
Lecture 5

The modular curves X(Γ)
In Lecture 3, we saw that the set of isomorphism classes of elliptic curves EC were in bijection
with classes of homothetic lattices Λ ⊂ C, which were in turn in bijection with elements of Y (1) =
SL2(Z)\H. In Lecture 4, we then saw that X(1) is a compact Riemann surface.

Recall that given a lattice Λ, we define the j-invariant of Λ

j(Λ) = 1728 g2(Λ)3

g2(Λ)3 − 27g3(Λ)2 ,

where g2 and g3 are defined in terms of the Eisenstein series of weights 4 and 6, respectively.
Homothetic lattices Λ and Λ′ have j(Λ) = j(Λ′), and every lattice Λ is homothetic to a lattice
Λτ = τZ + Z, where τ ∈ H. We then define the function j : H → C, j(τ) = j(Λτ ). This function
is holomorphic on H and satisfies j(Sτ) = j(τ) and j(Tτ) = j(τ) for the matrices

S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
,

which generate SL2(Z); thus we have a well-defined map j : Y (1)→ C. This map is surjective, and
by defining j(∞) = ∞, we have a meromorphic function j : X(1) → P1(C) which is, in fact, an
isomorphism of Riemann Surfaces. The modular curve X(1), can therefore, be identified with the
Riemann sphere S2.

More generally, for a congruence subgroup Γ ⊆ SL2(Z), we may again define the quotient space
Y (Γ). This space is not compact, but by adjoining finitely many cusps (corresponding to the orbits
of Q ∪ {∞} under the action of Γ), we obtain the modular curves X(Γ) which is again a compact
Riemann surface. Each X(Γ) is, topologically, a sphere with g handles. This nonnegative integer
g is the genus of the surface. The Riemann sphere has 0 handles, thus its genus is 0. The genus
of a curve is not only a topological invariant, it has "arithmetic" signifcance as well: for example,
by Faltings’s Theorem, a curve of genus g > 1 can have only finitely many Q-rational points (or
more generally only finitely many K-rational points for any finite degree extension of Q). We will
see some of the implications of this in the next lecture. For now, we discuss how to determine the
genus g of a modular curve X(Γ).

The genus of X(Γ)
If f : X → Y is a holomorphic map between Riemann surfaces, then f is surjective and there
is a fixed positive integer d (the degree of the map) such that for all but finitely many y ∈ Y ,
|f−1(y)| = d so that the map f is d-to-1. In other words, for most x ∈ X, the multiplicity of
x is ex = 1, so that f is 1-1 about x. This integer ex is known as the ramification index of x.
There are sometimes points x ∈ X for which ex > 1; these points are said to be ramified. The
Riemann-Hurwitz formula gives us a way to relate the genus gX of X to the genus gY of Y .

Theorem 1 (Riemann-Hurwitz Formula) Let X and Y be compact Riemann surfaces, and let
f : X → Y be a nonconstant holomorphic map of degree d. Then

2gX − 2 = d(2gY − 2) +
∑
x∈X

(ex − 1).
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As X(1) is of genus 0, for a congruence subgroup Γ we can use the natural map

f : X(Γ)→ X(1),

Γτ 7→ SL2(Z)τ

to determine the genus of X(Γ).

Theorem 2 Let Γ1 ⊆ Γ2 be congruence subgroups. Then the map

has degree

m =
{

[Γ2 : Γ1]/2 if − I2 ∈ Γ2 \ Γ1

[Γ2 : Γ1] otherwise

For example, since −I2 ∈ Γ(2) and |SL2(Z/2Z)| = 6, the map X(2)→ X(1) is of degree 6.
We saw in the last lecture that for each x ∈ X(1) corresponding to τ ∈ F∗ (a fundamental

domain for the action on H∗), there is some neighborhood Ux of τx such that γUx ∩ Ux = ∅ for all
γ 6= τx. From this, we obtain an open cover {π(Ux)} of X(1) along with maps ψx : π(Ux) → D
which give a complex structure on X(1). For most x ∈ X(1), the projection map π : H∗ → X(1)
restricted to Ux is a homeomorphism, but for x ∈ {i, e

