
Lecture 4

The j-invariant
In the last lecture, we saw that the j-invariant of a lattice Λ is the same as the j-invariant of the
associated elliptic curve EΛ. We also noted that the surjectivity is important in showing that an
elliptic curve can be associated to a lattice. In this section, we will briefly recap the definition of
the j-invariant. We’ll also follow Sutherland’s approach for showing that the j-invariant gives a
surjection H → C which then gives a surjection from F to C.

Recall that for a lattice Λ, the Eisenstein series of weight 2k for Λ is the series

G2k(Λ) =
∑
λ∈Λ

′
λ−2k.

Recall also that for each Λ, we defined quantities g2(Λ), g3(Λ), and j(Λ) given by

g2(Λ) = 60G4(Λ), g3(Λ) = 140G6(Λ)), and j(Λ) = 1728 g2(Λ)3

g2(Λ)3 − 27g3(Λ)2 .

Letting j(τ) := j(Λτ ) gives us a function j : H → C.
On the one hand, as stated in the last lecture, g2(Λ)3 − 27g3(Λ)2 is never 0. On the other

hand, one can show ([2, I.3.4.2]) that for k ≥ 2, limτ→∞G2k(τ) = 2ζ(2k), where ζ(z) denotes the
Riemann zeta function. From this, we have limτ→∞ g2(Λ)3−27g3(Λ)2 = 0, so that j is unbounded,
and therefore nonconstant.

By the Open Mapping Theorem, since H is an open subset of C and j is holomorphic on H,
its image j(H) is open. The image is also closed ([4, Thm 16.11]); since C is connected, the only
nonempty subset of C which is both open and closed is C itself, hence j(H) = C.

Now, for every τ ∈ H, Λτ = Λτ+1, so that j(τ) = j(τ+1) = j(Tτ). In addition, Λ1 and Λ2 are
homothetic if and only if j(Λ1) = j(Λ2). Thus, for every τ ∈ H, since (−1/τ)Λτ = Z + (−1/τ)Z =
Λ−1/τ , we have Λτ and Λ−1/τ are homothetic, so j(τ) = j(−1/τ) = j(Sτ). Putting these together,
we see that j yields a well-defined, surjective function Y (1)→ C.

In lecture 1, we showed that the set F (pictured below) is a fundamental domain for the
SL2(Z) action on H.
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If we imagine gluing the vertical portions of the boundary together (identifying τ and τ ± 1)
and gluing together the portion of the boundary along the unit circle (identifying τ and −1/τ), the
resulting space is homeomorphic to a 2-sphere with one point missing.

Definition of a Riemann surface
Our goal for this lecture is to show that the space that we obtain from compactifying the set Y (1)
is a compact Riemann surface. The idea behind a Riemann surface is that it should look like C
locally. Not only can we make sense of holomorphic maps on such surfaces so that we can study
them as analytic spaces, when they are compact we can also view them as algebraic objects, since
every compact Riemann surface is a projective variety. These are important and useful properties of
compact Riemann surfaces, but what does it mean to "make sense of holomorphic maps"? To work
with holomorphic maps on a Riemann surface X, we need some way of identifying open subsets
of the surface with open subsets of C (where "holomorphic map" has a less seemingly-ambiguous
meaning). That suggests one part of the definition: we want some way of mapping open sets of X
to open subsets of C. We may have more than one way of mapping an open set (in particular an
intersection of two open sets) of X to C; we want there to be some compatibility in these mappings.
In other words, we would like X to have a complex structure.

Definition 1 If X is a topological space, a complex structure on X is an open cover {Vα} of X
together with homeomorphisms

ψα : Vα → Uα,

such that Uα is an open subset of C and such that for all α, β with Vα ∩ Vβ 6= ∅, the map

ψβ ◦ ψ−1
α : ψα(Vα ∩ Vβ)→ ψβ(Vα ∩ Vβ)

is holomorphic.

Now that we have the definition of a complex structure, we can state the definition of a Riemann
surface.

Definition 2 A Riemann surface is a connected Hausdorff space with a complex structure.

Thus, our goal for this lecture is to show that X(1), the space obtained by compactifying Y (1) is
a compact, connected, Hausdorff space with a complex structure.

The quotient topology on Y (1)
To begin with, we will discuss the topology on Y (1). We saw in lecture 1 that we cannot take
for granted that the nice topological properties of H (e.g., the fact that H is Hausdorff) will be
inherited by Y (1). Let π : H → Y (1) be the map π(τ) = SL2(Z)τ . The quotient topology on Y (1)
is given by

V ⊆ Y (1) is open if and only if π−1(V ) is open.

