
AUTOMORPHIC FORMS AND THE THETA CORRESPONDENCE

WEE TECK GAN

1. Lecture 1: The Ramanujan Conjecture

In the first lecture, we shall recall the Ramanujan conjecture for classical modular forms
and its reformulation in the language of cuspidal automorphic representations of PGL2. For
more details on this transition and reformulation, please take a look at [8, §4.27 and §4.28].
This reformulation allows one to readily generalize the conjecture to the setting of cuspidal
automorphic representations of general connected reductive group G over a number field k.
We will then discuss the unitary analog of a construction of Roger Howe and Piatetski-Shapiro
[18] which gives a definitive counterexample to the extended Ramanujan conjecture for the
unitary group U3 in three variables. Their original construction gave a counterexample on
the group Sp4, but we will use the same idea to produce a counterexample on U3 via the
method of theta correspondence.

1.1. The Ramanujan conjecture. About a century ago, Ramanujan considered the fol-
lowing power series of q

∆(q) = q ·
∏
n≥1

(1− qn)24.

Expanding this out formally, we have:

∆(q) =
∑
n>0

τ(n)qn = q − 24q2 + ...

Ramanujan conjectured that for all primes p,

|τ(p)| ≤ 2 · p11/2.

This is the Ramanujan conjecture in question. More generally, for any holomorphic cuspidal
Hecke eigenform φ of weight k (and level 1) on the upper half plane h, with Fourier coefficients
{an(φ)}n≥1, the Ramanujan-Petersson conjecture asserts that

|ap(φ)| ≤ 2p(k−1)/2 for all primes p.

For Hecke eigenforms, the Fourier coefficients ap(φ) are also the eigenvalues of the Hecke op-
erator Tp. Hence, the Ramanujan conjecture concerns bounds on cuspidal Hecke eigenvalues.

1.2. Cuspidal automorphic representations. The classical theory of modular forms can
now be subsumed in a representation theoretic setting. The details of this transition can be
found in [8, §3 and §4]. Let us briefly recall this.

Let

• k be a number field with ring of adeles A =
∏′
v kv, which is a restricted direct product

of the local completions kv for all places v of k.
1
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• G be a connected reductive linear algebraic group over k; for simplicity we may take
G to be semisimple;
• fixing any faithful algebraic representation ρ : G ↪→ GLn over k, one obtains a system

of open compact subgroups Kv = ρ−1(GLn(Ov)) ⊂ G(kv), for almost all v, where Ov
is the ring of integers of kv; for almost all v, Kv is hyperspecial.
• G(A) =

∏′
v G(kv) be the adelic group, which is a restricted direct product of G(kv)

relative to the family {Kv} of open compact subgroups for almost all v;
• [G] = G(k)\G(A) be the automorphic quotient; the locally compact group G(A)

acts on [G] by right translation and there is a G(A)-invariant measure (unique up to
scaling).

For the theory of classical modular forms, one is taking k = Q and G = PGL2. Using the
natural identification

SL2(Z)\h ∼= PGL2(Z)\PGL2(R)/O2(R) ∼= PGL2(Q)\PGL2(A)/O2(R) ·
∏
p

PGL2(Zp),

a classical modular form φ on h corresponds to a function

f : PGL2(Q)\PGL2(A) −→ C
defined by

f(g) = (φ|kg)(
√
−1).

Replacing φ by f allows one to extend the notion of modular forms to the setting of general
reductive groups G.

More precisely, an automoprhic form on G is a function

f : [G] −→ C
satisfying some regularity and finiteness properties:

• f is smooth
• f is right Kf -finite (where Kf =

∏
v<∞Kv)

• f is of uniform moderate growth
• f is Z(g)-finite.

It is not important for us to know precisely the meaning of the above properties.

Let us denote the space of automorphic forms on G by A(G). The group G(A) acts on
the vector space A(G) by right translation. An automorphic representation π of G is by
definition an irreducible subquotient of the G(A)-module A(G). As an irreducible abstract
representation of G(A) =

∏′
v G(kv), π is of the form:

π = ⊗′vπv,
a restricted tensor product of irreducible smooth representations πv of G(kv). In particular,
for almost all v, πKvv 6= 0; we say that πv is Kv-spherical or Kv-unramified. It is known that
dimπKvv = 1 if πv is Kv-unramified.

Definition: An automorphic form f on G is called a cusp form if, for any parabolic k-
subgroup P = MN of G, the N -constant term

fN (g) =

∫
N(k)\N(A)

f(ng) dn
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is zero as a function on G(A).

Let
Acusp(G) ⊂ A(G)

be the subspace of cusp forms; it is a G(A)-submodule (potentially 0). It turns out that, if
G is semisimple or has anisotropic center, a cusp form f is rapidly decreasing as a function
on [G] (like a Schwarz function) and hence is square-integrable on [G], i.e..∫

[G]
|f(g)|2 dg <∞.

If we let A2(G) denote the G(A)-submodule of square-integrable automorphic forms (clearly
nonzero), then

Acusp(G) ⊂ A2(G) ⊂ A(G).

Moreover, each G(A)-submodule ACusp(G) and A2(G) decomposes as a direct sum

Acusp(G) =
⊕
π

mcusp(π) · π and A2(G) =
⊕
π

m2(π) · π

with finite multiplicities (this is not obvious). An irreducible summand π of Acusp(G) is called
a cuspidal automorphic representartion, whereas one of A2(G) is called a square-integrable
automorphic representation.

1.3. Classification of unramified representations. For an abstract irreducible repre-
sentation π ∼= ⊗′vπv, we have mentioned that for almost all v, πv is Kv-unramified, with
Kv ⊂ G(kv) a so-called hyperspecial maximal compact subgroup. Such Kv-unramified rep-
resentations can be classified. We recall this classification briefly; the reader can take a look
at [8, §4.22-4.26].

For almost all such v, G is quasi-split over kv and hence possesses a Borel subgroup
Bv = Tv · Uv defined over kv. Hence, Tv is a maximal torus over kv. For a character
χv : Tv = Tv(kv)→ C×, one can form the (normalized) parabolically induced representation

I(χv) = IndGvBvχv,

consisting of functions φ : Gv → C satisfying

f(utg) = χv(t) · δBv(t)1/2 · f(g) for u ∈ Uv, t ∈ Tv and g ∈ Gv,
where δBv is the modulus character defined by

δBv(g) = |det(Ad(g)|Lie(Uv))|.
and where the action of Gv is by right translation. The representation I(χv) is called a
principal series representation.

If χv is an unramified character of T (kv), i.e., χv is trivial on T (kv) ∩ Kv, we call I(χv)
an unramified principal series representation. The following proposition summarizes the
classification of Kv-unramified representations:

Proposition 1.1. (i) An unramified I(χv) is of finite length and contains exactly one irre-
ducible subquotient π(χv) which is Kv-unramified. Moreover, π(χv) ∼= π(χ′v) if and only if
χv = w · χ′v for some element w in the Weyl group Wv = NGv(Tv)/Tv.
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(ii) Every Kv-unramified representation of G(kv) is isomorphic to π(χv) for some unram-
ified χv.

(iii) Hence the above construction gives a bijection

{Kv-unramified irreps. of G(kv)} ←→ {unramified characters of T (kv)}/(Weyl group action).

The proof of this proposition is through showing the Satake isomorphism; the reader can
consult [8, §4.22-23]. There is an elegant way of reformulating the above proposition, using
the Langlands dual group G∨v (for split Gv) or the Langlands L-group LGv in general. This
reformulation (for split Gv for simplicity) is a bijection:

{Kv-unramified irreps. of G(kv)} ←→ {semisimple conjugacy classes in G∨v }.

1.4. Tempered representations. A representation πv is tempered if its matrix coefficients
(which is a function on Gv) lies in L2+ε(Gv) for all ε > 0, i.e. if its matrix coefficients
decay sufficiently quickly [8, §4.27]. For unramified representations, we can make do with the
following ad-hoc definition.

Definition: A Kv-unramified representation π(χv) as above is said to be tempered if χv is a
unitary character, i.e. |χv| = 1.

As an example, the trivial representation of Gv is certainly Kv-unramified and is contained

in the principal series I(δ
1/2
Bv

). Since δ
1/2
Bv

is not a unitary character, the trivial representation
of Gv is not tempered (unless Gv is compact). From the point of view of matrix coefficients,
the trivial representation has constant matrix coefficients which certainly do not decay at all.

1.5. Representation theoretic formulation of the Ramanujan conjecture. We can
now formulate the Ramanujan conjecture for cuspidal representations of a quasi-split group
G.

Conjecture 1.2 (Naive Ramanujan Conjecture). Let π = ⊗′vπv be a cuspidal representation
of a quasi-split G. Then for almost all v, πv is tempered.

The transition from Ramanujan’s original conjecture to this representation theoretic for-
mulation is not clear at all and was first realized by Satake. This transition is described
in [8, §4.28]. The condition that G be quasi-split is there because the conjecture may be
easily shown to be false without it. For example, if G is an anisotropic group, so that [G] is
compact, then the constant functions, which afford the trivial representation, are certainly
cusp forms but the trivial representation is not tempered (as we have remarked above).

1.6. Counterexample of Howe-PS. The naive Ramanujan conjecture is expected to be
true when G = GLn, where it has in fact been shown in many cases. However, in the 1977
Corvallis proceedings, Howe and Piatetski-Shapiro [18] constructed an example of a cuspidal
automorphic representation of the split group Sp4. which violates the naive Ramanujan
conjecture above. This has led to the following tweak:

Conjecture 1.3 (Revised Ramanujan Conjecture). Let π = ⊗′vπv be a globally generic
cuspidal representation of a quasi-split G. Then for almost all v, πv is tempered.
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Note that for G = GLn, all cuspidal representations are known to be globally generic (see
[8, §6])

In this series of lectures, we will follow the same basic idea of Howe-PS and construct a
similar counterexample for a quasi-split unitary group U3.

1.7. ε-Hermitian spaces and unitary groups. Let us first recall some basics about uni-
tary groups and the underlying Hermitian spaces.

We first begin with an arbitrary field F of characteristic 0, and let E be an étale quadratic
F -algebra (so E is either a quadratic field extension or E = F × F ), with Aut(E/F ) = 〈c〉
acting on E by x 7→ xc. With ε = ±, let V be a finite-dimensional ε-Hermitian space over E.
This means that V is equipped with a nondegenerate E-sesquilinear form 〈−,−〉, so that

〈v1, v2〉c = ε · 〈v2, v1〉 and 〈λv1, v2〉 = λ · 〈v2, v2〉

for v1, v2 ∈ V and λ ∈ E. If ε = +1, one gets a Hermitian form; if ε = −1, one gets a skew-
Hermitian form. Observe that if δ ∈ E× is a trace 0 element (to F ), then multiplication-by-δ
takes an ε-Hermitian form to a −ε-Hermitian form.

If (V, 〈−,−〉) is an ε-Hermitian space, let U(V ) be its associated isometry group:

U(V ) = {g ∈ GL(V ) : 〈gv1, gv2〉 = 〈v1, v2〉 for all v1, v2 ∈ V }.

Because

U(V, 〈−,−〉) = U(V, δ · 〈−,−〉) for trace 0 elements δ ∈ E×,
the class of isometry groups one obtains for Hermitian and skew-Hermitian spaces is the
same. These isometry groups are called the unitary groups: each of them is a connected
reductive group with a 1-dimensional anisotropic center Z ∼= E1 (the torus defined by the
norm 1 elements of E×).

If n = dimEV , then we say that V is maximally split (or simply split) if V contains a
maximal isotropic subspace of dimension [n/2]. In that case, U(V ) is quasi-split and thus
possesses a Borel subgroup B defined over F . Such a Borel subgroup is obtained as the
stabilizer of a maximal flag of isotropic subspaces:

0 ⊂ X1 ⊂ ... ⊂ X[n/2]

with dimXj = j.

Let us highlight the special case when E = F × F is the split quadratic F -algebra. Then
V is an F × F -module and hence has the form V0 × V ∨0 , for an F -vector space V0. Up to
isomorphism, any Hermitian E-space is isomorphic to the one defined by

〈(v1, l1), (v2, l2)〉 = (l2(v1), l1(v2)) ∈ E.

Then we note that

U(V ) ∼= GL(V0),

via the natural action of GL(V0) on V0 × V ∨0 . We will largely ignore such split cases in the
following, as they can be easily handled.
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1.8. Invariants of spaces. Assume now that F is a local field, E/F a quadratic field ex-
tension and fix dimV = n. A Hermitian space V has a natural invariant known as the
discriminant:

disc(V ) ∈ F×/NE/F (E×).

More precisely, if {v1, ..., vn} is an E-basis and A = (〈vi, vj〉) is the matrix of inner products
of basis elements, then

disc(V ) = (−1)n(n−1)/2 · det(A) ∈ F×/NE×.
Using the nontrivial quadratic character ωE/F of F×/NE/F (E×), it is convenient to encode
disc(V ) as a sign:

ε(V ) = ωE/F (disc(V )) = ±.
When F is nonarchimedean, Hermitian spaces are classified by the two invariants dim(V )
and ε(V ), so that for each given dimension, there are 2 Hermitian spaces V + and V −. When
F = R, however, Hermitian spaces are classified by their signatures (p, q), with p+q = dimV .

Likewise, if W is a skew-Hermitian space, then

disc(W ) ∈ δdimW · F×/NE/F (E×)

and one sets
ε(W ) = ωE/F (δ−dimW · disc(W )) = ±.

Note however that ε(W ) depends on the choice of δ.

