
Lecture 3

Introduction
In this lecture, we will finally connect points of SL2(Z)\H with isomorphism classes of elliptic
curves over C. To do so, we will first establish a correspondence between points of SL2(Z)\H and
equivalence classes of certain subgroups of C. We will then establish a correspondence between
those equivalence classes and isomorphism classes of elliptic curves over C.

Lattices
Definition 1 A lattice Λ ⊂ C is a discrete subgroup of C that contains an R-basis for C. Such a
subgroup is given by

Λ = ω1Z + ω2Z = {nω1 +mω2 : n,m ∈ Z}.

Here, {ω1, ω2} is a basis for C over R.

Remark 2 Throughout, we make the convention that the basis {ω1, ω2} is oriented so that ω1/ω2 ∈
H.

It is important to note that oriented bases are not unique.

Proposition 3 Let Λ ⊂ C be a lattice. Then {ω1, ω2} and {ω′1, ω′2} are two oriented bases for Λ if
and only if

γ

(
ω1
ω2

)
=
(
ω′1
ω′2

)
,

for some γ ∈ SL2(Z).

The proof of this proposition is one of the exercises in the problem set for this lecture.

We now introduce an equivalence relation on the the lattices of C; first, we have the following
definition:

Definition 4 Two lattices Λ1, Λ2 ⊂ C are homothetic if Λ1 = αΛ2 for some α ∈ C∗.

Claim 5 Homothety is an equivalence relation

Proposition 6 (A) Each lattice Λ is homothetic to a lattice Λτ with basis {τ, 1} for some τ ∈ H.
(B) For τ1, τ2 ∈ H, the lattices Λτ1 (with basis {τ1, 1}) and Λτ2 (with basis {τ2, 1}) are homothetic
if and only if γτ1 = τ2 for some γ ∈ SL2(Z).

Proof: (A) This is an exercise in the problem set for this lecture.
(B) Suppose Λτ1 and Λτ2 are homothetic. Then αΛτ1 = (ατ1)Z + αZ = Λτ2 for some α ∈ C∗.
Since {ατ1, α} is an oriented basis for Λτ2 , by Prop. 3, there is some γ =

(
a b
c d

)
∈ SL2(Z) such that(

a b
c d

)
( ατ1
α ) =

(
αaτ1+αb
αcτ1+αd

)
= ( τ2

1 ). It follows then that

τ2 = τ2
1 = αaτ1 + αb

αcτ1 + αd
= aτ1 + b

cτ1 + d
= γτ1.
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Next, suppose that γτ1 = τ2 for some γ =
(
a b
c d

)
∈ SL2(Z). Then since τ1 ∈ H and at least one of

c, d is nonzero, we have 1/(cτ1 + d) ∈ C∗ and(
1

cτ1+d

)
Λ2 =

(
1

cτ1+d

)
(τ2Z + Z) = (aτ1 + b)Z + (cτ1 + d)Z.

By Prop. 3, this is an oriented basis for Λ1. �
From part (A) of this proposition, we have that every lattice Λ ⊂ C is homothetic to some

lattice Λτ with basis {τ, 1} and τ ∈ H. By part (B), we can say more:

Corollary 7 There is a one-to-one correspondence

{Homothety classes of lattices Λ ⊂ C} 1:1←→ SL2(Z)\H

The quotient C/Λ
Later in this lecture, we will show that given a lattice Λ ⊂ C, there is a map from quotient C/Λ
to E(C), the C points of an elliptic curve E. Even at this stage, we can establish some important
facts about C/Λ.

Theorem 8 Holomorphic maps ϕ : C/Λ→ C/Λ′ with ϕ(0) = 0 correspond to scalar multiplication
aΛ ⊆ Λ′.

Such maps are group homomorphisms and have finite kernel unless ϕ is the zero map. A complex
analytic isomorphism ϕ : C/Λ→ C/Λ′ exists if and only if Λ and Λ′ are homothetic.

