it produce a weight n modular form E(g,®) on Gy, if n is
sufficiently large. This is spelled out in [Pol20al].

7.4.2. Small representations. Because absolutely convergent degenerate Eisenstein
series always define modular forms, it makes sense to ask about the automorphic forms
defined by these Eisenstein series outside the range of absolute convergence. In other words,
suppose ¢ < dim(WW;)/2. Then one can ask:

e Is the Eisenstein series F(g, f,s) regular at s = ¢ + 17
e If so, is the resulting automorphic function a modular form of weight ¢7

In some cases, these questions have been answered.

THEOREM 7.4.1. Let Ei(g,s) be the Eisenstein series on G = Eg with fr. spherical at
every finite place.

(1) (Gan |Gan00a], Gan-Savin [GS05]) Suppose ¢ = 4. Then E4(g,s) is reqular at
s =5, and Opmin(g) = F4(g,s = b) defines a square integrable, non-cuspidal, modular
form of weight 4.

(2) (Pollack [Pol20c]) Suppose ¢ = 8. Then Es(g, s) is reqular at s =9, and 0,4, (g) :=
Es(g,s =9) defines a square-integrable, non-cuspidal, modular form of weight 8.

The choice of ¢ = 4,8 are inspired by the work [GW94].
About the modular forms 6,,:,, 0nm, one can prove that their Fourier coefficients are
rational:

THEOREM 7.4.2 ([Pol20bl,[Pol20c]). The modular forms 6., and O have rational
Fourier coefficients.

7.4.3. Theta lifts. Using 6,,;,, one can construct new, interesting modular forms. The
first such examples were considered by Gan-Gross-Savin [GGS02]. Recall that, via the cor-
respondence between binary cubic forms and cubic rings, the Fourier coefficients of modular
forms on G5 correspond to totally real cubic rings.

Let I € J be the three-by-three identity matrix. For a cubic ring A, and an element
X € J with Ny(X) =1 (such as X = I), let N(A, X) be the number of maps f: A — J
satisfying

(1) f1) =X

(2) Ny(f(z)) = Na(z) for all x € A. Here N, is the cubic norm on A.
This is the number of embeddings of pointed cubic spaces of A into .J. Besides X = I, there
another second element E € J with N;(E) = 1, with the property that the pointed cubic

34



spaces (J,I) and (J, E) are not globally equivalent; see [GGSO02] for a discussion. See also
IGG99], [EGIT].

THEOREM 7.4.3. [GGSO02| There are level one modular forms 0; and g on Go of weight
4 whose Ath Fourier coefficient is N(A, ), respectively, N(A, E), if A is a non-degenerate
totally real cubic ring.

Let H be a certain group of type Fj, which is compact at the archimedean place and
split at every finite place. Then there is a dual pair Gg/\x H C Eg. It is a theorem that
the automorphic double quotient H(Q)\H(A)/H(R)H(Z) has size two: see [EG97] and
[GG99]. There is thus a two-dimensional space of special automorphic forms on H(A).
The modular forms 6;, 8 are lifts from this two-dimensional space, using 6,,;, as the kernel
function.

The linear combination 916; + 6000% is the theta lift of the trivial function on H. A
Siegel-Weil theorem of Gan identifies this lift with the Eisenstein series of weight 4 on Gj.

THEOREM 7.4.4 (Gan |[Gan00b|). The linear combination 910; + 6000 is the spherical
weight 4 Fisenstein series on Gs.

We mention that the archimedean theta correspondence between G2(R) and H(R) has
been determined in Huang-Pandzic-Savin [HPS96].

7.4.4. Distinguished modular forms. Suppose f(Z) = 3, a;(T)e? "(T%) is a Siegel
modular form. Then f is said to be distinguished if it satisfies the following condition:

(1) There exists Ty with det(7) # 0 so that af(7p) # 0
(2) If T is such that det(T') # 0 and a;(T) # 0, then det(T) = det(Tp) mod (Q*)%.

