Lecture 5

The modular curves *X*(Γ)

In Lecture 3, we saw that the set of isomorphism classes of elliptic curves *E*C were in bijection with classes of homothetic lattices $\Lambda \subset \mathbb{C}$, which were in turn in bijection with elements of $Y(1)$ = $SL_2(\mathbb{Z})\backslash\mathcal{H}$. In Lecture 4, we then saw that $X(1)$ is a compact Riemann surface.

Recall that given a lattice Λ, we define the *j*-invariant of Λ

$$
j(\Lambda) = 1728 \frac{g_2(\Lambda)^3}{g_2(\Lambda)^3 - 27g_3(\Lambda)^2},
$$

where g_2 and g_3 are defined in terms of the Eisenstein series of weights 4 and 6, respectively. Homothetic lattices Λ and Λ' have $j(\Lambda) = j(\Lambda')$, and every lattice Λ is homothetic to a lattice $\Lambda_{\tau} = \tau \mathbb{Z} + \mathbb{Z}$, where $\tau \in \mathcal{H}$. We then define the function $j : \mathcal{H} \to \mathbb{C}$, $j(\tau) = j(\Lambda_{\tau})$. This function is holomorphic on H and satisfies $j(S\tau) = j(\tau)$ and $j(T\tau) = j(\tau)$ for the matrices

$$
S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ and } T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},
$$

which generate $SL_2(\mathbb{Z})$; thus we have a well-defined map $j : Y(1) \to \mathbb{C}$. This map is surjective, and by defining $j(\infty) = \infty$, we have a meromorphic function $j : X(1) \to \mathbb{P}^1(\mathbb{C})$ which is, in fact, an isomorphism of Riemann Surfaces. The modular curve $X(1)$, can therefore, be identified with the Riemann sphere *S* 2 .

More generally, for a congruence subgroup $\Gamma \subseteq SL_2(\mathbb{Z})$, we may again define the quotient space *Y*(Γ). This space is not compact, but by adjoining finitely many cusps (corresponding to the orbits of $\mathbb{Q} \cup \{\infty\}$ under the action of Γ), we obtain the modular curves $X(\Gamma)$ which is again a compact Riemann surface. Each *X*(Γ) is, topologically, a sphere with *g* handles. This nonnegative integer *g* is the genus of the surface. The Riemann sphere has 0 handles, thus its genus is 0. The genus of a curve is not only a topological invariant, it has "arithmetic" signifcance as well: for example, by Faltings's Theorem, a curve of genus *g >* 1 can have only finitely many Q-rational points (or more generally only finitely many K -rational points for any finite degree extension of \mathbb{Q}). We will see some of the implications of this in the next lecture. For now, we discuss how to determine the genus *g* of a modular curve *X*(Γ).

The genus of *X*(Γ)

If $f: X \to Y$ is a holomorphic map between Riemann surfaces, then f is surjective and there is a fixed positive integer *d* (the degree of the map) such that for all but finitely many $y \in Y$. $|f^{-1}(y)| = d$ so that the map f is d-to-1. In other words, for most $x \in X$, the multiplicity of *x* is $e_x = 1$, so that *f* is 1-1 about *x*. This integer e_x is known as the ramification index of *x*. There are sometimes points $x \in X$ for which $e_x > 1$; these points are said to be ramified. The Riemann-Hurwitz formula gives us a way to relate the genus g_X of X to the genus g_Y of Y.

Theorem 1 (Riemann-Hurwitz Formula) *Let X and Y be compact Riemann surfaces, and let* $f: X \to Y$ *be a nonconstant holomorphic map of degree d. Then*

$$
2g_X - 2 = d(2g_Y - 2) + \sum_{x \in X} (e_x - 1).
$$

As $X(1)$ is of genus 0, for a congruence subgroup Γ we can use the natural map

$$
f: X(\Gamma) \to X(1),
$$

$$
\Gamma \tau \mapsto \mathrm{SL}_2(\mathbb{Z})\tau
$$

to determine the genus of *X*(Γ).