Assume now that F = k is a number field and E/k is a quadratic field extension. Then
a Hermitian space V over E is determined by its localizations {V ⊗k kv} as v runs over all
places of k; in other words, the Hasse principle holds. Note that half the places v will split
in E and for these, the local situation is the split case (so the split case cannot be ignored
for global considerations). A family of local Hermitian space {Vv} (relative to Ev/kv) arises
as the family of localizations of a global Hermitian space relative to E/k if and only if:

• for almost all v, ε(Vv) = +;
•
∏
v ε(Vv) = 1.

There is an analogous statement for skew-Hermitian spaces which can be formulated, using
the observation that multiplication by a nonzero trace 0 element of E switches Hermitian
spaces and skew-Hermitian spaces.

1.9. Examples. Let us consider some examples in small dimension relative to a quadratic
field extension of local fields E/F .

• When dimV = 1, one may identify V with E (by the choice of a basis element), and
a Hermitian form is given by (x, y) 7→ axyc, with a ∈ F×; we denote this rank 1
Hermitian space by 〈a〉. Then 〈a〉 ∼= 〈b〉 if and only if a/b ∈ NE× and V + = 〈1〉. In
any case, U(〈a〉) = E1 ⊂ E× for any a ∈ F×.

We take this occasion to take note of a canonical isomorphism (given by Hilbert’s
Theorem 90):

E×/F× ∼= E1

defined by
x 7→ x/xc.
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We will frequently use this isomorphism to identify E1 as E×/F×.

• When dimV = 2, V + is the split Hermitian space V + = Ee1 ⊕ Ee2, such that

〈e1, e1〉 = 〈e2, e2〉 = 0 and 〈e1, e2〉 = 1.

This 2-dimensional split Hermitian space is also called a hyperbolic plane and is
sometimes denoted by H. The stabilizer of the isotropic line Ee1 is a Borel subgroup,
containing a maximal torus

T = {t(a) =

(
a

(ac)−1

)
, a ∈ E×}

and with unipotent radical

U = {u(z) =

(
1 z

1

)
: z ∈ E, TrE/F (z) = 0}.

The other Hermitian space V − is anisotropic (it has no nonzero isotropic vector).
One can describe it in terms of the unique quaternion division F -algebra D. For this,
one fixes an F -algebra embedding E ↪→ D (unique up to conjugacy by D× by the
Skolem-Noether theorem) and regard D as a 2-dimensional E-vector space by left
multiplication. One can find d ∈ D such that d normalizes E and dxd−1 = xc for
x ∈ E, and write D = E · 1⊕ E · d. Then one defines a Hermitian form on D by

〈x, y〉 = projection of x · y onto E · 1.

In terms of this model, one can describe the unitary group U(V −) as :

U(V −) ∼= (E× ×D×)1/∇F× = {(e, d) : NE(e) ·NB(b) = 1}/∇F×,

where ∇(F×) = {(t, t−1) : t ∈ F×}. The element (e, d) ∈ E× × B× gives rise to the
operator

x 7→ e · x · b−1

on D.

If one replaces D by the matrix algebra M2(F ), the above description of V − and
its isometry group U(V −) gives rise to a description of V + = H and U(V +). This
shows that U(V +) is intimately connected with GL2 and U(V −) with D×.

• Consider now the case when dimV = 3. Let H denote the hyperbolic plane introduced
above and recall the 1-dimensional Hermitian space 〈a〉. The sum 〈a〉 ⊕ H is then a
3-dimensional Hermitian space with ε(〈a〉+H) = ωE/F (a). As a runs over F×/NE×,
one obtains the two equivalence classes of 3-dimensional Hermitian spaces (in the
nonarchimedean case). Thus, both these spaces are split and since V + ∼= a · V − for
a ∈ F× \NE×, we see that U(V +) ∼= U(V −) is a quasisplit group.

Since this unitary group will play a big role in the Howe-PS construction, let us
set up some more notation about it. Let 〈a〉 = E · v0 and H = Ee⊕ Ee∗ with e and
e∗ isotropic vectors. Then with respect to the basis {e, v0, e

∗} of 〈a〉 ⊕ H, the inner
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product matrix takes the form 1
a

1

 .

The Borel subgroup B = TU stabilizing the isotropic line E·e is then upper triangular,
with elements of T and U taking the form

t(a, b) =

 a
b

(ac)−1

 with a ∈ E× and b ∈ E1;

and

u(x, z) =

 1 0 z
1 0

1

 ·
 1 −acxc ∗

1 x
1

 , with x, z ∈ E and TrE/F (z) = 0.

1.10. Basic idea of Howe-PS construction. We can now give a brief summary of the
Howe-PS construction of cuspidal representations of U3 which violate the naive Ramanujan
conjecture.

Let E/k be a quadratic field extension of number fields. Consider a skew-Hermitian space
(W, 〈−,−〉) of dimension 3 over E. We would like to produce some cusp forms on U(W )
which violates the naive Ramanujan conjecture. These functions on U(W ) will be obtained by
restriction (or pullback) of a simpler class of automorphic forms on a larger group containing
U(W ). What is this larger group?

By restriction of scalars, we have a 6-dimension space ResE/k(W ) over k and the k-valued
form TrE/k(〈−,−〉) defines a symplectic form on ResE/k(W ) with associated symplectic group
Sp(ResE/k(W )). This defines an embedding

ι : U(W ) ↪→ Sp(ResE/k(W )).

It turns out that the simple automorphic forms we need are not really living on Sp(ResE/k(W )).

Rather, the symplectic group Sp2n(A) has a topological S1-cover Mp2n(A) known as the
metaplectic group (where S1 is the unit circle in C×):

1 −−−−→ S1 −−−−→ Mp2n(A) −−−−→ Sp2n(A) −−−−→ 1

and the simpler automorphic forms in question actually live on Mp2n(A). The need to work
with this nonlinear cover accounts for much of the technicality of this subject, but one cannot
argue with nature.

These simpler automorphic forms on the metaplectic groups are the theta functions and
the automorphic representations they span are called the Weil representations. In order to
pull back these theta functions from Mp(ResE/k(W ))(A) to Sp(ResE/k(W )), one needs to
construct a lifting of ι to

ι̃ : U(W )(A) ↪→ Mp(ResE/k(W ))(A).

This is highly technical but it can be done and Howe-PS then restricted these theta functions
to U(W )(A).
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Representation theoretically, if

Ω ⊂ A(Mp(ResE/k(W )))

denotes an automorphic Weil representation, and

ι̃∗ : A(Mp(ResE/k(W )))→ A(U(W ))

denotes the restriction of functions, then one obtains a U(W )(A)-submodule

ι̃∗(Ω) ⊂ A(U(W )).

Now recall that the center is U(W ) is isomorphic to E1 as an algebraic group. One can
spectrally decompose ι̃∗(Ω) according to central characters.

ι̃∗(Ω) =
⊕
χ

Ωχ

as χ runs over the automorphic characters of E1, or equivalently of E×/k×, where

Ωχ = {f ∈ Ω : f(zg) = χ(z) · f(g) for all z ∈ Z(U(W )) = A1
E and g ∈ U(W )(A)}.

What we would like to show is that:

• for each χ, Ωχ is an irreducible automorphic representation of U(W ) and is cuspidal
for many χ.
• for any χ, Ωχ violates the naive Ramanujan conjecture.

One can view the map χ 7→ Ωχ as a lifting of automorphic representations from U1 to U3.
This lifting is an instance of the theta correspondence, which we will discuss in the next two
lectures.
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2. Lecture 2: Local Theta Correspondence

The next two lectures will be devoted to a discussion of the theory of theta correspon-
dence, so as to understand the construction of Howe-PS in its proper context. Two possible
references for this are the survey papers of D. Prasad [27] and S. Gelbart [16]. In particular,
the latter is concerned with theta correspondence for unitary groups. In this second lecture,
we shall focus on the local theta correspondence, for which a basic reference is the book
[26] of Moeglin-Vigneras-Waldspurger. Hence, we will be working over a local field F (of
characteristic 0), and for simplicity, we shall assume F is nonarchimedean.

2.1. Basic idea. From the last lecture, we saw that the Howe-PS construction basically gives
a map

{Automorphic characters of U1 = E1} → {Automorphic representations of U3}
sending χ to Ωχ.

Now given any two groups G and H, one may ask more generally: what are some ways of
constructing such a lifting from Irr(G) to Irr(H)? Here, Irr(G) denotes the set of equivalence
classes of irreducible representations of G.

A standard procedure is as follows. Suppose for simplicity that G and H are finite groups
and Ω is a (finite-dim) representation of G×H. Then one may decompose Ω into irreducible
G×H-summands:

Ω =
⊕

π∈Irr(G)

⊕
σ∈Irr(H)

m(π, σ) · π ⊗ σ.

One can rewrite this as:

Ω =
⊕

π∈Irr(G)

π ⊗ V (π)

where

V (π) =
⊕

σ∈Irr(H)

m(π, σ)σ.

This gives a map

Irr(G) −→ R(H) (Grothedieck group of Irr(H))

sending π to V (π). Since we are interested in getting irreducible representations of H as
outputs, we ask: for what Ω is V (π) is irreducible or zero for any π? If we can find such an
Ω, then the map π 7→ V (π) would be a map

Irr(G) −→ Irr(H) ∪ {0}.

An example of an Ω that has this property is certainly the trivial representation. However
the map so obtained is not very interesting. On the other hand, if dim Ω is too big, then
dimV (π) will have to be big for many π’s as well, so that V (π) tends to be reducible. Thus,
a simple heuristic is that Ω cannot be too big nor too small.

In practice, one can try an Ω arising in the following way. Suppose there is an (almost
injective) group homomorphism

ι : G×H −→ E for some group E.
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One can take Ω to be an irreducible representation of E of smallest possible dimension > 1
and then pull it back to G×H.

The theory of theta correspondence, which was systematically developed by Howe, arises
in this way.

2.2. Reductive dual pairs. Let F be a field of characteristic 0, and let E be an étale
quadratic F -algebra, with Aut(E/F ) = 〈c〉. Let V be a finite-dimensional Hermitian space
over E and W a skew-Hermitian space. Then V ⊗E W is naturally a skew-Hermitian space
over E. By restriction of scalars, we may regard V ⊗E W as an F -vector space which is
equipped with a natural symplectic form Tr(〈−,−〉V ⊗ 〈−,−〉W ). Then one has a natural
map of isometry groups

ι : U(V )×U(W ) −→ Sp(V ⊗E W )

which is injective on each factor U(V ) and U(W ). The images of U(V ) and U(W ) are in fact
mutual commutants of each other in the symplectic group, and such a pair of groups is called
a reductive dual pair.

Howe has given a complete classification of all such dual pairs in the symplectic group.
A further example (perhaps easier than the one above) is obtained as follows. If V is a
symmetric bilinear space (or a quadratic space) and W a symplectic space over F , then
V ⊗F W inherits a natural symplectic form (by tensor product) and one has

O(V )× Sp(W ) −→ Sp(V ⊗W ).

2.3. Metaplectic groups and Heisenberg-Weil representations. Assume now that F
is a local field. The symplectic group Sp(V ⊗E W ) has a nonlinear S1-cover Mp(V ⊗E W )
known as the metaplectic group:

1 −−−−→ S1 −−−−→ Mp(V ⊗E W ) −−−−→ Sp(V ⊗E W ) −−−−→ 1

The construction of this central extension is a lecture course in itself, but since its construction
is such a classic result, we feel obliged to give a sketch.

Let us work in the context of an arbitrary symplectic vector space W over F (in place of
the cumbersome notation V ⊗E W ). Let

H(W ) = W ⊕ F

and equip it with the group law

(w1, t1) · (w2, t2) = (w1 + w2, t1 + t2 +
1

2
〈w1, w2〉).

This is the so-called Heisenberg group. It is a 2-step nilpotent group with center Z = F
and commutator [H(W ), H(W )] = Z. The definition of this group law is motivated by the
Heisenberg commutator relations from quantum mechanics, hence the name.

The irreducible (smooth) representations of H(W ) can be classified and come in 2 types:

• the 1-dimensional representations: these factor through

H(W )/[H(W ), H(W )] = H(W )/Z ∼= W
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and hence are given by characters of W . Observe that these are precisely the repre-
sentations trivial on the center Z.

• the other irreducible representations have nontrivial central character. For a fixed
ψ : Z = F −→ C×, the Stone-von Neumann theorem asserts that H(W ) has a unique
irreducible representation ωψ with central character ψ. Moreover, the representation
ωψ is unitary.

One can give an explicit construction of ωψ. Let

W = X ⊕ Y

be a Witt decomposition of W so that X and Y are maximal isotropic subspaces. Then
H(X) = X + F is an abelian subgroup of H(W ) and one can extend ψ to a character of
H(Y ) by setting ψ(x, 0) = 1 (i.e. extending trivially to X). Then

ωψ ∼= ind
H(W )
H(X)ψ (compact induction).

This induced representation is realized on S(Y ) := C∞c (Y ), and the action of h ∈ H(W ) can
be easily written down:

(ωψ(0, z)f)(y′) = ψ(z) · f(y′), for z ∈ F ;

(ωψ(y, 0)f)(y′) = f(y + y′), for y ∈ Y
(ωψ(x, 0)f)(y′) = ψ(〈y′, x〉) · f(y′), for x ∈ X.

This action preserves the natural inner product on S(Y ).

The symplectic group Sp(W ) acts on H(W ) as group automorphisms via:

g · (w, t) = (g · w, t).

Observe that the action on Z is trivial. Hence the representation gωψ = ωψ◦g−1 is irreducible
and has the same nontrivial central character as ωψ. By the Stone-von Neumann theorem,
these two representations are isomorphic, i..e there exists an invertible operator Aψ(g) on the
underlying vector space S of ωψ such that

Aψ(g) ◦ gωψ(h) = ωψ ◦Aψ(g) for all h ∈ H(W ).

