
Lecture 1

Introduction
This lecture series is concerned with modular groups and modular curves. Our focus will be in
particular on certain congruence subgroups of the modular group SL2(Z). An action on SL2(Z) on
the complex upper half-plane H gives rise to the curve Y (1), a curve whose points correspond to
isomorphism classes of elliptic curves over C. Moreover, certain finite index subgroups of SL2(Z)
give rise to other curves – including Y (N), Y1(N), and Y0(N) – which parameterize isomorphism
classes of elliptic curves with extra torsion data (more on that later). The curves Y (N), Y1(N),
and Y0(N), and their respective compactifications X(N), X1(N), and X0(N), will be our primary
focus.

In this first lecture, we will first give an example of the group law on an elliptic curve in action.
Then we will discuss the action of SL2(Z) on the upper half-plane.

An elliptic curve over R
Over a field K of characteristic not equal to 2 or 3 (for example C or a subfield of C like R or Q),
an elliptic curve can be described by an equation

E : y2 = x3 +AX +B,

where A,B ∈ K and ∆ = −16(4A3 + 27B2) 6= 0. The condition ∆ = −16(4A3 + 27B2) 6= 0 is
equivalent to x3 +Ax+B having distinct roots. Over R, an elliptic curve given by such an equation
will look like one of the following two graphs

x

y

( When x3 +Ax+B has one real root.)
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x

y

( When x3 +Ax+B has three real roots.)

When E is given by an equation y2 = x3 + Ax + B, there is one point at infinity, which we will
denote O. It will serve as the identity for the group law. (See the supplemental notes for an
illustrated example of the group law.) The group law for an elliptic curve can be expressed using
formulas so that the group law is in algebraic terms.

A brief discussion about points of order N

Since we will be interested in what modular curves can help us understand about torsion, we will
touch on the notion here. A torsion point P on an elliptic curve is a point for which there is a
positive integer N such that

P + P + · · ·+ P︸ ︷︷ ︸
N times

= O

. If N is the smallest positive integer for which this occurs, we say that P is a point of order N .

The action of SL2(Z) on H
SL2(Z) acts on the complex upper-half plane in such a way that the resulting quotient space
parameterizes elliptic curves over C up to isomorphism (meaning each point in the space corresponds
to an isomorphism class of elliptic curves). The compactification of the quotient space is, in fact,
a compact Riemann surface. This is especially nice since such objects can be understood using
methods from both analytic and algebraic geometry.

Definition 1 The complex upper half-plane is

H := {τ ∈ C : Im(τ) > 0}.
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Remark 2 In Lecture 3, we will later see that we can relate elements of H to elliptic curves over
C.

Definition 3 The modular group is

SL2(Z) =
{(

a b
c d

)
∈ M2(Z) : ad− bc = 1

}
.

It is a group under matrix multiplication and has identity I2 =
(

1 0
0 1

)
There has been mention of an action of SL2(Z) on H several times, but we have not yet said what

that action is. SL2(Z) acts on H by linear fractional transformations: for γ =
(
a b
c d

)
∈ SL2(Z)

and τ ∈ H, we define the action as follows:

γτ = aτ + b

cτ + d
.

Claim 4 This is a left group action of SL2(Z) on H. To prove this claim, you should show that
the following three things hold:

(i) γτ ∈ H for all γ ∈ SL2(Z) and for all τ ∈ H.
(ii) I2τ = τ for all τ ∈ H.
(iii) (γ1γ2)τ = γ1(γ2τ) for all γ1, γ2 ∈ SL2(Z) and for all τ ∈ H.

Part (i) of the claim above is a consequence of the following claim:

Claim 5 For a, b, c, d ∈ R with ad− bc 6= 0 and for τ ∈ C with τ 6∈ R,

Im
(
aτ + b

cτ + d

)
= (ad− bc)Im(τ)

|cτ + d|2

In the introduction, it is stated that the action of SL2(Z) on H gives rise to a curve Y (1).
This curve is the space SL2(Z)\H. We will be interested in the topology of the space as we move
on, but to give a sense of what the elements of this space are, we will review some important sets
that result from group actions: orbits.

For τ ∈ H, if we think of SL2(Z) moving τ around to other points in H, then the orbit is the
set of points that τ can be moved to by some γ ∈ SL2(Z). Stated more precisely, the orbit of τ
under the action is the set SL2(Z)τ = {τ ′ ∈ H : τ ′ = γτ for some γ ∈ SL2(Z)}.

More generally, if G is a group acting (on the left) on a set X, the orbit of x ∈ X will be
denoted by Gx = {y ∈ X : y = gx for some g ∈ G}.The set of orbits of elements of X under the
action of G form a partition of X, meaning every element x ∈ X is contained in exactly one orbit.
The quotient G\X is the set of orbits of X under the action of G. In our case, with G = SL2(Z)
and X = H, SL2(Z)\H = {SL2(Z)τ : τ ∈ H}.