This definition immediately shows that π is continuous. Therefore, since H is connected, Y (1) is
connected. Next suppose U ⊆ H is open. Observe that:

(i) For each γ ∈ SL2(Z), γ : H → H, τ 7→ γτ is a homeomorphism and therefore γU is open
for each open U ⊆ H.
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(ii) We can write π−1(π(U)) =
⋃

γ∈SL2(Z)

γU .

Thus π(U) is open, so π is an open map. Using this and the following lemma, we will show that
Y (1) is Hausdorff.

Lemma 3 For any τ1, τ2 ∈ H, there exist neighborhoods U1, U2 of τ1, τ2 such that

γU1 ∩ U2 6= ∅ ⇐⇒ γτ1 = τ2

Remark 4 The proof below follows [4, Lemma 19.1, 19.2].

Proof : Let W1, W2 be open neighborhoods of τ1, τ2 with compact closures K1,K2 ⊂ H (respec-
tively). We begin by showing that the set I = {γ ∈ SL2(Z) : γK1 ∩ K2 6= ∅} is finite. Suppose
α ∈ γK1 ∩K2 so that α = γβ for some β ∈ K1, γ =

(
a b
c d

)
∈ SL2(Z). Then

Im(α) = Im(γβ) = Im(β)
|cβ + d|2

,

so |cβ + d|2 = Im(β)
Im(α) . Since K1 and K2 are compact, Im(β)

Im(α) achieves some maximum, so that as
|cβ + d|2 is bounded. This implies there are finitely many pairs c, d ∈ Z such that (c, d) is the
bottom row of γ for some γ ∈ I. Fixing such a γ =

(
a b
c d

)
, if α = τβ for α ∈ K2, β ∈ K1, then

|α| = |γβ| =⇒ |aβ + b| = |α||cβ + d|.

As |c|, |d|, |α|, and |β| are each bounded, this implies |aβ + b| is bounded as well, so there can be
only finitely many a, b ∈ Z for which

(
a b
c d

)
∈ I.

Next, consider I ′ = {γ ∈ SL2(Z) : γK1 ∩K2 6= ∅, γτ1 6= τ2}. Since I ′ ⊆ I, this set is finite. If
I ′ 6= ∅, for each, γ ∈ I ′, let U1,γ be a neighborhood of γτ1, and let U2,γ be a neighborhood of τ2
disjoint from U1,γ (since H is Hausdorff, such neighborhoods exist). Then

U1 = W1 ∩

 ⋂
γ∈I′

γ−1(U1,γ)


is a neighborhood of τ1 and

U2 = W2 ∩

 ⋂
γ∈I′

U2,γ


is a neighborhood of τ2.

We claim that if γ(U1) ∩ U2 6= ∅, then γ /∈ I ′. Otherwise, we have U1 ⊆ γ−1(U1,γ) and
U2 ⊆ U2,γ so that ∅ 6= γU1 ∩ U2 ⊆ γ−1(U1,γ) ∩ U2,γ , a contradiction since U1,γ and U2,γ are chosen
to be disjoint. �

Corollary 5 Y (1) is Hausdorff

Proof : Let x1, x2 ∈ Y (1) be distinct. Then x1 = π(τ1), x2 = π(τ2) for some τ1, τ2 ∈ H such that
γτ1 6= τ2 for all γ ∈ SL2(Z). Choosing U1, U2 as in the lemma above, π(U1) and π(U2) are disjoint
neighborhoods of x1 and x2. �

3



The SL2(Z) action on H∗

With an understanding of the quotient topology on Y (1) at hand, we can see that Y (1) is not
a compact space - if it were, the fundamental domain F would also be compact, but as F is
unbounded along the imaginary axis, it is not compact. If, however, we were to add a point at ∞
to H and extend the fundamental domain F to include this pint, we could make the image compact.
In order to make this compatible with the SL2(Z) action on H, we must consider how γ ∈ SL2(Z)
acts on ∞. For γ =

(
a b
c d

)
∈ SL2(Z), we want γ to act continuously. Since

lim
τ→∞

aτ + b

cτ + d
= a

c
,

this requires us to extend the SL2(Z) action to Q ∪ {∞}. Therefore, we let H∗ = H ∪ Q ∪ {∞},
and define the action on rational numbers as(

a b
c d

)
r

t
= ar + bt

cr + dt
.