By Schur’s lemma, the operator Aψ(g) is well-defined up to C×. By the unitarity of ωψ, we
can insist that Aψ(g) is unitary and hence it is well-defined up to the unit circle S1 ⊂ C×.
Hence we have a map

Aψ : Sp(W ) −→ GL(S)/S1.

When one pulls back the short exact sequence

1 −−−−→ S1 −−−−→ GL(S) −−−−→ GL(S)/S1 −−−−→ 1

by the map Aψ, one obtains the desired metaplectic group Mpψ(W ):

1 −−−−→ S1 −−−−→ Mpψ(W ) −−−−→ Sp(W ) −−−−→ 1∥∥∥ yÃψ yAψ
1 −−−−→ S1 −−−−→ GL(S) −−−−→ GL(S)/S1 −−−−→ 1
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Hence, this construction produces not just the group Mpψ(W ) but also a natural represen-
tation

Ãψ : Mpψ(W ) −→ GL(S).

Thus, we have a representation ωψ of Mpψ(W )nH(W ). In other words, the irreducible rep-
resentation ωψ of H(W ) extends to the semidirect product H(W )oMpψ(W ) (with Mpψ(W )
acting on H(W ) via its projection to Sp(W )). We call this a Heisenberg-Weil representation;
its restriction to Mpψ(W ) is simply called a Weil representation.

It turns out that the isomorphism class of the extension defining Mpψ(W ) is independent
of ψ; so we shall write Mp(W ) henceforth, suppressing ψ. The Weil representation ωψ of
Mp(W ) is, in some sense, the smallest infinite-dimensional representation of the metaplectic
group. We only make two further remarks here:

• ωψ is a genuine representation of Mp(W ), in the sense that ωψ(z) = z for all z ∈ S1,
so that ωψ does not factor to a smaller cover of Sp(W ).
• ωψ is not an irreducible representation of Mp(W ), but rather a direct sum of two

irreducible representations (the even and odd Weil representaitons):

ωψ = ω+
ψ ⊕ ω

−
ψ .

Indeed, with ωψ realized on S(Y ) as above, ω+
ψ is realized on the subspace of even

functions (i.e. f(−x) = f(x)) whereas ω−ψ is realized on the subspace of odd functions.

2.4. Schrodinger model. One can ask if it is possible to write down some formulas for the
action of elements of Mp(W ), for example on the model S(Y ) of ωψ. Let P (X) be the maximal
parabolic subgroup of Sp(W ) stabilizing the maximal isotropic subspace X; this is the so-
called Siegel parabolic subgroup. Its Levi decomposition has the form P (X) = M(X) ·N(X),
with M(X) ∼= GL(X) and

N(X) = {n(B) : B ∈ Sym2X ⊂ Hom(Y,X)},

where

n(B) =

(
1 B
0 1

)
(relative to W = X ⊕ Y .)

The metaplectic cover splits canonically over N(X) and noncanonically over M(X). Then one
can write down formulas for the action of elements lying over g ∈ GL(X) and n(B) ∈ N(X):{

(ωψ(g)f)(y) = | detX(g)|dimW/2 · f(g−1 · y)

(ωψ(n(B))f)(y) = ψ(1
2 · 〈By, y〉) · f(y).

To describe the action of Mp(W ) (at least projectively), one needs to give the action of an
extra Weyl group element

w =

(
0 1
−1 0

)
which together with P (X) generates Sp(W ). The action of this w is given by Fourier trans-
form (up to scalars).
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The above gives the Schrodinger model of the Weil representation (which is related to
the Schrodinger description of quantum mechanics). This concludes our brief sketch of the
construction of the metaplectic group and its Weil representations.

2.5. Weil representations of unitary groups. Let us return to the setting of our unitary
dual pair

ι : U(V )×U(W ) −→ Sp(V ⊗E W ).

By the above, the metaplectic group Mp(V ⊗E W ) has a distinguished representation ωψ
depending on a nontrivial additive character ψ of F . If the embedding ι can be lifted to a
homomorphism

ι̃ : U(V )×U(W ) −→ Mp(V ⊗E W ),

then we obtain a representation ωψ ◦ ι̃ of U(V )×U(W ).

Such splittings have been constructed and classified by S. Kudla [21]. They are not unique
but can be specified by picking two characters χV and χW of E× such that

χV |F× = ωdimV
E/F and χW |F× = ωdimW

E/F .

One way of doing this is, for example, fixing a character γ of E× such that γ|F× = ωE/F (i.e.
a conjugate symplectic character) and then taking

χV = γdimV and χW = γdimW .

In any case, if we fix this pair (χV , χW ) of splitting characters, then Kudla provides a splitting

ι̃χV ,χW ,ψ : U(V )×U(W ) −→ Mp(V ⊗E W )

of ι. In fact, the choice of χV gives rise to a splitting

ιV,W,χV ,ψ : U(W ) −→ Mp(V⊗E W )

over U(W ), whereas the choice of χW gives a splitting

ιV,W,χW ,ψ : U(V ) −→ Mp(V ⊗E W ).

Hence, the splitting over the two members of the dual pair can be constructed somewhat
independently of each other. This is a manifestation of a basic property of the metaplectic
cover: if two elements of Sp(V ⊗EW ) commute, then any lifts of them in Mp(V ⊗EW ) also
commute with each other.

With a splitting fixed, we may pull back the Weil representation ωψ and obtain a repre-
sentation

ΩV,W,χV ,χW ,ψ := ι̃∗χV ,χW ,ψ(ωψ) of U(V )×U(W ).

We call this ΩχV ,χW ,ψ a Weil representation of U(V ) × U(W ); we will often suppress the
subscript for ease of notation.

While we have not described the splitting ι̃χV ,χW ,ψ explicitly, we highlight a few basic
properties:

• (Change of (χV , χW )) One can easily describe the effect of changing (χV , χW ) on
ΩχV ,χW ,ψ. More precisely, if (χ′v, χ

′
W ) is another pair of splitting characters, then

ΩV,W,χ′V ,χ
′
W ,ψ
∼= ΩV,W,χV , χW ,ψ ⊗ (χ′V /χV ◦ i ◦ detW )⊗ (χ′W /χW ◦ i ◦ detV ),
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where i : E1 → E×/F×, taking note that χ′V /χV and χ′W /χW are characters of
E×/F×.

• (Scaling) Given a ∈ F×, one can scale the additive character ψ to obtain ψa(x) =
ψ(ax). One can also scale the Hermitian or skew-Hermitian forms on V and W ,
otaining V a and W a. If we identify U(V ) and U(V a) as the same subgroup of GL(V ),
then one has:

ΩV,W,χV ,χW ,ψa
∼= ΩV a,W,χV ,χW ,ψ

∼= ΩV,Wa,χV ,χW ,ψ.

• (Duality) Recalling the Weil representation is unitarizable, so that its dual is isomor-
phic to its complex conjugate, we note:

ΩV,W,χV ,χW ,ψ
∼= ΩV,W,χ−1

V ,χ−1
W ,ψ.

• (Center) If we take

χV = γdimV and χW = γdimW

for a conjugate symplectic character γ, and identify ZU(V ) and ZU(W ) with E1 (and
hence with each other), ι̃χV ,χW ,ψ agrees on ZU(V ) and ZU(W ).

2.6. Local theta lifts. In the theory of local theta correspondence, one studies how the
representation ΩV,W,χV ,χW ,ψ decomposes into irreducible pieces. For this, one would of course
need to know a lot more about the representation ΩV,W,χV ,χW ,ψ than what has been described
above. For example, one may demand if there are formulas for the group action? Ultimately,
such formulas would have been derived from those in the Schrodinger model we described
earlier and an explicit knowledge of the splitting ι̃χV ,χW ,ψ. We will come to this in the
particular case of interest later on in this lecture. At the moment, let us just formulate some
questions one may ask and describe the answers to some of these questions.

We will write Irr(U(W )) for the set of equivalence classes of irreducible smooth repre-
sentations of U(W ). Unlike the case of finite (or compact) groups, the representation Ω is
infinite-dimensional and is not necessarily semisimple as a U(V ) × U(W )-module. So when
one talks about the decomposition of Ω into irreducible constituents, one can understand this
in potentially two ways:

• for which π ⊗ σ ∈ Irr(U(V ))× Irr(U(W )) is π ⊗ σ a subrepresentation of Ω?
• for which π ⊗ σ ∈ Irr(U(V ))× Irr(U(W )) is π ⊗ σ a quotient of Ω?

It turns out that it is more fruitful to consider the second question above. Hence, Ω determines
a subset of Irr(U(V )× Irr(U(W )):

ΣΩ = {(π, σ) : π ⊗ σ is a quotient of Ω}

and thus a correspondence between Irr(U(V )) × Irr(U(W )). This is the correspondence in
“theta correspondence”. If π⊗σ ∈ ΣΩ, we say that σ is a local theta lift of π and vice versa.

One can reformulate the above definition in a slightly different way, which is more conve-
nient for the question of determining all possible theta lifts of a given π. For π ∈ Irr(U(V )),
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one considers the maximal π-isotypic quotient of Ω:

Ω/
⋂

f∈HomU(V )(Ω,π)

Ker(f),

which is a U(V )×U(W )-quotient of Ω expressible in the form

π ⊗Θ(π),

for some smooth representation Θ(π) of U(W ) (possibly zero, and possibly infinite length a
priori). We call Θ(π) the big theta lift of π. An alternative way to define Θ(π) is:

Θ(π) = (Ω⊗ π∨)U(V ),

the maximal U(V )-invariant quotient of Ω⊗ π∨. In any case, it follows from definition that
there is a natural U(V )×U(W )-equivariant map

Ω � π ⊗Θ(π),

which satisfies the “universal property” that for any smooth representation σ of U(W ),

HomU(V )×U(W )(Ω, π ⊗ σ) ∼= HomU(W )(Θ(π), σ) (functorially).

The local theta lifts of π are then the irreducible quotients of Θ(π).

2.7. Howe duality conjecture. The goal of local theta correspondence is to determine the
representation Θ(π) or rather its irreducible quotients. Recall that our hope is that Θ(π) is
close to irreducible or at least not too big. To this end, we first note the following basic result
of Howe and Kudka:

Proposition 2.1 (Finiteness). For any π ∈ Irr(U(V )), Θ(π) is of finite length. In partic-
ular, if Θ(π) is nonzero, it has (finitely many) irreducible quotients and we may consider
its maximal semisimple quotient (its cosocle) θ(π). Moreover, for any π ∈ Irr(U(V )) and
σ ∈ Irr(U(W )),

dim HomU(V )×U(W )(Ω, π ⊗ σ) <∞.

We call θ(π) the small theta lift of π. The local theta lifts of π are precisely the irreducible
summands of θ(π).

We can now formulate a fundamental theorem [32, 15]:

Theorem 2.2 (Howe duality theorem). (i) If Θ(π) is nonzero, then it has a unique irreducible
quotient. In other words, θ(π) is irreducible or 0.

(ii) If θ(π) ∼= θ(π′) 6= 0, then π ∼= π′.

Hence, one has an map

θχV ,χW ,ψ : Irr(U(V )) −→ Irr(U(W )) ∪ {0}

which is injective when restricted to the subset of Irr(U(V )) which is not sent to 0. Moreover,

dim HomU(V )×U(W )(Ω, π ⊗ σ) ≤ 1

for any π ∈ Irr(U(V )) and σ ∈ Irr(U(W )).
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Another way to formulate the theorem is to note that the subset/correspondence ΣΩ is
the graph of a bijective function between prV (ΣΩ) ⊂ Irr(U(V )) and prW (ΣΩ) ⊂ Irr(U(W )),
where prV refers to the projection to Irr(U(V )). Thus, we see that local theta correspondence
is an instance of the Basic Idea highlighted at the beginning of the lecture.

2.8. Questions. After the Howe duality theorem above, we can ask the following questions:

(a) (Nonvanishing) For a given π ∈ Irr(U(V )), decide if θχV ,χW ,ψ(π) is nonzero.

(b) (Identity) Describe the map θχV ,χW ,ψ explicitly. In other words, If θχV ,χW ,ψ(π) is
nonzero, can one describe it in terms of π in another way?

Nowadays, both these questions have rather complete answers, but it is too much to de-
scribe these answers for this course. Instead, we will highlight some relevant answers for our
application.

2.9. Rallis’ tower. For the nonvanishing question, Rallis observed that it is fruitful to con-
sider theta correspondence in a family. Let W0 be an anisotropic skew-Hermitian space over
E (for example a 1-dimensional one), and for r ≥ 0, let

Wr = W0 ⊕Hr

where H is the hyperbolic plane. The collection {Wr | r ≥ 0} is called a Witt tower of spaces.
Observe that:

• dimWr mod 2 is independent of r;
• disc(Wr) or equivalently the sign ε(Wr) is independent of r.

Hence, in the nonarchimedean case, there are precisely two Witt towers of skew-Hermitian
spaces with a fixed dimension modulo 2, and any given skew-Hermitian space W is a member
of a unique Witt tower.

One can then consider a family of theta correspondences associated to the tower of reductive
dual pairs (U(V ),U(Wr)) with respect to a fixed pair of splitting characters (χV , χW ) (note
that we can fix χWr independently of r, since the parity of dimWr is independent of r).
Kudla showed:

Proposition 2.3. (i) For π ∈ Irr(U(V )), there is a smallest r0 = r0(π) such that ΘV,Wr0 ,ψ
(π) 6=

0. Moreover, r0 ≤ dimV .
(ii) For any r > r0, ΘV,Wr,ψ(π) 6= 0 (tower property).
(iii) Suppose that π is supercuspidal. Then ΘV,Wr0 ,ψ

(π) is irreducible supercuspidal. For

r > r0, ΘV,Wr,ψ(π) is irreducible but not supercuspidal.