One can make an analogous definition for quaternionic modular forms:

DEFINITION 7.4.5. A quaternionic modular form ¢ with Fourier coefficients a,,(w) is said
to be distinguished if

(1) There exists a rank four wy with a,(wg) # 0
(2) If w is rank four and a,(w) # 0, then ¢(w) = g(wp) modulo (Q*)>.

In [Pol20b], by restricting 0,,;, to quaternionic groups of type Es, we constructed dis-
tinguished modular forms:

THEOREM 7.4.6. [Pol20b] Let E = Q(v/—d) be an imaginary quadratic field, and Gg
the quaternionic group of type Eg defined from E. Then there is a weight 4 distinguished
modular form ¢p on Gg. The form ¢ satisfies: if w is rank four and a,(w) # 0, then

q(w) = —d modulo (Q*)?.

There is an embedding Gg — FEg, and @g is defined as the pullback of 6,,;, via this
embedding.
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CHAPTER 8

The Fourier expansion on orthogonal groups

In this chapter, we give an explicit Fourier expansion on SO(4,n + 2), to show how it
may be done for a classical group. More precisely, we state and prove the formula for the
generalized Whittaker function on SO(4,n+2)(R)". To state the result, we use the notation
of the following section. Throughout this chapter, we work over the ground field R of real
numbers.

8.1. Setups

We begin by setting up notation. Set V5, = Vo @ V,,. Here V; is a positive definite
quadratic space with orthonormal basis vy, v and V,, is a negative definite quadratic space
with basis v_; for 1 < j < n. Now set U = Span(by, by) and U = Span(b_1,b_5), i.e., U,
respectively UV, is a two-dimensional vector space with basis by, by, respectively b_;, b_s. Let
V =U®V2,®U". We put a symmetric bilinear form (, ) on V in such a way that U, U" are
two-dimensional and isotropic with pairing (b;,b_;) = d;; and U & U" is orthogonal to Va,,.
We identify the Lie algebra of G := SO(V') with A%V, so that vy Avy(v) = (ve, v)v1 — (v, V)vs.

We define the Heisenberg parabolic P = MN to be the stabilizer of U inside SO(V).
The Levi subgroup M is defined to be the subgroup of P that also stabilizes UY. Then
M =~ GLy x SO(V4,,), and we write r = diag(m, h, ‘m™!) for a typical element of M. Observe
that the Lie algebra n of N is U A (U + Va,) and the Lie algebra m of M is UAUY + A?Vsa,,.

Now, for j = 1,2, one sets u; = (b; +b_;)/v/2 and u_; = (b; — b_;)/v/2. Thus
Uy, Us, U_1,u_o are orthonormal (up to sign). Define a Cartan involution on SO(V') as con-
jugation by ¢, where ¢(b;) = b_;, ¢(b—;) = b;, ¢t is +1 on V; and ¢ is —1 on V,,. With this
Cartan involution, p = Span{uy, us, vy, va} A Span{u_1,u_o,v_1,...,v_,} = V4 AV, 15 and
t = N2V, B AV, . We write K for the associated maximal compact subgroup of G = SO(V)
and KV for its identity component. Then K° = SO(V}) x SO(V,12).

Recall that SO(4) ~ SU(2) x SU(2)/us. Consequently, the complexified Lie algebra £ of
K has two sly pieces. The first sl, is given as

[ J 6+ = %(Ul - ZUQ) N (Ul - iUQ)
® h+ = Z(Ul A ug + vp A Ug) = %(Ul — Z’LLQ) A (Ul + ZUQ) + %('Ul — ivg) A ('Ul + ivg)

° f+ = —%(’U/l + Z'LLQ) VAN (’Ul + Z"UQ).

