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Automorphic forms and L-functions play central roles in modern number theory. Although
they arise as analytic objects, they also often have nice algebraic properties that encode
arithmetically significant information. (For example, consider the values of the Riemann
zeta function at negative odd integers, which occur as constant terms of Eisenstein series
and also encode information about unique factorization in cyclotomic fields.) While we are
often interested in Galois representations and the L-functions associated to them, associated
automorphic forms play key roles. Indeed, the behavior of automorphic forms controls the
behavior of various L-functions. This is seen in various settings, including for unitary groups,
the focus of this mini-course and project.

1. Course Outline: Introduction to Automorphic Forms on Unitary Groups
and Algebraicity

Unitary groups provide a particularly fruitful setting in which to work. Unitary groups
have associated Shimura varieties, which provide convenient structure for studying alge-
braic aspects of automorphic forms (which, in turn, arise as sections of a vector bundle over
Shimura varieties). We have substantial results about Galois representations associated to
automorphic forms on unitary groups (e.g. [Ski12, Che04, Che09, CH13, Har10]). In addi-
tion, we have convenient representations of the L-functions associated automorphic forms on
unitary groups, which are useful both for proving analytic properties and for extracting alge-
braic information (and even p-adic properties, as seen in [EHLS20]). Working with unitary
groups has enabled major developments (which go far beyond the scope of these lectures
but several of which are mentioned here as motivation for learning about automorphic forms
on unitary groups), including a proof of the main conjecture of Iwasawa Theory for GL2

[SU14] and the rationality of special values of certain automorphic L-functions (including
[Shi00, Har97, Har08, Har84, Bou15]), as well as progress toward cases of the Bloch–Kato
conjecture (including [SU06, Klo09, Klo15, Wan19]), and the Gan–Gross–Prasad conjecture
(many recent developments, including [Xue14, Xue19, Zha14, Liu14, Yun11, JZ20, He17,
BP20, BPLZZ21]).

The lectures will provide an introduction to automorphic forms on unitary groups and
ingredients for proving results concerning algebraicity.

• Lecture I: Introduction to automorphic forms on unitary groups, including motivation
and definitions.
• Lecture II: Automorphic L-functions and the doubling method.
• Lecture III: Algebraicity results for automorphic forms and L-functions, as well as

an introduction to tools and approaches for proving algebraicity.
• Lecture IV: Sources of examples of automorphic forms, including recent approaches

via liftings and pullbacks

Prerequisites: I will assume students are familiar with modular forms, viewed as functions
on GL2, as functions on the upper half plane, and as sections of a line bundle over a moduli
space of elliptic curves. In particular, to help build intuition, I will sometimes mention
parallels with that setting. Students who have also already worked with automorphic forms
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on other groups will be at an advantage, since they will be more familiar with some of the
pitfalls of working beyond GL2.

2. Project: Constructing Automorphic Forms on Unitary Groups

If someone asks you for examples of modular forms (for GL2), you can probably list some.
At least, you are probably confident you could open a textbook on modular forms and find
some examples, such as Ramanujan’s Delta function

∆(q) = q
∏
n≥1

(1− qn)24,

which is a holomorphic cusp form of weight 12 and level 1. On the other hand, what if
someone asks you for an explicit example of a modular form on a higher rank group? What
about a vector-weight automorphic form?

This project is designed to help you gain intuition and familiarity with automorphic forms
on unitary groups. In particular, it is designed to help you understand connections with more
familiar examples, while also giving you the opportunity to prove new results. Continuing
to develop such intuition through examples is important for experts and novices alike.

One possible approach to describing automorphic forms on higher rank groups in terms
of forms on smaller groups is through certain liftings, such as (Duke–Imamoglu–)Ikeda lifts,
which have recently been generalized in various directions, including to unitary groups [DI96,
Ike01, Ike08]. (For example, a lift of ∆ to Siegel modular forms of degree 4 is a particular
form called the Schottky form, and it turns out to generate the space of Siegel cusp forms of
degree 4, level 1, and weight 8 [PY96].) Constructions via these lifts is often used to produce
forms of scalar weight.

The goal of this Arizona Winter School project, on the other hand, is to construct vector-
valued automorphic forms on unitary groups from scalar-valued forms. To start,
we will work out a strategy for producing vector-valued automorphic forms from scalar-
valued ones, and we will construct explicit examples of these forms. We will rely heavily
on recent work of Cléry and van der Geer, who described a method for constructing vector-
valued Siegel modular forms from scalar-valued ones [CvdG15]. We will explore extensions of
their approach to the setting of signature (g, g) over a quadratic imaginary field. Assuming
there is sustained interest in the project, we can then continue to automorphic forms of other
signatures, as well as other CM fields.

The idea is to start with a scalar-valued form f of degree g, viewed as a function on a
hermitian symmetric space Hg, and then restrict f to a product of hermitian symmetric
spaces Hj × Hg−j ⊂ Hg of lower degree. As explained in [CvdG15] in the case of Siegel
modular forms, if this restriction of f vanishes, then one can exploit this to produce a (non-
vanishing) vector-weight form. Following Cléry and van der Geer’s model from the setting
of Siegel modular forms, we will use this strategy to produce explicit examples of vector-
weight hermitian forms for low degrees (for example, by working with analogues of ∆). Part
of this project will likely involve learning about certain extensions of Ikeda lifts to unitary
groups [Ike08, HK06], in particular their interplay with the pullbacks that play a key role
in our proposed construction. As a first case, before moving to higher degree, we will work
through the case of g = 2, where some earlier descriptions in special cases will likely provide
helpful insight [DK03, DK04, Wil21]. More generally, producing the starting forms before
restriction might involve employing Hermitian analogs of Saito–Kurokawa and Maass lifts,
such as [Koj82, Kur78, And79, Maa79a, Maa79b, Maa79c, Zag81, Vu19a, Vu19b].
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There are (at least) three main pieces (or “subprojects”), which can be done in parallel
by different subgroups of students and then put together at the end:

(1) Explore the pullback procedure, and work out an analogue for unitary groups.
(2) Work out explicit descriptions of forms (at least in low degree), including via adap-

tations of the lifts described above.
(3) Work out explicit actions of Hecke operators in low degrees (as a step toward iden-

tifying forms of low degree).

As a next step, it might be interesting to explore relationships between different ways of
producing forms. For example, in general, how does the vector-valued form our procedure
produces from a lift of a form f relate to the original form f?
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