Some remarks:

• We call this smallest r0(π) from the proposition above the first occurrence index of π
in the Witt tower (Wr) (relative to our fixed (χV , χW , ψ)).
• The fact that r0 ≤ dimV means that when W is sufficiently large, more precisely

when W has an isotropic subspace of dimension ≥ dimV , the map θV,W,ψ is nonzero
on the whole of Irr(U(V )). When r ≥ dimV , we say that the theta lifting is in the
stable range.
• The nonvanishing problem (a) highlighted above is reduced to the question of deter-

mining the first occurrence indices for the two Witt towers.
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In fact, our job is halved because the two first occurrence indices (for a given dimW• mod 2)
are not independent of each other. Rather, we have the following theorem of Sun-Zhu [30]:

Theorem 2.4 (Conservation relation). Consider the two towers (Wv) and (W ′r) of skew-
Hermitian spaces with fixed dimW• mod 2, and let r0 and r′0 be the respective first occurrence
indices of a fixed π ∈ Irr(U(V )) (relative to a fixed data (χV , χW , ψ)). Then

dimWr0 + dimW ′r′0
= 2 dimV + 2.

In particular r0 and r′0 determine each other.

The conservation relation above implies the following dichotomy theorem (which you should
try to prove):

Corollary 2.5. Suppose that W and W ′ belong to the two different Witt towers of skew-
Hermitian spaces (with dimW mod 2 fixed), and dimW + dimW ′ = 2 dimV . Then for any
π ∈ Irr(U(V )), exactly one of the two theta lifts ΘV,W,ψ(π) and ΘV,W ′,ψ(π) is nonzero.

2.10. U1 × U1. Let us illustrate the dichotomy theorem in the base case where dimV =
dimW0 = 1. Let W0 and W ′0 be the two skew-Hermitian spaces of dimension 1. For any
χ ∈ Irr(U(V )) = Irr(E1), the dichotomy theorem implies that exactly one of the theta lifts
θV,W0,ψ(χ) or θV,W ′0,ψ(χ) is nonzero. Now here is an interesting question: which of these lifts is
nonzero? This turns out to be a highly nontrivial and beautiful result of Moen and Rogawski
[29, Prop. 3.4] and Harris-Kudla-Sweet [17]:

Theorem 2.6. The theta lift θV,W0,ψ(χ) (with respect to splitting characters (χV , χW )) is
nonzero if and only if

ε(V ) · ε(W0) = εE(1/2, χE · χ−1
W , ψ(TrE/F (δ−))).

Here, recall that δ is a nonzero trace zero element of E and the definition of the sign ε(W0)
depends on δ. Moreover, χE is the character of E×/F× defined by χE(x) = χ(x/xc) and the
local epsilon factor on the right is that defined in Tate’s thesis.

This theorem shows that the question of nonvanishing of theta lifting has deep arithmetic
connections. One way to prove this theorem is via the doubling seesaw argument, which
relates the theta lifting to the doubling zeta integral of Piatetski-Shapiro and Rallis, a theory
that produces the standard L-function and epsilon factor. This is the approach of [17]. We
have no time to go into this here, but would like to mention that this doubling zeta integral
plays an important role in Ellen Eischen’s lectures.

After addressing nonvanishing, the next issue is that of identity: what is θV,W0,ψ(χ) if it is
nonzero? Suppose we pick χV = χW (as is allowed here), then the splitting over the two U1’s
agree (on identifying them with E1) and so the theta lifting is the identity map Θ(χ) = χ on
its domain (i.e. outside its zero locus). With our knowledge of how the Weil representation
changes when we change (χV , χW ), this allows one to figure out the general case:

ΘχV ,χW ,ψ(χ) = χ · (χ−1
W χV ◦ i) on its domain.
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2.11. Application to Howe-PS setting. We shall now specialize to the particular case we
are interested in. Set V = 〈1〉 to be the 1-dimensional Hermitian space with form (x, y) 7→ xyc

so that

U(V ) = E1 ∼= E×/F×.

We consider the theta correspondence for U(V ) with the two odd-dimensional Witt towers.
(Wr) and (W ′r), with dimWr = dimW ′r = 2r + 1. Because U(V ) is compact, one in fact has
a direct sum decomposition:

Ω =
⊕
χ

χ⊗Θ(χ).

as χ runs over the characters of E1. Now let us record some consequences of the general
results discussed above:

• For any χ, ΘV,Wr,ψ(χ) and ΘV,W ′,ψ(χ) are irreducible or 0. This is because, with
U(V ) being compact, any χ is supercuspidal.

• For any χ and r > 0, θV,Wr,ψ(χ) and θV,W ′r,ψ(χ) are both nonzero; this is because we
are already in the stable range when r > 0.

• What if r = 0 (i.e. the dual pair U1 × U1)? This is the situation addressed by the
dichotomy theorem: exactly one of θV,W0,ψ(χ) and θV,W ′0,ψ(χ) is nonzero. Exactly
which one is nonzero is highly non-obvious but we shall come to this later.

• Suppose without loss of generality that θV,W ′0,ψ(χ) = 0. Then ΘV,W1,ψ(χ) is super-
cuspidal.

I will leave it as an exercise for the reader to deduce the above assertions from the results
discussed above. Instead, I will describe the proof of some of those results in the special case
of U1 × U3. This is where we do the “dirty work”, which will be formulated as a series of
guided exercises below.

2.12. Guided exercise. The Weil representation Ω for U(V ) × U(W1) = U1 × U3 can be
given a realization as follows. Let ω be the Heisenberg-Weil representation for

(U(V )×U(W0)) nH(V ⊗E W0) = (U1 ×U1) nH(V ⊗E W0)

where we recall that H(V ⊗E W0) is the Heisenberg group associated to the 2-dimensional
symplectic space V ⊗EW0 over F . It is in fact not easy to give a concrete model for this rep-
resentation (even starting with a Schridinger model for Mp2). Then the Weil representation
Ω for U(V )×U(W1) can be realized on

S(Ee∗ ⊗ V )⊗ ω

which can be thought of as the space of Schwarz functions on the 1-dimensional E-vector
space Ee∗⊗V valued in ω. One can give explicit formulas for the action of U(V )×B, where
B = TU is the Borel subgroup stabilizing the isotropic line E · e as follows.

(a) for h ∈ U(V ) = E1,

(h · f)(x) = ω(h)
(
f(h−1 · x)

)
, with x ∈ E and f ∈ Ω.
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(b) for an element

t(a, b) =

 a
b

(ac)−1

 ∈ T with a ∈ E× and b ∈ E1,

one has:

(t(a, b)f)(x) = χV (a) · |a|1/2 · ω(b) (f(ac · x)) ,

where we regard b ∈ E1 as an element of U(W0).

(c) for an element

u(0, z) =

 1 0 z
1 0

1

 ∈ U, with z ∈ F ,

one has:

(u(0, z)f)(x) = ψ(zN(x)) · f(x).

(d) for an element

u(y, 0) =

 1 ∗ ∗
1 y

1

 ,

one has:

(u(y, 0)f)(x) = ω(h(xy, 0))(f(x)),

where h(xy) = (xy, 0) ∈ H(V ⊗E W0) is regarded as an element in the Heisenberg
group. (The 2 asterisks in u(y, 0) are determined by y; work out what they should
be).

Now recall that we have:

Ω =
⊕

χ∈Irr(E1)

χ⊗Θ(χ),

and our goal is now to understand Θ(χ) as much as possible.

Given the above information, here is the guided exercise:

Exercise:

(i) Let Z = {u(0, z) : z ∈ F} ⊂ U . This is the center of U . Compute the coinvariant
space

ΩZ = Ω/〈z · f − f : z ∈ Z, f ∈ Ω〉,
as a representation of U(V ) × B/Z = E1 × T · U/Z. Indeed, show that the natural
projection Ω→ ΩZ is given by the evaluation-at-0 map

ev0 : S(E)⊗ ω −→ ω.

(ii) From the answer in (i), deduce the following:

(a) For any χ ∈ Irr(U(V )), Θ(χ)Z = Θ(χ)U .
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(b) Suppose that χ has nonzero theta lift θ0(χ) to U(W0) with respect to ω, Θ(χ)
is nonzero and non-supercuspidal. Indeed, one has a nonzero T = E× ×U(W0)-
equivariant map

Θ(χ)N → χV | − |1/2 ⊗ θ0(χ),

so that by Frobenius reciprocity, there is a nonzero equivariant map

Θ(χ)→ Ind
U(W )
B

(
χV | − |−1/2 ⊗ θ0(χ)

)
(normalized induction)

taking note that δ
1/2
B (t(a, b)) = |a|E . Hence we see that Θ(χ) contains a con-

stituent of the latter principal series representation, which is nontempered (since

| − |1/2 is not unitary).

(c) Suppose that χ has zero theta lift to U(W0). From (i), deduce that Θ(χ) is
supercuspidal (i.e. Θ(χ)U = 0).

(iii) Now compute the twisted coinvariant space

ΩZ,ψ = Ω/〈z · f − ψ(z) · f : z ∈ Z, f ∈ Ω〉

as a representation of U(V )× Tψ, where

Tψ = {t(a, b) : a, b ∈ E1} ⊂ T

is the stabilizer of (Z,ψ) in T .

(iv) Deduce from the answer in (iii) that for any χ ∈ Irr(U(V )), Θ(χ) 6= 0.

What one sees from this guided exercise is that to understand the theta lifts Θ(π) (for
example to detect its nonvanishing or supercuspidality), it is useful to consider various twisted
coinvairant spaces ΩN,ψ where N ⊂ U(W ) is an abelian subgroup and ψ is a (possibly trivial)
character ofN . Such twisted coinvariant spaces (or twisted Jacquet modules) are local analogs
of the Fourier coefficients of modular forms. They are readily computable from the concrete
model of the Weil representation analogous to the one above. It also shows that the Weil
representations have an inductive structure with respect to the Rallis tower. In this guided
exercise, we see that we are basically reduced to the following two problems:

• the irreducibility of Θ(χ) (as given by the Howe duality theorem);
• the understanding of the U1 ×U1 theta correspondence (which we discussed earlier).

2.13. Split case. Note that the case when E = F×F is also necessary for global applications.
In this case, the dual pair is GLm × GLn. The Weil representation is, up tp twists by 1-
dimensional characters, the natural action of GLm(F )×GLn(F ) on the space S(Mm×n(F )) of
Schwarz functions on the space ofm×nmatrices. The study of this local theta correspondence
is essentially completed in the paper [24] of A. Minguez. Hence we shall say no more about
this case in this paper.

2.14. Remarks. We have given a discussion of the theory of classical theta correspondence
which is based on reductive dual pairs in the symplectic group. But this idea is clearly more
robust. One may ask:
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• Can one classify all reductive dual pairs G×H in any simple Lie group E, as opposed
to just for E = Sp2n?
• Is there an understanding of the smallest infinite-dimensional representation Ω of any

such E?
• If so, when one pulls back Ω to G × H, does one obtain a transfer or lifting of

representations analogous to those described in this lecture?

These questions started to be explored in the mid-1980’s. Reductive dual pairs have been
classified on the level of Lie algebras by Rubenthaler. The construction and classification
of so-called minimal representations of a simple Lie group E was begun by Kostant, Vogan,
Kazhdan, Savin, Torasso and others; see [13]. Finally the study of the resulting theta corre-
spondence began in the 1990’s but the theory is not as systematic as the classical case. It
is only recently that one has somewhat complete results in several families of examples. In
the project for this course, you will work with a particular instance of this exceptional theta
correspondence.
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3. Lecture 3: Global Theta Correspondence

In this third lecture, we will discuss the global theta correspondence. We will see that
almost all of the considerations and constructions of the previous lecture make sense in the
global setting, once they are appropriately construed. We will work over a number field k
with associated local field kv for each place v of k and with adele ring A =

∏′
v kv. We fix a

quadratic field extension E/k and consider a pair of Hermitian space V and skew-Hermitian
space W relative to E/k.

3.1. Basic idea. Let us return to the basic idea of Lecture 2: in the local setting, the Weil
representation allows one to define the local theta lifting

θ : Irr(U(V )) −→ Irr(U(W )) ∪ {0}.
If U(V )×U(W ) is in the stable range (with V smaller), one even has

θ : Irr(U(V )) −→ Irr(U(W )).

In the global setting, one might imagine that by taking (restricted) tensor product taken over
all places v of a number field k, one gets

θ : Irr(U(V )(A)) −→ Irr(U(W )(A)).

This is the case, but we are interested not in the lifting of abstract irreducible representations,
but rather of cuspidal automorphic representations. Cuspidal automorphic representations
are representations which are realized in the space of cuspidal automoprhic forms (i.e. func-
tions on [G]). So what we need is a map

{Cusp forms on U(V )} −→ {Automorphic forms on U(W )}.

We are thus interested in procedures which allow one to lift functions on a (measure) space
X to functions on another space Y . A standard such procedure is via a kernel function K,
i.e. a function K : X × Y → C. Given such a function K, one gets a linear map

TK : C(X) −→ C(Y )

defined by

TK(f)(y) =

∫
X
K(x, y) · f(x) dx,

assuming convergence is not an issue.

Let’s apply this simple idea to our setting. Recall from Lecture 2 that we have

ι̃ : U(V )×U(W ) −→ Mp(V ⊗E W ),

We shall see that the Weil representation Ω is automorphic on Mp(V ⊗EW ), i.e. there is an
equivariant map

θ : Ω −→ A(Mp(V ⊗E W )).