The other sly is obtained by replacing v, with —vy in the above formulas: That is, it has
basis

® €,+ = %(ul — ZUQ) AN (Ul + iUg)
[} hH_ = ’L(ul /\UQ — U1 /\UQ)
[} f/Jr = —%(Ul + ZUQ) VAN (Ul - iUg).
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Let V5 denote the standard representation of one of these sly’s. We write x,y for a weight
basis of it. We may identify V; ® C with V5 ® V5 for these two sly’s as follows:

i Uy — Uy V1 + 109 _[r®z y®u
V2 \ —(vr —ive)  up +dug TRy yy )
Identifying sl, = Sym?(V3), this leads to the identifications
ect=(1zR1)A(—z®yYy)— —2?
e =@R)AN(YRy) —(z@y) A (y®x) — 2y
o f[T=—-(eyAlyez)—y
Finally, we set V, = Sym?/(V5)X1X1 as a representation of K°. It has basis 2%, - - - | 3?*.

8.2. Statement of theorem

Our main result in this chapter is a formula for a generalized Whittaker function on
SO(V)? for the Heisenberg parabolic. In this section, we state that theorem.

In more detail, suppose 13,75 are in Va,. A generalized Whittaker function ¢ of type
(T1,T3) is a function on SO(V)(R)° that satisfies:

@ is valued in V.

o(gk) = k=1 p(g) for all g € SO(V)(R)? and k € K°.

wlexp(by A y1 + by A ya) exp(zby A by)g) = elTiv)FilTanz) o (g),

Dyp = 0, where Dy, is the so-called Schmid operator, defined exactly as it was in
previous sections.

- , h(vy + ivs)
to—1
For r = (m,h, 'm™"), and T\, Ty € Va,, define B(r) = V2i(Ty, To)m ( ih(on + ivs) )

The notation (77, T5) ( Zl ) means (71, w;) + (T2, wy). Say that the pair (T3, T5) is positive
2
semi-definite, written (77, Ty) > 0, if B(r) # 0 for all r € GLy(R)™ x SO(V4,)°.
Suppose € € SO(V3,,) takes v1 — —v1 and vy — vy and define e = diag(( ), €, (71 ,)).
Then € € SO(4,n + 2)(R)". Observe that 3(re) = —f*(r).

With notation as above, and (77, T3) positive semi-definite, define

Wir,(r) = det(m)f|det(m)] ) (f(%)J)U K180 :)'?e_ o)

We will need the following result.

EXERCISE 8.2.1. The function Wr, 1,y satisfies Wr, 1,)(rk) = k™ *Wr, 1,)(r) for all k €
KN M(R).

Here is the theorem.

THEOREM 8.2.2. Suppose F' is a moderate growth generalized Whittaker function for the
pair (T1,Ty), and Ty, Ty are not both 0. Then, if (T1,Ts) is not positive semi definite, F' = 0.
If (T, T») is positive semi-definite, then F is proportional to Wiz, 1)
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8.3. The Iwasawa decomposition

We need detailed forms of the Iwasawa decomposition of elements of p. Recall n =
UN(U+Va,) CAV ~gand m=U AUY 4+ A?Va,. Then we have g =n+ m+ £ and we
will write elements of p in terms of this decomposition:

o (uy + iug) A (u—q +iu_qg) = (b1 +ib_2) A (by +iby) is in m.

[ (Ul — ZUQ) VAN ( -1 — U_ 2) (b_l —1b_ ) (bl — lbg) is in m.

[} (Ul + ZUQ) N (U 1 — U 2) ( -1+ Zbg) (bl + ib_2> == (b_l N b1 + b_2 VAN bg) + 2@()2 A
b1 + i(b_l VAN b_2 + b1 VAN bg) MOI‘GOVGI‘, b_l VAN b_2 + b1 VAN bg = U N Uy +uU_1 N\ U_9 SO
that i(b_; A b_ + by A by) has projection into A*V, equal to %h* + %h’*.