Theorem 2 *Let* $\Gamma_1 \subseteq \Gamma_2$ *be congruence subgroups. Then the map*

has degree

$$
m = \begin{cases} [\Gamma_2 : \Gamma_1]/2 & \text{if } -I_2 \in \Gamma_2 \setminus \Gamma_1 \\ [\Gamma_2 : \Gamma_1] & \text{otherwise} \end{cases}
$$

For example, since $-I_2 \in \Gamma(2)$ and $|SL_2(\mathbb{Z}/2\mathbb{Z})| = 6$, the map $X(2) \to X(1)$ is of degree 6.

We saw in the last lecture that for each $x \in X(1)$ corresponding to $\tau \in \mathcal{F}^*$ (a fundamental domain for the action on \mathcal{H}^*), there is some neighborhood U_x of τ_x such that $\gamma U_x \cap U_x = \emptyset$ for all $\gamma \neq \tau_x$. From this, we obtain an open cover $\{\pi(U_x)\}\$ of $X(1)$ along with maps $\psi_x : \pi(U_x) \to \mathbb{D}$ which give a complex structure on *X*(1). For most $x \in X(1)$, the projection map $\pi : \mathcal{H}^* \to X(1)$ restricted to U_x is a homeomorphism, but for $x \in \{i, e^{\frac{\pi i}{3}}, \infty\}$ the map is not injective. To correct for this, we had to define the homeomorphisms ψ_x in a slightly different fashion for these points than for the other points of $X(1)$. A similar issue arises for $X(\Gamma)$. In a fundamental domain F_{Γ} for Γ, the set {±*I*2}*Stab*Γ*^τ* = {±*I*2}{*γ* ∈ Γ : *γτ* = *τ*} will consist only of {±*I*2}, and on an appropriate neighhborhood of τ , the restriction of the quotient map $\mathcal{H}^* \to X(\Gamma)$ will be a homeomorphism. The possible exceptions are those τ in the orbit of *i*, $e^{\pi i/3}$, or ∞ .

Definition 3 Let Γ be a subgroup of $SL_2(\mathbb{Z})$. A point $\tau \in \mathcal{H}$ is an elliptic point for Γ if ${\{\pm I_2\}} \subset {\{\pm I_2\}}$ *Stab_{* τ *} . We say* $x = \Gamma \tau \in X(\Gamma)$ *is elliptic if* τ *is an elliptic point.*

Example 4 *The elliptic points for* $SL_2(\mathbb{Z})$ *are <i>i* and $-\bar{\omega} = e^{\pi i/3}$.

Definition 5 *If* $\Gamma \tau \in X(\Gamma)$ *is an elliptic point, its period is*

$$
|\{\pm I_2\}Stab_{\Gamma_{\tau}}:\{\pm I_2\}| = \begin{cases} |Stab_{\Gamma_{\tau}}|/2 & \text{if } -I_2 \in \Gamma \\ |Stab_{\Gamma_{\tau}}| & \text{otherwise} \end{cases}
$$

Now, two points of \mathcal{H}^* may be in different Γ orbits despite being in the same $SL_2(\mathbb{Z})$ orbit. By keeping track of elliptic points of Γ and determining their ramification indices, we can compute the genus of $X(\Gamma)$.

Theorem 6 *Let* $\Gamma \subseteq SL_2(\mathbb{Z})$ *be a congruence subgroup of* $SL_2(\mathbb{Z})$ *and let m be the degree of the natural map* $X(\Gamma) \to X(1)$ *. Let* ϵ_2 *denote the number of elliptic points of period 2,* ϵ_3 *the number of elliptic points of period 3, and* ϵ_{∞} *the number of cusps of* Γ *(i.e., the number of orbits of* Γ *on* $\mathbb{Q} \cup \{\infty\}$ *. Then then genus of* $X(\Gamma)$ *is*

$$
g(X(\Gamma)) = 1 + \frac{m}{12} - \frac{\epsilon_2}{4} - \frac{\epsilon_3}{3} - \frac{\epsilon_{\infty}}{2}
$$

For a proof, see [\[2,](#page-4-0) Thm. 2.22].

Example 7 $X(2)$ has no elliptic points of order 2 or 3 and has 3 cusps. Thus $g(X(2)) = 0$.