So for any φ ∈ Ω, we have an automorphic form θ(φ) on Mp(V ⊗E W ): these are the theta
functions. Pulling back θ(φ) by ι̃, we may regard θ(φ) as a function on [U(V )]× [U(W )]. We
can thus use θ(φ) as a kernel function to transfer functions on [U(V )] to functions on [U(W )].
In other words, each θ(φ) gives a linear map

θφ : { Cusp forms on U(V )} −→ {Automoprhic forms on U(W )}.
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As we consider all these θφ together, we have a map

{Cuspidal automorphic representations of U(V )} → {Automorphic representations of U(W )}

3.2. Adelic metaplectic groups. We shall now give more precise formulation of the above
basic idea. Fix a non-trivial additive character ψ =

∏
v ψv of F\A. Suppose that W is a

symplectic vector space over k. Then for each v, we have seen the metaplectic group

1 −−−−→ S1 −−−−→ Mp(Wv) −−−−→ Sp(Wv) −−−−→ 1

For almost all v, it is known that the covering splits uniquely over the hyperspecial maximal
compact subgroup Kv, so that we may regard Kv as an open compact subgroup opf Mp(Wv).
Then one can form the restricted direct product:

′∏
v

Mp(Wv) (with respect to the family {Kv}).

This contains as a central subgroup
⊕

v S
1. If we quotient out the restricted direct product

above by the central subgroup

Z = {(zv) ∈
⊕
v

S1 :
∏
v

zv = 1}

we get the adelic metatplectic group

1 −−−−→ S1 −−−−→ Mp(W )(A) −−−−→ Sp(W ) −−−−→ 1.

Note that though we use the notation Mp(W )(A), Mp(W ) is not an algebraic group and we
are not taking the group of adelic points of an algebraic group.

An important property of this adelic metaplectic over is that it splits (canonically) over
the group Sp(W )(k) of k-rational points, so that one can canonically regard Sp(W )(k) as a
subgroup of Mp(W )(A). As a result one can consider the automorphic quotient

[Mp(W )] = Sp(W )(k)\Mp(W )(A)

and introduce the space of genuine automorphic forms on Mp(W )(A): these are the auto-
morphic functons

f : [Mp(W )] −→ C
such that for all z ∈ S1,

f(zg) = z · f(g).

3.3. Global Weil representations. We may consider the global Weil representation

ωψ :=
′⊗
v

ωψv of

′∏
v

Mp(Wv).

This factors to a representation ωψ of Mp(W )(A) (for clearly Z acts trivially). If W = X⊕Y
is a Witt decomposition, we have seen that for each v, ωψv can be realized on S(Yv). Hence,
ωψ can be realized on

′⊗
v

S(Yv) = S(YA).
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In other words, ωψ is realized on a very concrete space.

3.4. Theta functions. It turns out that one has a Mp(W )(A)-equivariant map

θ : S(YA) −→ A(Mp(W ))

defined by averaging over the k-rational points of Y :

θ(f)(g) =
∑
y∈Yk

(ωψ(g) · f)(y).

The fact that θ(f) is left-invariant under Sp(W )(k) is a consequence of the Poisson summation
formula. The functions θ(f) are called theta functions.

The map θ is non-injective. More precisely, since

ωψv = ω+
ψv
⊕ ω−ψv for each v,

we see that as an abstract representation,

ωψ =
⊕
S

ωψ,S

where

ωψ,S = (
⊗
v∈S

ω−ψv)⊗ (
⊗
v/∈S

ω+
ψv

)

for finite subsets S of places of k. Then

Ker(θ) =
⊕
|S| odd

ωψ,S ,

and we have

θ :
⊕
|S| even

ωψ,S ↪→ A(Mp(W )).

3.5. Pulling back. Now let us return to our reductive dual pair U(V )×U(W ) over k. Recall
that we have

ι : U(V )(A)×U(W )(A) −→ Sp(V ⊗E W )(A).

If we fix a pair of automorphic characters (χV , χW ) of E× with

χV |A× = ωdimE V
E/k and χW |A× = ωdimEW

E/k ,

then as in the local case, one obtains an associated lifting

ι̃χV ,χW ,ψ : U(V )(A)×U(W )(A) −→ Mp(V ⊗W )(A).

This lifting ι̃ sends the group U(V )(k) × U(W )(k) into Sp(V ⊗W )(k) ⊂ Mp(V ⊗W )(A).
Hence, the pullback of a function in A(Mp(V ⊗W )) by ι̃ gives a function on [U(V )]× [U(W )],
Thus we have

θ : Ω −→ A(Mp(V ⊗W )) −→ A(U(V )×U(W )).
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3.6. Global theta liftings. Now for f ∈ Acusp(U(V )) and ϕ ∈ Ω, we set:

θ(ϕ, f)(g) =

∫
[U(V )]

θ(ϕ)(g, h) · f(h) dh.

The cuspidality of f implies that the integral above converges absolutely (because of the
rapid decay of f). Then θ(ϕ, f) is an automorphic form on U(W ).

Suppose that π ⊂ Acusp(U(V )) is an irreducible cuspidal automorphic representation. Let

Θ(π) = 〈θ(ϕ, f) : f ∈ π, ϕ ∈ Ω〉 ⊂ A(U(W )).

This is a U(W )(A)-submodule of A(U(W )) and we call it the global theta lift of π.

3.7. Questions. The main questions concerning global theta lifting are analogs of those in
the local case:

• Is Θ(π) nonzero?

• Is Θ(π) contained in the space of cusp forms?

In addition, we can ask:

• For π = ⊗′vπv, how is the global Θ(π) related to the local theta liftings θ(πv) for all
v?

We shall begin by addressing this issue of local-global compatibility.

3.8. Compatibility with local theta lifts. How is the representation Θ(π) related to the
abstract irreducible representation Θabs(π) := ⊗vθ(πv)? We have:

Proposition 3.1. Suppose that Θ(π) is non-zero and is contained in the space A2(U(W ))
of square-integrable automorphic forms on U(W ). Then Θ(π) ∼= Θabs(π).

Proof. Since Θ(π) ⊂ A2(U(W )), it is semisimple. Let σ be an irreducible summand of Θ(π).
Then consider the linear map

Ω⊗ π∨ ⊗ σ∨ −→ C
defined by:

ϕ⊗ f1 ⊗ f2 7→
∫

[U(W )]
θ(ϕ, f1)(g) · f2(g) dg.

This map is non-zero and U(V )×U(W )-invariant. Thus it gives rise to a non-zero equivariant
map

Ω −→ π ⊗ σ,
and thus for all v, a non-zero U(Vv)×U(Wv)-equivariant map

Ωv −→ πv ⊗ σv.
In other words, we must have

σv ∼= θ(πv).

Hence, Θ(π) must be an isotypic sum of Θabs(π). Moreover, the multiplicity-one statement
in the Howe duality theorem implies that

dim HomU(V )(A)×U(W )(A)(Ω, π ⊗Θabs(π)) = 1.

Thus Θ(π) is in fact irreducible and isomorphic to Θabs(π). �
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3.9. Cuspidality and Nonvanishing. As in the local case, it is useful to consider a Rallis
tower of theta lifitngs, corresponding to a Witt tower Wr = W0 ⊕ Hr of skew-Hermitian
spaces, with W0 anisotropic. One has the analogous results:

Proposition 3.2. Let π be a cuspidal automorphic representation of U(V ), and consider its
global theta lift ΘV,Wr,ψ(π) on U(Wr) (relative to a fixed pair (χV , χW )). Then one has:

(i) There is a smallest r0 = r0(π) ≤ dimV such that ΘV,Wr0 ,ψ
(π) 6= 0. Moreover,

ΘV,Wr0 ,ψ
(π) is contained in the space of cusp forms.

(ii) For all r > r0, ΘV,Wr,ψ(π) is nonzero and noncuspidal.

(iii) For all r ≥ dimV , ΘV,Wr0 ,ψ
(π) ⊂ A2(U(W )).

As in the local case, we call r0 = r0(π) the first occurrence of π in the relevant Witt tower,
and we call the range where r ≥ dimV the stable range.

3.10. The case of U1 × U1. In parallel with the local setting, we may consider the theta
lift for the basic case of U(V ) × U(W ) with dimV = dimW = 1. We have seen that the
nonvanishing of local theta lifts is controlled by a local root number. Here is the global
theorem:

Theorem 3.3. Let χ be an automorphic character of U(V ) = E1. Its global theta lift
ΘχV ,χW ,ψ(π) on U(W ) is nonzero if and only if :

(i) for each place v, the local theta lift θχV,v ,χW,v ,ψv(χ) is nonzero;
(ii) the global L-value

L(1/2, χEχ
−1
W ) 6= 0.

Note that under condition (i), our local theorem for U1 ×U1 implies that

ε(1/2, χE,vχ
−1
W,v, ψv(Tr(δ−))) = ε(Vv) · ε(Wv) for all v;

where δ is a trace 0 element of E. On taking product over all places v, we see that

ε(1/2, χEχ
−1
W ) = 1

since
∏
v ε(Vv) = 1 =

∏
v ε(Wv). Hence, there is a chance that the global L-value in (ii) is

nonzero!

The proof of this Theorem is a global analog of the local theorem in the U1 × U1 case,
via the doubling seesaw and doubling zeta integral. One then gets the Rallis inner product
formula, which relates the Petersson inner product of two global theta lifts and the special
L-value. This result thus gives an interpretation for the nonvanishing of the central L-value.

3.11. The case of U1 × U3. Let us now specialize to the case of interest, where dimV = 1
and dimW = dimW1 = 3. Let χ be an automorphic character of E1. Then χ is cuspidal
since E1 is anisotropic. We can thus apply the above general results to conclude:

Corollary 3.4. ΘV,W1(χ) is nonzero and square-integrable. It is cuspidal if and only if the
global theta lift of χ to U(W0) = U1 is zero.
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Using all the results we have seen, we can now construct a counterexample to the naive
Ramanujan conjecture:

• Consider the global theta correspondence for U(V ) × U(W1) with dimV = 1 and
dimW1 = 3, and take χV = χW and χ = 1 (the trivial character of U(V )(A)). The
global theta lift ΘV,W,ψ(1) is a nonzero irreducible square-integrable automorphic
representation.

• If 1 has zero global theta lift θ0(1) ∼= 1 to the lower step U(W0) = U1 of the Rallis
tower, then Θ(1) is cuspidal irreducible. Moreover, for almost all v, Θ(1)v ∼= θ(1v) is
an unramified representation belonging to the principal series

Ind
U(Wv)
Bv

(
χV,v| − |−1/2

v ⊗ 1v

)
and thus is nontempered. Hence Θ(1) would be a counterexample to the naive Ra-
manujan conjecture.

• On the other hand, if 1 has nonzero theta lift to U(W0), then we may select two
places v1 and v2 and replace Wv1 and Wv2 by the other local skew-Hermitian space.
In other words, we can find a global skew-Hermitian space W ′ such that

W ′v1 6= Wv1 and W ′v2 6= Wv2

but
W ′v
∼= Wv for all v 6= v1, v2.

Such a global skew-Hermitian space exists, by our classification of global Hermitian
spaces.

Now consider the global theta lift ΘV,W ′(1) on U(W ′) and observe that

θVv1 ,W ′v1
(1) = 0 = θVv2 ,W ′v2

(1)

because of dichotomy. Hence we can repeat the above argument in replacing W by
W ′.

3.12. Guided exercise. As in the local case, it will be instructive to carry out some of the
dirty work in proving some of the above results, at least in our setting of U1 × U3. The
guided exercise below is the global analog of the local guided exercise in Lecture 2, following
the various notation there.

To do the exercise, it is necessary to write down the theta function θ(φ) (for φ ∈ Ω) as
explicitly as possible. Recall that Ω is realized on

S(AEe∗ ⊗ v0)⊗ ω
where ω is the global Heisenbegr-Weil representation of

(U(V )×U(W0)) nH(V ⊗E W0).

We have an automorphic functional

θ0 : ω −→ A(Mp2)→ C
where the last arrow is the evaluation at 1. The automorphic realization

θ : Ω = S(AE)⊗ ω −→ A(U(V )×U(W ))
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is then given by

θ(f)(g) =
∑
x∈E

θ0 (Ω(g)(f)(x)) .

Now for the exercise:

Exercise:

• For a cusp form f on U(V ) and φ ∈ Ω, compute:

θ(φ, f)Z(g) :=

∫
[Z]
θ(φ, f)(zg) dz

where Z = {u(0, z) : z ∈ k} is the center of the unipotent radical U of B, as well as

θ(φ, f)U (g) =

∫
[U ]
θ(φ, f)(ug) du.

• Likewise, compute:

θ(φ, f)Z,ψ1/2
(g) :=

∫
[Z]
ψ(z/2) · θ(φ, f)(zg) dz

• From these computations, deduce as much of Cor. 3.4 as possible.
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4. Lecture 4: Arthur’s Conjecture

In this final lecture, we will discuss an influential conjecture of Arthur [2] which explains
and classifies all possible failures of the naive Ramanujan conjecture. We will then illustrate
with some examples, including the Howe-PS example discussed earlier, the Saito-Kurokawa
example for PGSp4 and the case of the exceptional group G2. The latter will be relevant for
our project.

4.1. A basic hypothesis. In the formulation of Arthur’s conjecture, one needs to make a
(serious) assumption:

(Basic Hypothesis): There is a topological group Lk (depending only on the number field
k) satisfying the following properties:

• the identity component L0
k of Lk is compact and the group of components Lk/L

0
k is

isomorphic to the Weil group Wk of k;

• for each place v, there is a natural conjugacy class of embeddings Lkv ↪→ Lk, where
Lkv is the Weil group if kv is archimedean, and the Weil-Deligne group Wkv ×SU2(C)
if kv is non-archimedean.

• there is a natural bijection between the set of isomorphism classes of irreducible rep-
resentations of Lk of dimension n and the set of cuspidal representations of GLn(A).

This assumption is basically the main conjecture in the Langlands program for GLn. We
can view it as a classification of the cuspidal representaitons of GLn in terms of irreducible
n-dimensional Galois representations.