[ J (u1 — ZUQ) VAN (U_l + iu_2> - (b_l — sz) VAN (bl — ib_g) == (b_1 VAN b1 + b_2 VAN bg) — 22()2 A
b1 — i(b_l VAN b_Q + bl A bg) MOI‘GOVGI‘, b_1 A b_2 + b1 VAN bQ = U3 N Uy +U_1 N\ U_9 SO
that —i(b_y A b_y + by A by) has projection into A*Vj equal to —%h* — %h’*.

Some more Iwasawa decompositions:

o uNU_j = \/Ebi/\v_j_u_i/\v_j is in n+¢. Consequently \%(uﬁ—im)/\v_j = (by+iby) A
v_j—\%(u_l—l—iu_g)/\v_j and \%(ul—z’uz)/\v_j = (bl—z’bg)/\v_j—%(u 1—iU_o) AU_j.
These decompositions are in n + ¢.

e v, ANv_;isinm

One has v;Au_; = \/§vi/\bj —v;Auj is in n+¢£. This leads to the following decompositions:

o (01 +ws) A (uy +iug) = (01 +wwa) A (by +iba) + §(ur + dug) A (v1 + ivy) =

\}§<U1 + ZUQ) (bl + ZbQ) — f+

o Lvg +ivg) A (u_y —iuy) = \1[(”01 + iv2) A (b — ib) + 5(uy — tus) A (01 + ivg) =
%(Ul + 7;1}2) VAN (bl - ZbQ) + €/+

[ J %(1)1 — ivg) A (U,_l + ’iu_g) = %(?}1 — iUQ) A (b1 + Zbg) + %(Ul + ZUQ) VAN (Ul — ’i’l)g) =
%(Ul — i’UQ) A\ (bl + Zbg) — f’+

(] %(Ul — 7:1}2) VAN (U_l — iU_2> = \%(Ul - i’UQ) VAN (bl — lbg) + %(Ul — 7/U/2> VAN (Ul - ’i’UQ) =

(vl ivg) A (by —iby) + et

sk

8.4. The differential equations

We assume ¢ is a generalized Whittaker function of type (17, 75).
Suppose 7 = (m, h, ‘'m™!) is in the Heisenberg Levi, so that m = (i mi2) € GLy(R)
and h € SO(Va,,). Then if 21, 20 € Vi,

(b1 A\ z1 +ba A 29)p(M) = i((T1, marh(z1) + miah(z2)) + (To, marh(21) + mash(22)))(M)
= i(T1, To)m(h(z1), h(z2)) o (M).

Recall the operator D with D, = pro D. We now have:

~ 1 . . 1 ,
Dp = —(u; +iug) Au_1+ius2)p@rNRr®@ —(u_1 —iu_s)

V2

1
(ug +iug) A (u—g —iu2)p @ N o ® —(u_y + iu_s)

V2

+

N — DN
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1 , , 1 ,
+ §(u1 —dug) A (u—1 +iu_g)p @yNy®@ —(u_1 — iu_s)

V2
1

1
Z(uy — tuo) A (g — du_ —(u_ U
+ 2(u1 iug) A (u_1 —iu_9)p @y Xy ® ﬁ(u 1+ iu_s)

+ Z ((by +ib2) Nv_jp) @z M ® v_

1<j<n
+ Z ((by —iby) Nv_jp) @y Ny @v_;
1<j<n
1
+ —((v1 + ) ANv_jo) @ —a Ny ® v_;
1<]22n \/5(( 1 2) 390> Y J

1 :
+ Z E((vl—wz)/\v_jgo)ébg/&x@v_j

1<j<n

+ (%(Ul +iva) A (by +iby) — fHe® -2 Xy ® %(u_l — fu_s)

+ (%(vl +iva) A (b —iby) + €T )p @ —r Ky ® %(u_l + iu_s)

+ (%(Ul — Z"UQ) VAN (b1 + ’ng) — f/+)g0 X Yy Xz ® %(Ul - iu,Q)
1 1

+ (—(Ul — iUg) VAN (bl — sz) + 6+)<,0 Ry Xzr® —(U_l + iu_g)

S

Simplifying and contracting, one finds that in Dyp the coefficient of the various terms
are as follows: ,
Define [z°] = % and similarly [y°] = 4. We write o = >, _, wo[z][y""].