πi
3 ,∞} the map is not injective. To correct

for this, we had to define the homeomorphisms ψx in a slightly different fashion for these points
than for the other points of X(1). A similar issue arises for X(Γ). In a fundamental domain FΓ for
Γ, the set {±I2}StabΓτ = {±I2}{γ ∈ Γ : γτ = τ} will consist only of {±I2}, and on an appropriate
neighhborhood of τ , the restriction of the quotient map H∗ → X(Γ) will be a homeomorphism.
The possible exceptions are those τ in the orbit of i, eπi/3, or ∞.

Definition 3 Let Γ be a subgroup of SL2(Z). A point τ ∈ H is an elliptic point for Γ if
{±I2} ( {±I2}Stabτ . We say x = Γτ ∈ X(Γ) is elliptic if τ is an elliptic point.

Example 4 The elliptic points for SL2(Z) are i and −ω̄ = eπi/3.

Definition 5 If Γτ ∈ X(Γ) is an elliptic point, its period is

|{±I2}StabΓτ : {±I2}| =
{
|StabΓτ |/2 if − I2 ∈ Γ
|StabΓτ | otherwise

Now, two points of H∗ may be in different Γ orbits despite being in the same SL2(Z) orbit.
By keeping track of elliptic points of Γ and determining their ramification indices, we can compute
the genus of X(Γ).

Theorem 6 Let Γ ⊆ SL2(Z) be a congruence subgroup of SL2(Z) and let m be the degree of the
natural map X(Γ) → X(1). Let ε2 denote the number of elliptic points of period 2, ε3 the number
of elliptic points of period 3, and ε∞ the number of cusps of Γ (i.e., the number of orbits of Γ on
Q ∪ {∞}. Then then genus of X(Γ) is

g(X(Γ)) = 1 + m

12 −
ε2
4 −

ε3
3 −

ε∞
2

For a proof, see [2, Thm. 2.22].

Example 7 X(2) has no elliptic points of order 2 or 3 and has 3 cusps. Thus g(X(2)) = 0.
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Points on Y (Γ)
Just as the points of Y (1) parametrize elliptic curves, the points on the other modular curves we
are most interested parameterize elliptic curves, but this time with additional torsion data.

Recall, for a positive integer N , the principal subgroup of level N , denoted Γ(N) is

Γ(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
,

where we reduce the entries of the matrix
(
a b
c d

)
modulo N . A subgroup Γ ⊆ SL2(Z) is a

congruence subgroup if Γ(N) ⊆ Γ for some N . The two we will most focus on are

Γ1(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
,

(where the ∗ indicates that there are no conditions on b modulo N) and

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}
,

To see how points of these curves parameterize elliptic curves with additional torsion data,
first recall that if φ : C/Λ1 → C/Λ2 is a holomorphic map, then there are m, b ∈ C with mΛ1 ⊂ Λ2
and φ(z + Λ1) = (mz + b) + Λ2.

When φ(0 + Λ1) = 0 + Λ2, this map is a group homomorphism.

Definition 8 A holomorphic group homomorphism of complex tori is called an isogeny.

When φ : C/Λ1 → C/Λ2 is not the zero map, it is nonconstant. Therefore, φ is surjective.
Moreover, the kernel, being a discrete subgroup of a compact space, is finite. To understand the
kernel, we can use two kinds of isogenies. The first is the multiplication by N map. For N ∈ Z+,
the map [N ] is given by

[N ] : C/Λ→ C/Λ

z + Λ 7→ Nz + Λ

If Λ has an oriented basis {ω1, ω2}, then the kernel of this map consists of points P of the form

P = cω1 + dω2
N

+ Λ

Let E = C/Λ be an elliptic curve. As an abstract group, the set of N -torsion points denoted E[N ]
(i.e., the kernel of [N ] is isomorphic as an abstract group to Z/NZ× Z/NZ.