4.2. Arthur’s conjecuture. Arthur’s conjecture is a classification of the constituents of
A2(G), i.e.a classification of the square-integrable automorphic representations of G. This
classification proceeds in two steps. The first step is approximately the classification of these
constituents up to near equivalence (this is not entirely true, but for the groups discussed here,
it is expected to be so). Here, we say that two representations π1 = ⊗′vπ1,v and π2 = ⊗′vπ2,v

of G(A) are nearly equivalent if for almost all places v, π1,v and π2,v are isomorphic: this is
an equivalence relation.

More precisely, Arthur speculated that there is a decomposition

A2(G) =
⊕
ψ

A2,ψ,

where each A2,ψ is a near equivalence class, and the direct sum runs over equivalence classes
of discrete A-parameters ψ. For a split group G, an A-parameter is an admissible map

ψ : Lk × SL2(C) −→ G∨

where G∨ is the complex Langlands dual group of G. One property of being admissible is
that ψ(Lk) should be bounded in G∨. An A-parameter is discrete if the centralizer group

Sψ := ZG∨(ψ)/Z(G∨)

is finite.
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The second step of the classification is to describe the decomposition of each A2,ψ. This
has a local-global structure. That is, for each place v, there will be a finite set of unitary
representations of G(kv) (depending on the A-parameter ψ). If we pick an element πv from
each of these finite sets at each place v, we may form the (restricted) tensor product π :=
⊗vπv, which is a representation of G(A). Then A2,ψ is the sum of such representations, with
some multipllcities. Let us now be more precise.

4.3. Local A-packets. The global A-parameter ψ gives rise (by restriction) to a local A-
parameter

ψv : Lkv × SL2(C) −→ G∨

for each place v of k. Set

Sψv = π0

(
ZG∨(ψv)/Z(G∨)

)
.

This is the local component group of ψv. To each irreducible representation ηv of Sψv , Arthur
speculated that one can attach a unitarizable finite length (possibly reducible, possibly zero)
representation πηv of G(kv). The set

Aψv = {πηv : ηv ∈ Irr(Sψv)}

is called a local A-packet. Among other things, it is required that

• for almost all v, πηv is irreducible and unramified if ηv is the trivial character 1v. In
fact, for almost all v, πηv is the unramified representation whose Satake parameter is:

sψv = ψv

(
Frv ×

(
q

1/2
v

q
−1/2
v

))
,

where Frv is a Frobenius element at v and qv is the number of elements of the residue
field at v.

4.4. Global A-packets. With the local packets Aψv at hand, we may define the global
A-packet by:

Aψ = {π = ⊗vπηv : πηv ∈ Aψv ηv = 1v for almost all v} .

It is a set of nearly equivalent representations of G(A), indexed by the irreducible represen-
tations of the compact group

Sψ,A :=
∏
v

Sψ,v.

If η =
⊗

v ηv is an irreducible character of Sψ,A, then we may set

πη =
⊗
v

πηv .

This is possible because for almost all v, ηv = 1v and π1v is required to be unramified by the
above.
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4.5. Multiplicity formula. The space A2,ψ will be the sum of the elements of Aψ with
some multiplicities. More precisely, note that there is a natural map

Sψ −→ Sψ,A.

Arthur attached to ψ a quadratic character εψ of Sψ (whose definition is given below). Now
if η is an irreducible character of Sψ,A, we set

mη =
1

#Sψ
·

∑
s∈Sψ

εψ(s) · η(s)

 .

Then Arthur conjectures that

Aψ ∼=
⊕
η

mηπη.

4.6. The character εψ. The definition of the quadratic character εψ is quite subtle. For a
discrete ψ, one considers the adjoint action of

Sψ × Lk × SL2(C) on Lie(G∨) via ψ

and decomposes it into the direct sum of irreducible summands, each of which has the form

η ⊗ ρ⊗ Sr

where Sr denotes the r-dimensional irreducible representation of SL2(C). Note that this is
an orthogonal representation, since the adjoint representation has a nondegenerate invariant
symmetric bilinear form (e.g. the Killing form if G is semisimple).

We consider only those irreducible components η⊗ρ⊗Sk satisfying the following properties:

• η ⊗ ρ⊗ Sk is orthogonal;
• k is even, so that Sk is a symplectic representation.
• ρ is symplectic, and

ε(1/2, ρ) = −1.

The conditions above imply that η is orthogonal, so that det(η) is a quadratic character of
Sψ. Let T br the set of irreducible summands satisfying these conditions. Then we set

εψ(s) =
∏
τ∈T

det(η)(s) for s ∈ Sψ.

As an example, suppose that ψ is trivial on SL2(C). Then the set T is empty (since the
only Sk which occurs above is the trivial representation S1).

4.7. Tempered and non-tempered parameters. An A-parameter ψ is called tempered if
ψ is trivial when restricted to SL2(C). In this case, the representations in Aψ are conjectured
to be tempered (this corresponds to the boundedness condition on ψ(Lk)). A non-tempered
A-parameter is one for which ψ(SL2(C)) is not trivial. In this case, for almost all v, the
unramified representation π1v (which has Satake parameter sψv) is nontempered.
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Thus, according to Arthur’s conjecture, the cuspidal representations in⊕
nontempered ψ

Aψ

are precisely those which violate the naive Ramanujan conjecture. On the other hand, the
cuspidal representations in Aψ for tempered ψ are all tempered and the representation π1 =
⊗vπ1v should be globally generic. In this sense, Arthur’s conjecture provides an explanation
and classification of nontemepred cusp forms.

Though the group Lk is conjectural, we really only need its irreducible representations in
formulating Arthur’s conjecture for classical groups. As such, under our (basic hypothesis),
we can replace all occurrences of “an irreducible n-dimensional representation of Lk by “an
irreducible cuspidal representation of GLn”. Then we may view Arthur’s conjecture as a
description of A2(G) in terms of cuspidal representations of GL’s. Understood in this way,
when G is a quasi-split classical group, Arhtur’s conjecture has been verified in the works of
Arthur [3] and Mok [25].

4.8. Connection with theta correspondence. Here is a natural question one can ask
concerning theta correspondence and Arthur’s conjecture. We have seen in Lecture 3 that
when U(V ) × U(W ) is a dual pair in the stable range (with V the smaller space), then
for any cuspidal representation π of U(V ), its global theta lift Θ(π) on U(W ) is a nonzero
irreducible summand of A2(U(W )). Since square-integrable automorphic representations
have A-parameters, it is natural to ask how the A-parameters of Θ(π) and π are related.

If we view A-parameters as representing near equivalence classes, answering this question
is about identifying the local theta lifts of unramified representations and then detecting the
automorphy of the family of unramified local theta lifts. This line of reasoning leads to:

Conjecture 4.1 (Adam’s conjecuture). If π ⊂ Acusp(U(V )) has A-parameter Ψ (thought
of as an dimV -dimensional representation of LE × SL2(C)), then under the global theta lift
with respect to (χV , χW , ψ), the global theta lift of π (which is a summand in A2(U(W ))) has
A-parameter

χV · (χ−1
W Ψ⊕ SdimW−dimV ).

Given Arthur’s conjecture, this is largely a local unramified issue. What is subtle about
Adam’s conjecture is its local analog (which we don’t discuss here)

4.9. Examples. We shall illustrate Arthur’s conjecture with several families of examples in
low rank in the rest of the lecture. For the groups SO5, U3 and G2, we shall write down
a family of nontempered A-paremeters. For each such A-parameter ψ, we will examine the
consequences of Arthur’s conjecture. This will involve determinning:

• the local and global component groups associated to ψ;
• the quadratic character εψ;
• the size of the local A-packets and the structure of the submodule Aψ.

We will then see if the description of these A-parameters provide some clues to how the
A-packets and Aψ may be constructed.
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4.10. Saito-Kurokawa example. Let G = SO5 = PGSp4, so that its Langlands dual group
is G∨ = Sp4(C). We have the subgroup

SL2(C)× SL2(C) ⊂ Sp4(C) = G∨.

These two commuting SL2’s play symmetrical roles, as they correspond to a pair of orthogonal
long roots in the C2 root system.

We will consider A-parameters of the form:

ψ = ρ× Id : Lk × SL2(C) −→ SL2(C)× SL2(C) ⊂ Ĝ.
Such an A-parameter ψ is specficied by giving an (admissible) homomorphism

ρ : Lk −→ SL2(C).

Note also that
ZG∨(ψ) = ZSL2(ρ)× ZSL2

Hence, the A-parameter ψ is discrete if and only if ZSL2(ρ) is finite, or equivalently if the
2-dimensional representation of Lk afford by ρ is irreducible. By our (basic hypothesis), to
give such a ρ is the same as giving a cuspidal representation τ = τρ of GL2 with trivial central
character, i.e. a cuspidal representation of PGL2.

A discrete A-parameter of G = SO5 of the above form is called a Saito-Kurokawa A-
parameter. We have just seen that such A-parameters are parametrized by cuspidal repre-
sentations of PGL2.

Given a parameter ψ = ψτ , let us compute the various quantities that appear in Arthur’s
conjecture. As we saw above

Sψ = (ZSL2(ρτ )× ZSL2)/ZSp4
= (µ2 × µ2)/∆µ2 = µ2

Likewise the local component groups Sψτ are given by

Sψτ,v =

{
µ2, if ρτv is irreducible;

1, if ρτv is reducible.

The condition that ρτ,v be irreducible is equivalent to τv being a discrete series representation
of PGL2(Fv).

4.10.1. Local Arthur packets. Now Arthur’s conjecture predicts that for each place v, the
local A-packets Aψτ,v has the form:

Aψτ,v =

{
{π+

τv}, if τv is not discrete series
{π+

τv , π
−
τv}, if τv is discrete series.

Here, π+
τv is indexed by the trivial character of Sψτ,v .

Of course, we know what π+
v has to be for almost all v: it is irreducible unramified with

Satake parameter sψτ,v . This unramifed representation π+
v is the unramfied constituent of

the induced representation

IP (τv, 1/2) = IndGP | − |1/2v ⊗ τv.
where P = MN is the Siegel parabolic subgroup of SO5 with Levi factor GL1 × SO3 =
GL1 × PGL2. From this, we see that the representations in the global A-packet are nearly
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equivalent to the constitutents of Ind
G(A)
P (A)| − |

1/2 ⊗ τ . Moreover, their local components are

nontempered for almost all v.

4.10.2. Global A-packets. Let Sτ be the set of places v where τv is discrete series, so that
the global A-packet has 2#Sτ elements.

To compute the multiplicity mη of πη ∈ Aψτ we need to know the quadratic character εψτ
of Sψτ . By a short computation (which you should do), εψτ is the non-trivial character of
Sψτ
∼= µ2 if and only if ε(1/2, τ) = −1. Here ε(s, τ) is the global ε-factor of τ .

Now if π = ⊗vπεvτv ∈ Aψτ , then the multiplicity associated to π by Arthur’s conjecture is:

m(π) =

{
1, if επ :=

∏
v εv = ε(1/2, τ);

0, if επ = −ε(1/2, τ).

Thus, we should have:

Aψτ ∼=
⊕

π∈Aψτ :επ=ε(1/2,τ)

π.

4.10.3. Construction. How can one construct the A-packets Aψτ and the space Aψτ ? It
seems that we need a lifting to go from τ to these square-integrable representations of PGSp4.
Since the theta correspondence is 1-to-1, one cannot hope to use theta correspondence to go
from τ to Aψτ , never mind the fact that PGL2×SO5 is not a dual pair in a symplectic group.

We need an intermediate step: the Shimura correspondence, or rather its automorphic
description by Waldspurger [31, 33]. Using the theta correspondence for Mp2 × SO3, Wald-
spurger was able to provide a classification of the constituents of A(Mp2) in the style of
Arthur’s conjecture.

More precisely, τ gives rise to a packet of cuspidal representations on Mp2, whose structure
is exactly the same as that of the Saito-Kurokawa packets. Namely, for each place v, one has
a local packet of irreducible representations of Mp2(kv):

Ãτv =

{
{σ+

τv , σ
−
τv}, if τv is discrete series;

{σ+
τv}, if τv is not discrete series.

We call these the Waldspurger packets. One can form the global packet as a restricted tensor
product of the local ones, and one gets a submodule

Ãτ =
⊕

π∈Ãτ :εσ=ε(1/2,τ)

σ ⊂ Acusp(Mp2).

.

Observe the formal similarity between the structure of the Waldspurger packets and the
Saito-Kurokawa ones. Given this, and taking note that one has a dual pair

Mp2 × SO5

(which is the next step of the SO2n+1 Rallis tower), it is then not surprising that the local
Saito-Kurokawa packets can be constructed as local theta lifts of the local Waldspurger
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packet: one sets

πεvτv = θψv(σ
εv
τv).

These local theta lifts are nonzero because we are in the stable range. Likewise, the Saito-
Kurokawa submodule Aψτ can be constructed as the global theta lift of the submodule Ãτ ⊂
Acusp(Mp2). This was first studied by Piatetski-Shapiro [28], but see [9] for a more refined
discussion.

4.11. U3: Howe-PS example. Now we carry out the same analysis for a family of nontem-
pered A-parameters of G = U3 (relative to E/k) which will explain the Howe-PS example we
discussed.

The Langlands dual group of G = U3 is GL3(C), but we need to work with the L-group
LG = GL3(C) o Gal(E/k). The A-parameters of G are then

ψ : Lk × SL2(C) −→ LG.

Thankfully, by [11], the equivalence class of ψ is determined by the equivalence class of its
restriction to LE , so we can simply consider

ψ : LE −→ G∨ = GL3(C).

In other words, an A-parameter of G = U3 is simply a 3-dimensional semisimple represen-
tation of LE . But this representations needs to satisfy an extra condition: it should be
conjugate orthogonal. In addition, for it to be elliptic, ψ should be multiplicity-free.

Clearly, one has a subgroup

GL1(C)×GL2(C) ⊂ GL3(C).