THEOREM 8.4.1. Let the notation be as above. Then

(1) The coefficient of [z*][y* " @ x ® \%(u,l —iU_g):

1 : . i
_§(U1 + ZUQ) VAN (U_l + Z’LL_Q)QOU — ﬁ

(2) The coefficient of [z [y '@y ® \/Li(u_l +iu_o):

(70, To)m(h(on) — ih(os), ih(wn) + h(e2))'pus
1 , , { . : ¢
§(u1 —dug) A (u_q — iu_g)p, — E(Tl, To)m(h(vy) + ih(ve), —ih(v1) + h(v2)) @y_1
(3) The coefficient of [y @z v_;:

(T Tm(h(o-, ). h0-,)) 0+ (0 = it2) A 0
(4) The coefficient of [z* [y | @y @ v_;:

i(73775)”?(h(v—j%'—ih(v—j)Y#%z*‘-l—((vl‘%iv2)”\v—j)¢v—1

V2
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(5) The coefficient of [y @z ® \%(U—l +iu_g):
1
V2
(6) The coefficient of [T~y " @y @ \%(U—l —iU_g):

| :
—§(b1 ANb_1+ba Nb_g —2(0+ 1) +v)p, — —

%(bl ANb_y+ by ANb_g —2(0 +1) —v)p, — —=(T1, To)m(h(v1) — ih(v2), —ih(v1) — h(va)) Pyt

(Ty, To)m(h(v1) + ih(vy), ih(vy) — h(v2)) 01

S

8.5. Solving the differential equations
Abusing notation, write ¢,(w,z,y,h) = p,(r) where r = diag(m, h, 'm~') and m =
() (tT) (3”1/2 y_1/2>. Define f,(w,z,y,h) as ¢, = w**2f,. Here w,y € R%,, € R and

h € SO(V,,,)°. We will find the formula ¢ by solving the differential equations above in
terms of the explicit coordinates w, x,y, h.

Recall
| h(vy) + ih(vs
v g A0 )

Note that by Ab_+byAb_s becomes the differential operator wd,,. Also note that wd,, (w” f) =
w(wd, + A)f.
With these definitions, the final two differential equations of Theorem become

o (WO, —v)fy+ B for1 =0 and

o (Wly +v)fy+ Bfo1=0.
Note that § depends linearly on w. Solving these two equations on a domain where 5 # 0
gives that, as a function of w, ¢, is proportional to w?***2K,(|3|). (This uses that ¢, is of
moderate growth.)

Define Y, (z,y, h) so that f, = Y,K,(|3]); i.e., Y, is independent of w. Then the differen-
tial equations imply
ﬁvaflvalqﬁD = ﬁfvfl - _(waw + U)fv
=Y, (= (w0, + v) K,(|B]))
= |BIYu K1 (18)]-

One obtains that Y, = %Yv,l = !;%‘Y;,,l. It follows that ¢, (w, z, y, h) = Yo(z,y, h)w?*? (L}ﬁ)v K,(18]).
We will now use the other differential equations of Theorem to prove that Yj is constant.

Suppose m = (} %) <y1/2 y71/2> w. Set z = x + 1y. Then one computes

8= —\/ﬁy_lﬂw(z*Tl + 15, h(vy + ivg)).

We will now prove the following proposition, which will be used in deducing that Yj is
constant.