We define
X(1) = SL2(Z)\H∗ = Y (1) ∪ SL2(Z)∞,

and call SL2(Z)∞ the cusp at infinity.
In this section, we will show that X(1) is a compact, connected, Hausdorff surface. To do so,

we must first define a topology on H∗ such that under the quotient topology on X(1) we will have
a connected, compact, Hausdorff space on which we can place a complex structure.

A basis for the topology on H∗ is as follows:

• For τ ∈ H, we have the usual discs that lie in H and are centered at τ .

• For τ ∈ Q, we take open discs of H that are tangent to the real axis at τ .

• For τ =∞, we have the sets Nr = {τ ∈ H : Im(τ) > r}, r > 0.

We again denote the quotient map H∗ → X(1) by π, and we define V ⊆ X(1) to be open if and only
if π−1(V ) is open. As π is continuous and H∗ is connected, we again have that X(1) is connected.
We claim that X(1) is Hausdorff. Let x1, x2 ∈ X(1) are distinct with π(τ1) = π(τ2). If τ1, τ2 ∈ H,
then we are done by Cor. 5. Suppose next that τ1 ∈ H, π(τ2) =∞; without loss of generality, we
may assume that τ2 =∞. Let U1 be a neighborhood of τ1 with compact closure K in H, and let

R = max{Im(γτ) : τ ∈ K, γ ∈ SL2(Z)}.

Then for U2 = {Im(τ) > R} ∪ {∞}, we have γU1 ∩U2 = ∅ for all γ ∈ SL2(Z), so π(U1)∩ π(U2) are
disjoint open sets.

Having shown that X(1) is connected and Hausdorff, it remains to show that X(1) is compact.

Proposition 6 X(1) is compact

Proof : Let {Vi} be an open cover of X(1). Then {π−1(Vi)} is an open cover of H∗. There is a
set V0 within the open cover such that π−1(V0) contains ∞. Then the set F \ π−1(V0) is a closed,
and bounded set, hence is compact. Since {π−1(Vi)} covers F \ π−1(V0), there is a finite subcover
π−1(V1), π−1(V2), . . . , π−1(Vn) of F \ π−1(V0). Then V0, V1, . . . , Vn covers X(1). �
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The complex structure on X(1)
In the final section, we’ll describe a complex structure on X(1). Having done so, we will have shown
that X(1) is a compact Riemann surface. We must identify an open cover {Vi} of X(1) and maps
ψi satisfying the condtions in Def. 1.

First, we let F∗ denote
{τ ∈ H : −1/2 < Re(τ) ≤ 1/2, |τ | > 1} ∪ {τ ∈ H : Re(τ) > 0, |τ | = 1} ∪ {∞}.

Claim 7 The stabilizer of ∞ is 〈T 〉.

With this claim, recalling Prop 9(b) of lecture 1, we have that the stabilizer of τ ∈ F∗ is {±I2}
if τ /∈ {ω̄, i,∞}, 〈S〉 if τ = i, 〈TS〉 if τ = −ω̄, and 〈T 〉 if τ =∞.

Let x ∈ X(1), and let τx be the unique element of F∗ such that π(τx) = x. As shown above,
for each such x, we can find a neighborhood Ux of τx such that γUx ∩ Ux = ∅ for all γ such that
γτ 6= τ . In other words, γUx ∩ Ux = ∅ for γ 6∈ Stabτx . The set Ux cover X(1), so if we can find
appropriate maps ψx, we will have shown that X(1) is a compact Riemann surface. We will first
define the maps ψx and refer the reader to [4, Thm. 19.9] or [2, Thm. I.2.5] for a proof that this
defines a complex structure on X(1).

If x ∈ X(1) is not the cusp at infinty (which we will also denote by ∞ from now on), then let
D denote the open unit disk {z ∈ C : |z| < 1} and let gx : H → D be defined by

gx(τ) = τ − τx
τ − τ̄x

.

We will define a map from π(Ux) to D. When Stabτx = {±I2}, π restricted to Ux is a
homeomorphism so the map ψx = gx ◦ π−1 will be a homeomorphsm from Ux to an open subset
of D. When |Stabτx | = 2nx, nx > 1, the restriction of π to Ux is no longer injective. To correct
this, we define ψx(z) = gx(π−1(z))nx . Finally, we define g∞ = e2πiτ for τ ∈ H, g∞(0) = 0, and
ψ∞ = g∞ ◦ π−1.

Theorem 8 The open cover {Ux} with ψx described above is an complex structure on X(1),

Proof : See [4, Thm. 19.9] or [2, Thm. I.2.5]
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