We are going to build a discrete A-parameter

ψ : LE × SL2(C) −→ GL1(C)×GL2(C) ⊂ GL3(C),

so that ψ(SL2(C)) = SL2(C) ⊂ GL2(C). As a 3-dimensional representation, ψ takes the form

ψ = µ⊕ χ⊗ S2

where S2 denotes the 2-dimensional irreducible representation of SL2(C). The conjugate-
orthogonal condition amounts to requiring that

• µ is a conjugate-orthogonal 1-dimensional character of LE , which by our (basic hy-
pothesis) corresponds to an automorphic character of A×E trivial on A×k ;
• χ is a conjugate -symplectic 1-dimensional character if LE , which corresponds by our

(basic hypothesis) to an automorphic character of A×E whose restriction to A×k is ωE/k.

Thus, such a ψ is specified by the pair (χ, µ) satisfying the above properties.

4.11.1. Component groups and A-packets. The global component groups of ψ is

Sψ = µ2

and the local component groups are:

Sψv =

{
µ2, if v is inert in E;

1, if v splits in E.
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So the local A-packets have the form

Aψv =

{
{π+

v , π
−
v }, if v is inert in E;

{π+
v }, if v splits in E.

Moreover, for almost all inert places v, the representation π+
v is the unramified representation

contained in the principal series representation

IndGBχ| − |1/2 ⊗ µ̃,

where µ̃ is µ regarded as a character of E1, via the standard isomorphism E×v /k
×
v
∼= E1

v .
Observe that the global A-packet Aψ has infinitely many elements in this case.

4.11.2. Multiplicity formula. To work out the multiplicity formula, we need to work out
the quadratic character εψ. A short and instructive computation shows that εψ is the trivial
character of Sψ = µ2 if and only if

εE(1/2, χµ−1) = 1.

So Arthur’s conjecture predicts that

Aψχ,µ ∼=
⊕

π∈Aψ :ε(π)=εE(1/2,χµ−1)

π.

4.11.3. Construction via theta lifts. In view of Adam’s conjecture above, we should ex-
pect that the theta correspondence for U1×U3 that we discussed in Lectures 2 and 3 can be
used to construct the local A-packets and the submodule Aψχ,µ .

Let us fix our skew-Hermitian space W over k and consider an inert place v of k. Recall
that there are two rank 1 Hermitian spaces V +

v and V −v over kv for such an inert place
v. Roughly speaking, the local A-packet Aψχv,µv should be constructed as the local theta

lift of a particular character of U(V +
v ) and U(V −v ), under the two theta correspondences for

U(V +
v )×U(W ) and U(V −v )×U(W ). To make this precise, we need to answer a few questions:

• Which pair of splitting characters (χV , χW ) should we use for the theta correspon-
dence?

• Having fixed (χV , χW ), which character of U(V +
v ) = U(V −v ) should we start with?

• How should we label the two representations in the local A-packet, i.e. which of these
two theta lifts is π+

v , so as to achieve the predicted multiplicity formula?

Based on our understanding of the theta correspondence from Lectures 2 and 3, can you
answer these questions? It will be a good exercise to reflect on them and I will leave these
for discussion in the problem session.

4.12. Example of G2. We conclude this section by describing 2 families of A-parameters of
the split exceptional group G2.

4.12.1. Some structural facts. The Langlands dual group ofG isG2(C). We list a couple of
relevant facts about the structure of G2(C), referring to its root system here for justification:
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• The root system of G2 contains a mutually orthogonal pair of long and short roots,
giving rise to a commuting pair of SL2’s (as in the case of Sp4(C))

(SL2,l × SL2,s)/µ
∆
2 ⊂ G2.

The difference is that in the Sp4 case, the two roots involved have the same length
(they are both long), whereas here they are of different length. Hence, these two
SL2’s are not conjugate to each other. Further, the centralizer of one of these SL2’s
is the other SL2.

• The 6 long roots of the G2 root system gives an A2 root system, reflecting the fact
that G2(C) contains a subgroup SL3(C). Observe that SL2,l(C) ×µ2 T ⊂ SL3(C)
(where T is the diagonal torus of SL2,s) but SL2,s is not contained in SL3 (even after
conjugation). Moreover, the normalizer of SL3(C) in G2(C) contains SL3(C) with
index 2. Indeed, an element in the non-identity component is given by the longest
Weyl group element of G2. This is also the element (w,w) ∈ SL2,l ×µ2 SL2,s, where
w is the standard Weyl element in SL2. The conjugation action of this element on
SL3(C) is an outer automorphism. Hence one has containment

SL2,l ×µ2 NSL2(T ) ⊂ NG2(SL3) = SL3 o Z/2Z ⊂ G2(C).

• The smallest faithful (irreducible) algebraic representation of G2 is 7-dimensional; in
fact one has

G2 ↪→ SO7.

The weights of this 7-dimensional representation are the short roots and the zero
vector.

When restricted to the subgroup SL3, this 7-dimensional representations decom-
poses as :

(std3)⊕ 1⊕ (std3)∨

where (std3) is a 3-dimensional irreducible representation of SL3 and (std3)∨ is its
dual.
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When restricted to the subgroup SL2,l ×µ2 SL2,s, it decomposes as:

(std2)⊗ (std2)⊕ 1⊗ Sym2(std2)

where (std2) denotes the 2-dimensional representation of SL2.

• consider the adjoint action of G2 on its Lie algebra g2. When restricted to the
subgroup SL3,

g2 = sl3 ⊕ (std)3 ⊕ (std3)∨.

When restricted to the subgroup SL2,l ×µ2 SL2,s, one has

g2 = sl2,l ⊕ sl2,s ⊕ (std2)⊗ Sym3(std2).

You can find out more about the structure of G2 (for example, its maximal parabolic sub-
groups) from Aaron Pollack’s lecture notes.

4.12.2. Some A-parameters. Now suppose that τ is a cuspidal representation of PGL2,
which by our (basic hypothesis) corresponds to an irreducible representation

ρτ : LF −→ SL2(C).

Using ρτ , we can build 2 different nontempered A-parameters of G2, depending on whether
SL2(C) is mapped to SL2,l or SL2,s:

ψτ,s : Lk × SL2(C) −→ SL2,l × SL2,s ⊂ G2(C)

or

ψτ,l : Lk × SL2(C) −→ SL2,s × SL2,l ⊂ G2(C).

We call ψτ,s the short root A-parameter and ψτ,l the long root A-parameter associated to τ .

4.12.3. Short root A-parameters. Now let’s work out the consequences of Arthur’s con-
jecture for the short root A-parameter. We have:

Sψτ,s
∼= µ2

and for a place v of k,

Sψτ,s,v =

{
µ2, if τv is discrete series (i.e. ρτ,v is irreducible);

1 if τv is not discrete series (i.e. ρτ,v is reducible).

4.12.4. Local short root A-packets. Now Arthur’s conjecture predicts that for each place
v, the local A-packets Aτ,s,v has the form:

Aτ,s,v =

{
{π+

τv}, if τv is not discrete series
{π+

τv , π
−
τv}, if τv is discrete series.

Here, π+
τv is indexed by the trivial character of Sτ,v. Moreover, we know what π+

v has to be
for almost all v. Indeed, for almost all v where τv is unramified, π+

v is the unramified repre-
sentation with Satake parameter sψτ,v , and this representation is the unramified constituent
of

IP (τv, 1/2) = IndG2
P τ · | det |1/2

where P is the Heisenberg parabolic subgroup of G2 with Levi factor GL2.
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4.12.5. Global short root A-packets. Let Sτ be the set of places v where τv is discrete
series, so that the global A-packet has 2#Sτ elements. To describe the multiplicity of πη ∈ Aτ,s
in L2

ψτ
, we need to know the quadratic character εψτ,s of Sψτ,s . It turns out that εψτ,s is the

non-trivial character of Sψτ
∼= µ2 if and only if ε(1/2, τ) = −1.

Now if π = ⊗vπεvv ∈ Aτ,s, then the multiplicity associated to π by Arthur’s conjecture is:

m(π) =

{
1, if επ :=

∏
v εv = ε(1/2, τ);

0, if επ = −ε(1/2, τ).

Thus, Arthur’s conjecture predicts that:

Aψτ,s ∼=
⊕

π∈Aτ :επ=ε(1/2,τ)

π.

4.12.6. Construction of short root A-packets. Observe that the structure of these A-
packets is thus entirely the same as that of the Saito-Kurakawa packets for SO5. Since the
Saito-Kurokawa packets were constructed as theta liftings of Waldspurger’s packets on Mp2,
one might guess that one can construct the short root A-packets of G2 by lifting from the
corresponding packets on Mp2. But is Mp2 ×G2 a reductive dual pair?

Well, it turns out that one may consider the dual pair

Mp2 × SO7.

Recalling that G2 ↪→ SO7, we may consider theta lifts from Mp2 to SO7, followed by restric-
tion of representations from SO7 to G2. Somewhat amazingly, this restriction does not lose
much information. In other words, one may consider the commuting pair

Mp2 ×G2

and restrict the Weil representation of Mp2×SO7 to it. Such a construction was first conceived
by Rallis and Schiffman, but the full analysis was completed in [10]. In this way, it was shown
in [10] that one may construct the A-packets and the corresponding submodule in A2(G2).

4.12.7. Long root A-parameters. The main project for this course is the analysis and
construction of the long root A-packets of G2. In particular, the first task of the project is to
work out the prediction of Arthur’s conjecture for the long root A-parameter ψτ,l, and then
specialize to the case when τ is dihedral.

We list the expected answers here, leaving it as a series of guided exercises:

• the global and local component groups are the same as for the short root A-parameters;
so the local A-packets have 2 or 1 elements depending on whether τv is discrete series
or not.
• the quadratic character εψτ,l is trivial if and only if

ε(1/2, τ, Sym3) = ε(1/2, Sym3ρτ ) = 1.

So we see that the Sym3-epsilon factor appears in the Arthur multiplicity formula.



AUTOMORPHIC FORMS AND THE THETA CORRESPONDENCE 41

4.13. Dihedral long root A-parameters. We now suppose that τ is a dihedral cuspidal
representation relative to a quadratic field extension E/k. This can be interpreted in one of
the following equvialent ways:

• ρτ ∼= IndWk
WE

χ for some 1-dimensional character χ of the global Weil group WE (which

is supposedly a quotient of LE).
• τ ⊗ ωE/k ∼= τ .

The fact that det ρτ = 1 implies that when regarded as an automorphic character of A×E ,
χ|A×k = ωE/k, i.e. χ is a conjugate-symplectic automorphic character. The image of ρτ is

contained in the normalizer NSL2(T ), where T is a maximal torus of SL2. Now we observe:

• When τ is dihedral as above, the long root A-parameter ψτ,l factors as:

ψτ,l : Lk �Wk −→ NSL2,s(T )×µ2 SL2,l(C) ⊂ SL3(C) o Z/2Z ⊂ G2(C).

This follows from one of the structural facts we recall about G2(C).

• SL3(C) o Z/2Z ⊂ GL3(C) o Z/2Z = LU3.
• Hence the long root A-parameter ψτ,l of G2 factors through the L-group of U3, thus

giving rise to an A-parameter for U3. Moreover, when restricted to WE , one obtains
a 3-dimensional representation of WE × SL2(C) of the form

ψτ,l|WE
= χ−2 ⊕ χ⊗ S2.

In other words, one obtains a Howe-PS A-parameter for U3.

Said in another way, one could start with a Howe-PS A-parameter ψ for U3 with ψ(LE) ⊂
SL3(C) (or equivalently, giving rise to representations of PU3). The composition of ψ with
the natural inclusion

SL3(C) o Z/2Z = NG2(SL3) ↪→ G2(C)

then gives a long root A-parameter whose associated τ is dihedral with respect to E/k.

This suggests the following question:

Question: Is it possible to construct the local and global long root A-packets of G2 by lifting
from the Howe-PS packets for U3, and then verify the Arthur multiplicity formula?

Addressing this question will be the main project for this course.
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5. Bonus Lecture: Arthur’s Conjecture for Classical Groups via Theta Lifts

As we mentioned in Lecture 4, Arthur’s conjecture has been established for quasi-split
classical groups by Arthur [3] and Mok [25], using the stable (twisted) trace formula. By
the same technique, one expects the conjecture for non-quasi-split groups can be similarly
obtained, though not without some hard work. For non-quasi-split unitary groups, this has
been carried out in a manuscript of Kaletha-Minguez-Shin-White [20], at least for the part
of A2 corresponding to tempered A-parameters.

On the other hand, in this series of lectures, we have seen that the theta correspondence is
a useful tool for constructing certain nontempered A-packets of a classical group, as theta lifts
of tempered cusp forms on smaller groups. This is a natural procedure, in which one assumes
inductively that one already understands the cusp forms on the smaller group, and then tries
to propagate this understanding to larger groups. These constructions are also quite efficient
and often carries with it other useful information of the constructed automorphic forms, such
as their Fourier coefficients. However, in view of Adam’s conjecture, one would not expect
such construction to yield the whole of the nontempered discrete spectrum of classical groups.
Indeed, Adams conjecture predicts that one would only obtain A-parameters on the bigger
group of the following form:

(A-parameters of smaller group)⊕ χ⊗ Sr
for some 1-dimensional character χ. Such A-parameters are of course far from being the most
general. This is again not surprising, for there is no reason to expect that the automorphic
discrete spectrum of a group can be totally understood in terms of the spectra of smaller
groups. Indeed, one does not expect the study of the tempered discrete spectrum to be
reducible to those of smaller groups: it should contain genuinely new spectral information.