PROPOSITION 8.5.1. One has

(0, = 0,)(60) = 3 (~ oy T+ T i) )
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PROOF. Set ' = (2*Ty + Ty, h(vy + ivy)), so that 8 = —v/2wy /24 and — IBi = %
We first compute that

(0: = 0,)(181) = L2y 18|+ VEuy (0, - 10,18,

Now
L (87(0, — 0,)(8) + B(0x — 0,)(8").
£d )(5/*> = 2(T1, h(vy —ivy)). Thus

18+ L 8Ty, hoy — m)))

One computes (0, —i9,)(8') = 0 and

@
y(0, — i0,)(B]) = (VZuwy ™) (

!B’
—1/2 1
— \/_w’ym B (% (211 + T, h(v1 — iv)) + y(Ti, h(vy _Z'UQ)))
_ V2w P
IR

_ <—£wy1/2(z*T1 + Ty, by — wz,))) (_%) |

The proposition follows. 0
Note that if X € g and v € V then Xh(v) = £(he"™)(v)|i=0 = (X (v)).

LEMMA 8.5.2. One has
(1) (1 = iva) Avs(18]) = G (V25 Pw(z"T1 + Ty, h(v-)))
(2) (v1 +iv2) Avs(18]) = G (V25 Pw (T + Ty, h(v-))).

PROOF. We have

(01 —ivp) Av(|6]) =

{
2

(ZT1 + TQ — QZyTl, h(Ul — i’UQ))

1 , , *
2\5|( (o1 = ivg) Av)(B) + B((v1 = dve) Avy)(57))

and similarly for (v; 4 ivg) A v_;. Now, one has

(
o (v1 —ivy) Nv_j(B) = 2\/_9 V2w (2" Ty + Ty, h(v-y))
o (Ul + wg) Nv_j(B) =
o (v1 —iva) ANv_j(B%) =
o (v; +ivg) ANv_;(B*) = 2\/_y‘1/2 (2T + Tz, h(v—_;)).
The lemma follows. U

PROPOSITION 8.5.3. The function Yy(z,y,h) above is constant.

Proor. We first consider Yj as a function of x,y the coordinates on the complex upper
half-plane. Note that

1 1
—5(11,1 + ZUQ) N (u_1 + iu_g) = 5(()1 + Zbg) VAN (b_l + Z‘b_g).

By acting on b1 and b, one sees that this is the element of gl, (via our usual isomorphism)
with matrix 3 (} % ). As a differential operator, this Lie algebra clement gives iy(9, — i9,)
on functions that are right invariant under SO(2). Using the proposition above and the
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differential equations of the theorem, one obtains that y(d, — i0,)Yy = 0. Similarly, one
obtains y(0, +10,)Yy = 0. Thus Yj is constant as a function of z, y.

Using the lemma above, and again the differential equations of the theorem, one obtains
XYy =0forall X € pnA?Vy,, = Vo AV,,. Because Yj is right invariant under K°NSO(V;,)°,
we see that Y| is constant. L]

We now put everything together. From the work above, one obtains that on a domain
where 5 # 0, there is a unique line of generalized Whittaker functions of type (77, 75),
spanned by Wz, 1,). Indeed, we solved the differential equations on GLy(R)" x SO(V3,)?,
and then one must observe that W, r,) is appropriately equivariant by e.

One can now argue as in [Pol20a] to prove that if (77, 73) is not positive semi-definite,
then the only generalized Whittaker function is 0. The idea is that one first solves the
differential equations on a domain where 5 # 0, and then observes that this unique solution
blows up as M approaches a point where § = 0. Finally, one can check that the W, 1,
satisfy the Schmid equations of the theorem above; we omit this aspect. This completes our
work.
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CHAPTER 9

Proposed projects

There are numerous interesting unanswered questions about quaternionic modular forms.
In the previous chapters, I have tried to mention a few such questions. Basically, whatever
is your favorite result about holomorphic modular forms probably has an interesting, open
analogue for quaternionic modular forms. For the projects, I am proposing develop some of
the first results about quaternionic modular forms on the groups U(2,n). However, perhaps
you have a different idea for a project; that would be great to work on too!