In addition to the multiplication by N map, for a cyclic subgroup C of E[N ], we obtain a map

C/Λ→ C/C

z + λ 7→ z + C

so that C is the kernel of the isogeny. Again refering to an oriented basis {ω1, ω2}, a cyclic subgroup
of order N can be given by the lattice generated by ω1 and ω2/N . If, for example, Λ = Λτ , then
the cyclic subgroup C is τZ + 1

NZ.
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We are nearly ready to state the correspondence between points on Y (N), Y1(N) and Y0(N)
and isomorphism classes of "elliptic curves with certain torsion data." For identifying points of
Y (N), we first need to define the Weil pairing. Note that we will be following Diamond and
Shurman’s definition ([1, §1.3]), but it is possible to define the Weil pairing using, for example,
divisors (see for example [3, §3.8]).

Given an elliptic curve E corresponding to a lattice Λ = ω1Z+ω2Z with ω1/ω2 ∈ H, and given
points P,Q in E[N ] there is some matrix γ =

(
a b
c d

)
∈M2(Z/NZ) such that P = aω1

N + bω2
N + Λ and

Q = cω1
N + dω2

N + Λ, we define eN (P,Q) to be

eN (P,Q) = e2πidet(γ)/N

. This pairing has
eN : E[N ]× E[N ]→ µN ,

where µN denotes the Nth roots of unity. We make the following claims:

Theorem 9 The Weil pairing is
(i) Bilinear:

eN (P1 + P2, Q) = eN (P1, Q)eN (P2, Q)
and

eN (P,Q1 +Q+ 2) = eN (P,Q1)eN (P,Q2)
(ii) Alternating:

eN (P, P ) = 1 and in particular, eN (P,Q) = eN (Q,P )−1

(iii) Nondegenerate:

If eN (P,Q) = 1 for all P ∈ E[N ], then Q = 0

Having introduced the Weil pairing, we can describe points of Y (N): A point of Y (N) corresponds
to an isomorphism class of a triple [E,P,Q] where P and Q are a basis for E[N ] and eN (P,Q) =
e2πi/N . The triples [E,P,Q] and [E′, P ′, Q′] are equivalent if there is an isomorphism φ : E → E′

such that φ(P ) = P ′ and φ(Q) = Q′.
A point on Y1(N) corresponds to a pair [E,P ], where P is a point of E of order N . Two such

pairs [E,P ] and [E′, P ′] are equivalent if there is an isomorphism φ : E → E′ such that φ(P ) = P ′.
A point on Y0(N) corresponds to a pair [E,C] where C is a cyclic subgroup of E of order N .

Two such pairs [E,C] and [E′, C ′] are equivalent if there is an isomorphism φ : E → E′ such that
φ(C) = C ′.

We can identify an elliptic curve E with C/Λ, but we can actually do more.

Theorem 10 Let N be a positive integer.

(i) Each point [E,P,Q] of Y (N) is equivalent to [C/Λτ , τ/N + Λτ , 1/N + Λτ ] for some τ ∈ H.
Two points [C/Λτ , τ/N+Λτ , 1/N+Λτ ] = [C/Λ′τ , τ ′/N+Λ′τ , 1/N+Λ′τ ] if and only if Γ(N)τ = Γ(N)τ ′

(ii) Each point [E,P ] of Y1(N) is equivalent to [C/Λτ , 1/N + Λτ ] for some τ ∈ H. Two points
[C/Λτ , 1/N + Λτ ] and [C/Λτ , 1/N + Λτ ] are equal if and only if Γ1(N)τ = Γ1(N)τ ′

(iii) Each point [E,C] of Y0(N) is equivalent to [C/Λτ , 〈1/N + Λτ 〉] for some τ ∈ H. Two
points [C/Λτ , 〈1/N + Λτ 〉] and [C/Λτ , 〈1/N + Λτ ]〉 are equal if and only if Γ0(N)τ = Γ0(N)τ ′

For a proof of part (ii), see [1, Thm. 1.5.1]
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