Points on *Y* (Γ)

Just as the points of *Y* (1) parametrize elliptic curves, the points on the other modular curves we are most interested parameterize elliptic curves, but this time with additional torsion data.

Recall, for a positive integer *N*, the principal subgroup of level *N*, denoted Γ(*N*) is

$$
\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\},\
$$

where we reduce the entries of the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ modulo *N*. A subgroup $\Gamma \subseteq SL_2(\mathbb{Z})$ is a congruence subgroup if $\Gamma(N) \subseteq \Gamma$ for some *N*. The two we will most focus on are

$$
\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod{N} \right\},\
$$

(where the ∗ indicates that there are no conditions on *b* modulo *N*) and

$$
\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \pmod{N} \right\},\
$$

To see how points of these curves parameterize elliptic curves with additional torsion data, first recall that if $\phi : \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$ is a holomorphic map, then there are $m, b \in \mathbb{C}$ with $m\Lambda_1 \subset \Lambda_2$ and $\phi(z + \Lambda_1) = (mz + b) + \Lambda_2$.

When $\phi(0 + \Lambda_1) = 0 + \Lambda_2$, this map is a group homomorphism.

Definition 8 *A holomorphic group homomorphism of complex tori is called an isogeny.*

When $\phi : \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$ is not the zero map, it is nonconstant. Therefore, ϕ is surjective. Moreover, the kernel, being a discrete subgroup of a compact space, is finite. To understand the kernel, we can use two kinds of isogenies. The first is the multiplication by *N* map. For $N \in \mathbb{Z}^+$, the map $[N]$ is given by

$$
[N]:\mathbb{C}/\Lambda\to\mathbb{C}/\Lambda
$$

$$
z+\Lambda\mapsto Nz+\Lambda
$$

If Λ has an oriented basis $\{\omega_1, \omega_2\}$, then the kernel of this map consists of points *P* of the form

$$
P = \frac{c\omega_1 + d\omega_2}{N} + \Lambda
$$

Let $E = \mathbb{C}/\Lambda$ be an elliptic curve. As an abstract group, the set of *N*-torsion points denoted $E[N]$ (i.e., the kernel of $[N]$ is isomorphic as an abstract group to $\mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$.

In addition to the multiplication by *N* map, for a cyclic subgroup *C* of *E*[*N*], we obtain a map

$$
\mathbb{C}/\Lambda \to \mathbb{C}/C
$$

$$
z + \lambda \mapsto z + C
$$

so that *C* is the kernel of the isogeny. Again refering to an oriented basis $\{\omega_1, \omega_2\}$, a cyclic subgroup of order *N* can be given by the lattice generated by ω_1 and ω_2/N . If, for example, $\Lambda = \Lambda_{\tau}$, then the cyclic subgroup *C* is $\tau \mathbb{Z} + \frac{1}{N}$ $\frac{1}{N}\mathbb{Z}.$

We are nearly ready to state the correspondence between points on $Y(N)$, $Y_1(N)$ and $Y_0(N)$ and isomorphism classes of "elliptic curves with certain torsion data." For identifying points of *Y* (*N*), we first need to define the Weil pairing. Note that we will be following Diamond and Shurman's definition $([1, \S 1.3])$ $([1, \S 1.3])$ $([1, \S 1.3])$, but it is possible to define the Weil pairing using, for example, divisors (see for example [\[3,](#page-4-2) §3.8]).

Given an elliptic curve *E* corresponding to a lattice $\Lambda = \omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}$ with $\omega_1/\omega_2 \in \mathcal{H}$, and given points P, Q in $E[N]$ there is some matrix $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}/N\mathbb{Z})$ such that $P = \frac{a\omega_1}{N} + \frac{b\omega_2}{N} + \Lambda$ and $Q = \frac{c\omega_1}{N} + \frac{d\omega_2}{N} + \Lambda$, we define $e_N(P, Q)$ to be

$$
e_N(P,Q) = e^{2\pi i \det(\gamma)/N}
$$

. This pairing has

$$
e_N: E[N] \times E[N] \to \mu_N,
$$

where μ_N denotes the *N*th roots of unity. We make the following claims:

Theorem 9 *The Weil pairing is*

(i) Bilinear:

$$
e_N(P_1 + P_2, Q) = e_N(P_1, Q)e_N(P_2, Q)
$$

and

$$
e_N(P, Q_1 + Q + 2) = e_N(P, Q_1)e_N(P, Q_2)
$$

(ii) Alternating:

 $e_N(P, P) = 1$ *and in particular,* $e_N(P, Q) = e_N(Q, P)^{-1}$

(iii) Nondegenerate:

If
$$
e_N(P,Q) = 1
$$
 for all $P \in E[N]$, then $Q = 0$

Having introduced the Weil pairing, we can describe points of $Y(N)$: A point of $Y(N)$ corresponds to an isomorphism class of a triple $[E, P, Q]$ where P and Q are a basis for $E[N]$ and $e_N(P, Q)$ $e^{2\pi i/N}$. The triples $[E, P, Q]$ and $[E', P', Q']$ are equivalent if there is an isomorphism $\phi : E \to E'$ such that $\phi(P) = P'$ and $\phi(Q) = Q'$.

A point on $Y_1(N)$ corresponds to a pair $[E, P]$, where P is a point of E of order N. Two such pairs $[E, P]$ and $[E', P']$ are equivalent if there is an isomorphism $\phi : E \to E'$ such that $\phi(P) = P'$.

A point on *Y*0(*N*) corresponds to a pair [*E, C*] where *C* is a cyclic subgroup of *E* of order *N*. Two such pairs $[E, C]$ and $[E', C']$ are equivalent if there is an isomorphism $\phi : E \to E'$ such that $\phi(C) = C'$.

We can identify an elliptic curve E with \mathbb{C}/Λ , but we can actually do more.

Theorem 10 *Let N be a positive integer.*

(i) Each point $[E, P, Q]$ of $Y(N)$ is equivalent to $[\mathbb{C}/\Lambda_{\tau}, \tau/N + \Lambda_{\tau}, 1/N + \Lambda_{\tau}]$ for some $\tau \in \mathcal{H}$. Two points $[\mathbb{C}/\Lambda_{\tau}, \tau/N + \Lambda_{\tau}, 1/N + \Lambda_{\tau}] = [\mathbb{C}/\Lambda_{\tau}', \tau'/N + \Lambda_{\tau}', 1/N + \Lambda_{\tau}']$ if and only if $\Gamma(N)\tau = \Gamma(N)\tau'$

(ii) Each point $[E, P]$ of $Y_1(N)$ is equivalent to $[\mathbb{C}/\Lambda_{\tau}, 1/N + \Lambda_{\tau}]$ for some $\tau \in \mathcal{H}$. Two points $[\mathbb{C}/\Lambda_{\tau}, 1/N + \Lambda_{\tau}]$ and $[\mathbb{C}/\Lambda_{\tau}, 1/N + \Lambda_{\tau}]$ are equal if and only if $\Gamma_1(N)\tau = \Gamma_1(N)\tau'$

(iii) Each point $[E, C]$ of $Y_0(N)$ is equivalent to $[\mathbb{C}/\Lambda_{\tau}, \langle 1/N + \Lambda_{\tau} \rangle]$ for some $\tau \in \mathcal{H}$. Two *points* $[\mathbb{C}/\Lambda_{\tau}, \langle 1/N + \Lambda_{\tau} \rangle]$ *and* $[\mathbb{C}/\Lambda_{\tau}, \langle 1/N + \Lambda_{\tau}]$ *are equal if and only if* $\Gamma_0(N)\tau = \Gamma_0(N)\tau'$

For a proof of part (ii), see $[1, Thm. 1.5.1]$ $[1, Thm. 1.5.1]$

References

- [1] Diamond, F. and Shurman, J. *A First Course in Modular Forms.* Springer 2016, 4th. printing.
- [2] Milne, J.S., *Modular Functions and Modular Forms*, [https://www.jmilne.org/math/](https://www.jmilne.org/math/CourseNotes/mf.html) [CourseNotes/mf.html](https://www.jmilne.org/math/CourseNotes/mf.html)
- [3] Silverman, J. *The Arithmetic of Elliptic curves, second edition*, Springer 2009.