The Weierstrass ℘-function of Λ
In this section, we will see how a lattice Λ gives rise to an elliptic curve. For this and the following
section, we will highlight the key results, then we will state the necessary theorems that lead to
these key results. We will assume a level of familiarity with holomorphic functions. We also state a
number of results without proof, but for a more complete discussion, Complex Analysis by Ahlfors
([1]), The Arithmetic of Elliptic Curves by Silverman ([2]), or Sutherland’s notes ( Lecture 15, [3])
are nice references.

Given a lattice Λ, we first define a very important function, the Weierstrass ℘-function.

Definition 9 Let Λ ⊂ C be a lattice. The Weierstrass ℘-function of Λ is

℘(z; Λ) = 1
z2 +

∑
λ∈Λ

′
( 1

(z − λ)2 −
1
λ2

)
,

where
∑
λ∈Λ

′ indicates that the sum is taken over nonzero λ ∈ Λ.

Remark 10 Fixing a lattice Λ, we will write ℘(z) to ease notation.

The Weierstrass ℘-function is an example of an elliptic function.

Definition 11 An elliptic function for a lattice Λ is a complex function f(z) such that
(i) f is meromorphic on C (i.e., holomorphic except for a discrete set of poles).
(ii) f(z + λ) = f(z) for all λ ∈ Λ.
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In order to show that ℘ is meromorphic, one shows that it has poles of order two for each λ ∈ Λ
(which is hopefully easy to see from the definition) and that it has no other poles in C. In fact, ℘
is holomorphic, with the series defining ℘ converge absolutely and uniformly on all compact subset
of C disjoint from Λ ([2, VI.3.1])

To show that ℘ is periodic with respect to Λ, it is easier to first show that its derivative

℘′(z) = −2
∑
λ∈Λ

1
(z − λ)3

is periodic. Since ℘′ is periodic, one has ℘′(z + ωk)− ℘′(z) = 0 for each z /∈ Λ (where {ω1, ω2} is a
basis for Λ), so that ℘(z+ωk)−℘(z) is constant for each k = 1, 2. Using the fact that ωk/2 /∈ Λ and
the fact that ℘ is an even function, one then concludes that ℘(−ωk/2+ωk) = ℘(ωk/2) = ℘(−ωk/2),
so that ℘(z + ωk)− ℘(z) = 0.

One will note that since ℘ is meromorphic, so too is ℘′ - it has poles of order three at each
λ ∈ Λ, and poles nowhere else. In order to associate to a lattice Λ an elliptic curve E/C, the
following series will also be important:

Definition 12 The Eisenstein series of weight 2k for Λ is the series

G2k(Λ) =
∑
λ∈Λ

′
λ−2k

These series appear in the Laurent series expansion of ℘ ([1, §7.3.3]), and using this expansion,
one can finally relate the lattice Λ to an equation for an elliptic curve: Again fixing a lattice Λ, we
define g2 = g2(Λ) = 60G4(Λ) and g3 = g3(Λ) = 140G6(Λ). With these definitions in place, we can
state the key results for this section.

Theorem 13 For C \ Λ, the Weierstrass ℘-function and its derivative satisfy the relation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

(For a proof, see [3, Thm. 15.29].) If we let y = ℘′(z), x = ℘(z), then y2 = 4x3 − g2x − g3 will
define an elliptic curve, provided g3

2 − 27g2
3 6= 0. This equation can be put into Weierstrass form

by letting A = g2
−4 and B = g3

−4 . Moreover, using ℘ and ℘′, we obtain a map from C/Λ to complex
points E(C) for the elliptic curve E defined by y2 = 4x3 − g2x− g3 .

Theorem 14 Let Λ be a lattice, and let g2 = g2(Λ) and g3 = g3(Λ) be as above. Then
(A) The polynomial 4x3 − g2x− g3 has distinct roots so that its discriminant g3

2 − 27g2
3 6= 0.

(B) Let E/C be the elliptic curve

E : y2 = 4x3 − g2x− g3.

The map

z 7→
{

(℘(z), ℘′(z)) if z /∈ Λ
O if z ∈ Λ

yields a group isomorphism C/Λ→ E(C).
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See [3, Thm 16.1] for a proof of (B) or see [2, Prop VI.3.6(b)] for a proof of the stronger statement
that there is an isomorphism of Riemann surfaces.