9.1. Project 1: The generalized Whittaker function on U(2,n)

The first project is to find the generalized Whittaker function for the Heisenberg parabolic
of quaternionic modular forms on U(2,n). The Heisenberg parabolic P = MN of U(2,n) is
the maximal parabolic subgroup stabilizing an isotropic line in the defining representation
of U(2,n); its Levi subgroup is GL; g xU(1,n — 1) where E is the quadratic imaginary
extension used to define the unitary group. In one sentence, the goal is to do for the group
U(2,n) what is done for the group SO(4,n) in Chapter |8, Thus references for this project
are Chapter |8 of these notes, and, to a lesser extent, [Pol20a]. The case of U(2,n) was
excluded from [Pol20a] because it could not be handled by the same uniform argument that
handled the quaternionic exceptional groups. However, a direct argument, similar to the
work of Chapter [§] should yield the desired generalized Whittaker function.

Here are some problems to organize the work on this project.

PROBLEM 9.1.1. Find an explicit realization of the Lie algebra of G = U(2,n) in terms
of the standard representation V of U(2,n).

PROBLEM 9.1.2. Define a Cartan involution on g and identify the maximal compact
subgroup K of G. Identify explicitly g =€ @ p.

PROBLEM 9.1.3. Define quaternionic modular forms on G = U(2,n).
PROBLEM 9.1.4. Find the Iwasawa decomposition (g =n-+m+t€) of a weight basis of p.

PROBLEM 9.1.5. Write down explicitly the Schmid differential equations for satisfied by
quaternionic modular forms on G.

PROBLEM 9.1.6. Solve these differential equations, both when the character of N is trivial,
and when it is nontrivial.

PROBLEM 9.1.7. Use the case of trivial character to show that Heisenberg Eisenstein
series with appropriate cuspidal inducing data become quaternionic modular forms.
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9.2. Project 2: An Oda-Rallis-Schiffman lift for U(2,n)

The second project is to give an analogue of the Oda-Rallis-Schiffmann [Oda78], [RS81]
lift to U(2,n). The Oda-Rallis-Schiffmann lift is a theta lift from holomorphic modular forms
f on SLy or its double cover to holomorphic modular forms 0(f) on the group O(2,n). It is
a very special instance of the general theta lift from symplectic to orthogonal groups, but in
this special case one can write simple formulas for the Fourier coefficients of #(f) in terms
of those of f. See the introduction to [Pol21] for more historical references.

The goal of the second project is produce an analogue of this lift from holomorphic
modular forms g on U(1, 1) to quaternionic modular forms #(g) on U (2, n), and to give simple
formulas for the Fourier coefficients of #(g) in terms of those of ¢g. In [Pol21] I considered a
special theta lift from holomorphic Siegel modular forms f on Sp(4) to quaternionic modular
forms 6(f) on SO(4,n), for some n, and found the quaternionic Fourier coefficients of the
lift #(f) in terms of the classical Fourier coefficients of f. Thus this project is an analogue
to unitary groups of the work done for orthogonal groups in [Pol21]. So, [Pol21] is a good
reference for working on this project.

This project assumes a successful completion of Project 1, but can mostly be worked on
independently of that project. Also note that it would be a good idea to pay close attention
to Wee Teck Gan’s lectures on the theta correspondence to work on this project.

Here are some problems to organize our work on this project.

PrROBLEM 9.2.1. Understand general formulas for the Schrodinger model of the Weil
representation for the pair (U(1,1),U(2,n)).

PROBLEM 9.2.2. Work out a general (soft) formula for Heisenberg Fourier coefficients
of 0(g) in terms of the standard Whittaker Fourier coefficients of g. Here by a soft formula
I mean one where the data for the Weil representation is arbitrary at the archimedean place.

PROBLEM 9.2.3. Find special data for the Weil representation for the pair (U(1,1),U(2,n))
so that holomorphic representations on U(1,1) lift to quaternionic representations on U(2,n).

PROBLEM 9.2.4. Prove that the quaternionic Fourier coefficients of 6(g) can be given in
terms of the Fourier coefficients of g via simple formulas.
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