In this bonus section, we will describe a series of recent work by Ichino and myself, as well as
by two of my students, Rui Chen and Jialiang Zou, which (somewhat surprisingly) establishes
Arthur’s conjecture (at least the tempered part) for non-quasi-split classical groups, using
the theta correspondence to transport one’s knowledge from the quasi-split case established
by Arthur and Mok. To be more precise, the approach was first conceived in [12] to show
(partially) the Arthur conjecture for metaplectic groups Mp(W ), before it was adapted to
the case of non-quasi-split classical groups in the thesis work of Chen and Zou.

5.1. The idea. We shall illustrate with the case of unitary groups. The main idea is simple:
instead of lifting from smaller groups to a fixed (non-quasi-split) unitary group U(V ), why
don’t we construct A2(U(V )) by theta lifting from a larger unitary group U(W ) which is
quasi-split? More precisely, if you would like to construct and understand Aψ(U(V )) for a
particular A-parameter ψ, you can do so as follows:

• take a much larger unitary group U(W ), so that U(V )×U(W ) is in the stable range,
and consider the A-parameter

ψ′ = χV · (χ−1
W ψ ⊕ Sr)

of U(W ) (as suggested by Adam’s conjecture). By the work of Arthur and Mok, one
already “knows” the submodule Aψ′(U(W )) in terms of local and global A-packets
with the multiplicity formula.



AUTOMORPHIC FORMS AND THE THETA CORRESPONDENCE 43

• use global theta lifting to transport Aψ′(U(W )) back to U(V ); one should get the
submodule Aψ.

5.2. Low rank representations. From a purely representation theoretic point of view,
this idea is not so bad, because as we have noted during this course, theta correspondence
is easier in the stable range. Indeed, there is no obstruction to the nonvanishing of local
or global theta lifts from the smaller U(V ) to the larger U(W ). Moreover, in his thesis and
subsequent work [22, 23], Jianshu Li has studied these theta lifts in stable range, showing that
the lifting preserves unitarity of representations and also gives an exhaustive construction of
the so-called low rank representations of U(W ). In other words, the representations with A-
parameter ψ′ are low rank and have very rigid properties, as far as their “Fourier coefficients”
go. Hence they are amenable to other ways of studying them, in addition to the viewpoint
of A-packets, as we shall see later.

In fact, at the local level, Chen and Zou [5, 6] exploited this idea to establish the local Lang-
lands correspondence for non-quasi-split unitary and even orthogonal groups by transporting
the LLC for quasi-split groups.

5.3. Some Issues. There will however be some potential issues that one can readily point
out:

• Since the A-parameter ψ′ of U(W ) is nontempered, the understanding of the associ-
ated A-packet coming from Arthur’s work is far from complete. For example, Arthur
does not know from his approach how many representations are in the local A-packets
(remember that the representations πη can be reducible or 0). If one hopes to con-
struct Aψ from Aψ′ , this is an undesirable situation, since one cannot then hope to
have a good understanding of Aψ without first understanding the input Aψ′ .

Thankfully, this issue is somewhat alleviated by the independent work of Moeglin
(as clarified by Bin Xu and Hiraku Atobe) who gave an independent and explicit
construction local A-packets using Jacquet module techniques. In particular, through
her work, one has a rather good understanding of Aψ′ .

• By the tower property of theta correspondence, one does not expect many constituents
of Aψ′ to be cuspidal; indeed, they should be noncuspidal when U(W ) is sufficiently
large. Given this, how can one perform the global theta lifting on them? Recall that
we need the integral defining the gobal theta lifting to converge, and there may be
no reason for this convergence when the input is noncuspidal.

In the next subsection, we shall explain the novel idea that allows one to bypass
this difficulty.

5.4. Jianshu Li’s Inequalities. In the stable range, it turns out that one can study the
global theta lifting from the L2-point of view, exploiting the fact that the representations on
the larger group has low rank. This innovative approach was carried out by Jianshu Li in his
1998 paper [23]. Let us recall his results here.
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Theorem 5.1. Assume that U(V )×U(W ) is in the stable range with U(V ) the smaller group.
Suppose that one has a direct integral decomposition

L2([U(V )]) =

∫
̂U(V )(A)

mπ · π dµ(π)

for some measure dµ on the unitary dual ̂U(V )(A) of U(V )(A), and some multiplicity function
m(−). Then L2([U(W )]) contains as a submodule the direct integral∫

̂U(V )(A)
mπ · θabs(π) dµ(π)

where θabs(π) = ⊗vθ(πv) is the (abstract) theta lift of π (which is nonzero since we are in the
stable range).

It is worth noting that the proof of this theorem does not involve the usual integral defining
the global theta lifting, but involves harmonic analysis of the part of the L2 spectrum of U(W )
involving low rank representations. The properties of low rank representations thus play an
indispensable role here.

As a corollary of this theorem and other results, we have the following inequalities:

Corollary 5.1. For π ∈ Irr(U(V )(A)), let

m(π) = dim HomU(V )(π,A(U(V ))) and m2(π) = dim HomU(V )(π,A2(U(V ))).

Then one has

m2(π) ≤ m2(θabs(π)) ≤ m(θabs(π)) ≤ m(π).

Here, the first inequality is a consequence of the theorem, the second inequality is obvious
whereas the third follows by other considerations (of Fourier coefficients).

5.5. Assigning A-parameters. Let us illustrate how the corollary above is useful in at-
taching A-parameters to near equivalence classes. Suppsoe that C ⊂ A2(U(V )) is a nonzero
near equivalence class, say

C ∼=
⊕
i∈I

m(πi)πi.

By the corollary, we see that A2(U(W )) contains as a submodule

θabs(C) :=
⊕
i∈I

m(πi) · θabs(πi).

Now all the summands in θabs(C) are nonzero and nearly equivalent with each other. Since
U(W ) is quasi-split, one knows by Arthur-Mok that θabs(C) is associated to an elliptic A-
parameter ψ′. By using our knoweldge of the unramified theta correspondence and poles of
standard L-functions (coming from he doubling zeta integrals), one can show that ψ′ has the
desired form

ψ′ = χV · (χ−1
W ψ ⊕ Sr)

for some elliptic A-parameter ψ for U(V ). One then attaches ψ to C.
In this way, Chen and Zou [7] showed:
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Theorem 5.2. For any (non-quasi-split) unitary group U(V ), one has a decomposition

A2(U(V )) =
⊕
ψ

Aψ

where ψ runs over the elliptic A-parameters of U(V ) and Aψ is the associated near equivalence
class.

Another way to formulate this theorem is that it gives the weak Langlands functorial lifting
from U(V ) to GL(V ), with image given by the expected description.

5.6. Does equality hold? It remains then to understand each near equivalence Aψ, and in
particular to describe it in the language of local A-packets and the multiplicity formula. In
some sense, one would like to transport the structure of Aψ′ back to Aψ. However, since we
only have equalities in the above corollary, it means that one has

θabs(Aψ) ⊂ Aψ′ .
In other words, in transferring from U(W ) back to U(V ), we might lose some information.
For example, it is possible that Aψ = 0 but Aψ′ 6= 0.

Thus, we see that it is important to know when the equality m2(π) = m2(θabs(π)) holds.
For this, one has:

Proposition 5.2. Equality holds in Jianshu Li’s inequalities in the following cases:

• ψ is a tempered A-parameter;

• The Witt index of V is 0 or 1.

In these cases, what was shown is that

m2(π) = m(π),

so that equalities hold througout Jianshu Li’s inequalities. So for these cases, it is reasonable
to expect that the structure of Aψ can be faithfully inherited from that of Aψ′ .

5.7. Results of Chen-Zou. In their paper [7], Chen and Zou showed the following theorem:

Theorem 5.3. (i) The submodule Aψ can be described as in Arthur’s conjecture for any
tempered ψ.

(ii) Arthur’s conjecture holds for U(V ) if U(V ) has k-rank ≤ 1.

To go beyond this, it seems one needs to answer the following question:

Question: Is it the case that one always has:

m2(π) = m2(θabs(π)) = m(θabs(π)) = m(π)?

This is undoubtedly an interesting question to ponder.
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6. The Project

We consider a long root A-parameter ψτ,l of G2 from the end of Lecture 4, with τ = τ(χ)
a cuspidal representation of PGL2 which is dihedral with respect to E/k and associated with
a conjugate-symplectic automorphic character χ of E×. We have observed that ψτ,l factors
through the L-group of PU3, giving an A-parameter of PU3 of Howe-PS type. More precisely,
if we consider a Howe-PS A-parameter

ψχ : Wk × SL2(C) −→ LPU3 = SL3(C) o Z/2Z

with

ψχ|WE×SL2(C) = χ−2 ⊕ χ · S2,

then we obtain a long root A-parameter of G2 by composition:

ψτ(χ),l : Wk × SL2(C) −→ SL3(C) o Z/2Z ↪→ G2(C).

This suggests the following question:

Question: Is it possible to construct the associated long root A-packet of G2 by lifting from
the corresponding Howe-PS packets for PU3, and then verify the Arthur multiplicity formula?

It turns out that we have a dual reductive pair

PU3 ×G2 ⊂ EE/k6

where E
E/k
6 is a quasi-split exceptional group of type E6. One may consider the minimal

representation of E
E/k
6 and restrict it to this dual pair, obtaining a local theta correspondence.

In fact, one should consider the disconnected dual pair

(PU3 o Z/2Z)×G2 ⊂ EE/k6 o Z/2Z

to obtain a nice local theta correspondence (in the classical case, the analog is that one should
consider O(V )× Sp(W ) instead of SO(V )× Sp(W )).

The study of this local theta correspondence (for the disconnected dual pair) was recently
carried out by Gan-Savin [14] at split p-adic places and by Bakić-Savin [4] at the inert p-adic
places. In particular, they proved the Howe duality theorem (on the finite length of Θ(π)
and the irreducibility of θ(π)). Using their results, one can make a definition of the local
A-packets as local theta lifts of the corresponding Howe-PS packet (extended to PU3oZ/2Z),
and understand quite precisely the representations obtained, at least in the p-adic case.

What about the archimedean case?

Mission: Your mission, should you choose to accept it, is to study the global theta correspon-
dence (addressing nonvanishing and cuspidality) and establish the desired Arthur multiplicity
formula.

No worries: this is not exactly Mission Impossible (as you can see, this document did not
self-destruct after 5 seconds).

There are a few preliminary groundwork that one can do to familiarize oneself with this
project:
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• understand some structure theory of G2: parabolic subgroups and their unipotent
radical and their internal modules, some natural subgroups like SL3 and SO4. One
can learn a lot about G2 by studying Aaron Pollack’s notes for this AWS.

• work out in detail the consequences of Arthur’s conjecture for long and short root A-
parameters of G2, for example the computation of the quadratic character εψ. While
the answers have been given in Lecture 4, the details were left as exercises there.

• work out and understand in detail the construction of Howe-PS A-packets vis theta
lifts from U1. This was also left as a challenging exercise in Lecture 4. Which members
of the Howe-PS packets are cuspidal?

• classify the cuspidal representations of PU3 o Z/2Z in terms of those of PU3. This
is necessary because we will be working with the disconnected dual pair. In the
local setting, the paper of Bakić-Savin [4] addresses the same question on the level of
abstract irreducible representations.

• understand the local results of Bakić-Savin [4]; the proofs should largely not be
needed.

• figure out what is known for the theta correspondence of PU3×G2 in the archimedean
case. The paper of Huang-Pandzic-Savin [19] resolves this in the case when PU3 is
compact (so not quasi-split), obtaining quaternionic discrete series representations of
G2 as theta lifts. This is another point of contact with Aaron Pollack’s lectures. If
one is willing to work with the Howe-PS A-packets on anisotropic U3, then one can
use this exceptional theta lifting to construct quaternionic modular forms.

• understand the following phenomenon: the local Howe-PS A-packets have two ele-
ments for half the places of k (namely the inert ones), but the corresponding dihedral
long root A-packets has two elements only for finitely many v’s. How does one rec-
oncile this difference, especially in view of our hope to construct the latter form the
former?

For the project itself, the following are some problems to resolve:

(i) Show the cuspidality (or not) of global theta lifts.

(ii) Show the nonvanishing of global theta lifts by computing Fourier coefficients. These
Fourier coefficients are the same ones which appear in Pollack’s lectures. This computation
should reduce to the torus period on PU3,

(iii) The result from (ii) leads one to consider questions like:

• how to classify maximal tori in U3?
• which torus periods are supported by the Howe-PS representations?

This is a mini-project which could stand on its own, and has nothing to do with G2. It
involves understanding the Howe-PS A-packets and their construction as theta lifts from U1

really well. To address the torus period problem involves using an argument with see-saw
dual pairs.

(iv) Verify the AMF: how does the Sym3 epsilon factor show up?
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(v) Bonus: can one construct quaternionic modular forms (in the sense of Pollack’s lectures)
by this exceptional theta lifting, and compute the Fourier coefficients of the theta lifts?
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(4) 41 (2008), no. 5, 717-741.



AUTOMORPHIC FORMS AND THE THETA CORRESPONDENCE 49

[25] C.P. Mok, Endoscopic classification of representations of quasi-split unitary groups, Mem. Amer. Math.
Soc. 235 (2015), no. 1108,

[26] C. Moeglin, M.F. Vigneras and J.L. Waldspurger, Correspondances de Howe sur un corps p-adique,
Lecture Notes in Mathematics, 1291. Springer-Verlag, Berlin, 1987. viii+163 pp.

[27] D. Prasad, Weil representation, Howe duality, and the theta correspondence, in Theta functions: from the
classical to the modern, 105–127, CRM Proc. Lecture Notes, 1, Amer. Math. Soc., Providence, RI, 1993.

[28] I. Piatetski-Shapiro, On the Saito-Kurokawa lifting, Invent. Math. 71 (1983), 309-338.
[29] J. Rogawski, The multiplicity formula for A-packets, in The zeta functions of Picard modular surfaces,
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