To see (A), one first notes that ℘′ is an odd function so that on the one hand, for ωk ({ω1, ω2}
is again a basis for Λ), ℘′(ωk/2) = −℘′(−ωk/2). On the other hand, since ℘′(z) = ℘′(z + λ) for
all z 6∈ Λ and for all λ ∈ Λ, we also have −℘′(ωk/2) = ℘′(−ωk/2) = ℘′((ωk/2) − ωk) = ℘′(ωk/2).
Thus ℘′(ωk/2) = −℘′(ωk/2), so that ek = ωk/2 is a zero of 4℘(z)3g2℘(z)− g3. The same holds for
e3 = ω1+ω2

2 ; therefore, if ℘′(e1), ℘′(e2), and ℘′(e3) are all distinct, g3
2 − 27g2

3 will be nonzero.
To establish this last fact, we use the fact that in a fundamental parallelogram for Λ, an elliptic

function for Λ has as many zeros as it does poles. Since the function ℘(z) − ℘(ek) has a double
pole only at the lattice point in a fundamental parallelogram and it has a double zero at ek, these
are its only zeros, so if ej 6= ek, then ℘(ej)− ℘(ek) 6= 0.

Elliptic curves and their associated Lattices
In the first section, we established that equivalence classes of lattices (i.e., lattices up to homothety)
are in bijection with the set SL2(Z)\H. In the previous section, we showed that a lattice Λ gives
rise to a complex torus C/Λ which is isomorphic to an elliptic curve. In this section, we will show
that an elliptic curve E/C can be associated to a lattice. Having done so, we will have established
the following

Proposition 15 Isomorphism classes of elliptic curves somorphism classes of elliptic curves E/C
are in one-to-one correspondence with homothety classes of lattices Λ ⊂ C, which are in one-to-one
correspondence with orbits of H under the SL2(Z) action.

To show that we can associate an elliptic curve E/C to a lattice, we must first introduce the
j-invariant of a lattice and the j-invariant of an elliptic curve.

Definition 16 Given a lattice Λ ⊂ C, the j-invariant of Λ is defined by

j(Λ) = 1728 g2(Λ)3

g2(Λ)3 − 27g3(Λ)2

Recall that in the first lecture, we stated that an elliptic curve E defined over a field K of charac-
teristic zero (for example, K = C) can be described by an equation E : y2 = x3 + Ax + B, where
A,B ∈ K satisfy −16(4A3 + 27B2) 6= 0.

Definition 17 Given an elliptic curve E : y2 = x3 +Ax+B, where A,B ∈ K satisfy −16(4A3 +
27B2) 6= 0, the j-invariant of E is defined by

j(E) = 1728 4A3

4A3 + 27B2

If Λ ⊂ C is a lattice and EΛ : y2 = 4x3 − g2x− g3 is the elliptic curve isomorphic to C/Λ, then EΛ
is isomorphic to an elliptic curve given by E : y2 = x3 +Ax+B, where A = −g2

4 and B = −g3
4 , and

we have j(Λ) = j(E). Moreover, if two lattices Λ1 and Λ2 are homothetic, then j(Λ1) = j(Λ2). It
is not the case in general that the elliptic curves E1 and E2, associated to Λ1 and Λ2 respectively,
but they are isomorphic.

Finally, to conclude the lecture, we state the Uniformization Theorem for elliptic curves
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Theorem 18 Let E/C be an elliptic curve given by E : y2 = 4x3−a2x−a3. Then there is a lattice
Λ ⊂ C such that a2 = g2(Λ) and a3 = g3(Λ).

We will briefly explain the role of the j-invariant here, and discuss the function further in the next
lecture. Among the relevant facts about the function j is that it defines a surjection j : H → C,
τ 7→ æ(Λτ ). Thus, given an elliptic curve E with j-invariant j(E), we can find a lattice Λτ whose
j-invariant equals j(E), and the elliptic curve Eτ associated to Λτ is isomorphic to E.
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