Since (claim:) the action of γ and −γ is the same (end of claim), PSL2(Z) := SL2(Z)/{±I2}
gives essentially the same action on H and so yields the same quotient space. You will sometimes
see PSL2(Z) referred to as the modular group, but in this series, by “the modular group,” we will
mean SL2(Z).
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A brief diversion into quotient spaces
Though we can talk about a quotient of a set X under a (left or right) action by a group G, when
we use the term “quotient space,” we are in fact referring to a topological notion. Our particular
group, SL2(Z) has a topology (the discrete topology), and H inherits a topology from C. The
action of SL2(Z) on H therefore gives us a space that we can justifiably call a quotient space. We
will discuss quotient spaces in subsequent lectures, but you have likely seen at least one quotient
space before: the unit circle. The group Z acts on R (we will say on the right) by addition with
the action being defined by (and I apologize for the notation) x · n = x + n for x ∈ R and n ∈ Z.
What are the orbits of this group action (which will be the points of the quotient space)? Well, by
definition, they are Zx = {y ∈ R : y = x+ n for some n ∈ Z}, but we can actually identify each of
these orbits with a point in the interval [0, 1). Why? Given any real number x, we can find some
integer n such that x+n = y ∈ [0, 1), and this y will be unique in [0, 1). So we can use each number
in the interval [0, 1) to (uniquely) represent each distinct orbit Zx. In other words, as a set, the
quotient space R/Z is in one-to-one correspondence with the interval [0, 1). The topology we get
on [0, 1) is not the subspace topology it inherits from R in this case, but it is still something we
recognize. If you are comfortable with the idea of taking the closed interval [0, 1] and identifying 0
and 1, you can see that we get a circle. If that’s not quite convincing, then you can instead think
of the map [0, 1) → C, x 7→ e2πix. This gives a homeomorphism from [0, 1) to the unit circle in
C. Now, this argument is not complete (one has to show that with the quotient topology R/Z is
homeomorphic to [0, 1), and hence homeomorphic to the unit circle), but this does give one some
hope that quotient spaces need not be mysterious.

On the other hand, we don’t get for free that a quotient space is pleasant, even if the space
originally acted on is. As an example, Q can act on R by addition as well, with x · r := x + r for
any x ∈ R and any r ∈ Q. In this case, the quotient space R/Q has a very different topology from
R/Z. It has the indiscrete topology, so unlike R and R/Z, we cannot separate two distinct points
of R/Q by open sets. Luckily for us, the quotient space SL2(Z)\H will have a much finer topology
than the indiscrete topology.

The matrices S and T

In order to understand the quotient space SL2(Z)\H, it will be helpful to identify a fundamental
domain for the action. Before doing so, we introduce to matrices that will help us show that the
set we will identify below is a fundamental domain. The two matrices we will use are

S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
.

If τ ∈ H, then
Sτ = 0τ − 1

τ + 0 = −1
τ
,

and
Tτ = τ + 1

0τ + 1 = τ + 1.
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Claim 6 (i) S2 = −I2 and S has order 4.

(ii) Tn =
(

1 n
0 1

)
for all n ∈ Z (as a consequence, T has infinite order).

A fundamental domain for the action of SL2(Z) on H
We will now identify one fundamental domain for the action of SL2(Z) on H, but this set is by no
means the only one.

Remark 7 Note that the set we identify below as a fundamental domain does not satisfy everyone’s
definition of a fundamental domain. If you require fundamental domains to be open and to have at
most one representative of each orbit, then the interior of the set below is a fundamental domain.

Let F :− {τ ∈ H : |τ | ≥ 1 and |Re(τ)| ≤ 1/2}. The set F is pictured below.

Remark 8 In the image above, ω = e
2πi

3 = −1
2 +

√
3

2 i.

We now show that F is a fundamental domain for the SL2(Z) action on H.

Proposition 9 (A) Let τ ∈ H. Then there is some γ ∈ SL2(Z) such that γτ ∈ F .
(B) If τ, γτ ∈ F for some γ ∈ SL2(Z) with τ 6= γτ , then one of the following is true:

(i) Re(τ) = ±1
2 and γτ = τ + 1

(ii) |τ | = 1 and γτ = − 1
τ .

Proof: (A) Let G be the subgroup of SL2(Z) generated by S and T , and fix τ ∈ H. We will
show that there is some γ ∈ G such that γτ ∈ F . First, recall that if γ =

(
a b
c d

)
∈ SL2(Z), then

Im(γτ) = Im(τ)
|cτ+d|2 . Since τ is fixed and Im(τ) > 0, there are only finitely many pairs c, d ∈ Z such

that
|cτ + d| ≤M
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for any given M ∈ Z+. Thus, there is some
(
a0 b0
c0 d0

)
= γ0 ∈ G such that |c0τ + d0| is minimal and

Im(γ0τ) is maximal. For some n ∈ Z, τ ′ := Tn(γ0τ) has −1/2 ≤ Re(τ ′) ≤ 1/2. We claim that
|τ ′| ≥ 1. If not, then |τ ′| < 1 gives

Im(Sτ ′) = Im(τ ′)
|τ ′|2

> Im(τ ′) = Im(Tnγ0τ) = Im(γ0τ),

contradicting our choice of γ0. Thus τ ′ = (Tnγ0)τ ∈ F (and Tnγ0 ∈ G).
(B) Suppose there is some γ 6= ±I2 and some τ ∈ F such that γτ ∈ F also. Without loss
of generality, we may assume that Im(γτ) ≥ Im(τ). Writing γ =

(
a b
c d

)
, our assumption that

Im(γτ) ≥ Im(τ) implies

Im(τ) ≤ Im(γτ) = Im(τ)
|cτ + d|2

,

so that |cτ + d|2 ≤ 1. Since
√

3
2 = Im(ω) ≤ Im(τ), we must have |c| ≤ 2√

3 ; as c ∈ Z, this implies
|c| ≤ 1. We now proceed by cases.

If c = 0, then ad − bc = ad = 1, so a = d = ±1 and γ =
(
±1 b
0 ±1

)
. Then γτ = τ + b or

γτ = τ − b. Since both τ and γτ are in F , we must have |Re(τ) = 1/2, and since by assumption
b 6= 0, we must have b = ±1.

If c = 1, let x = Re(τ) and y = Im(τ). Then (x+d)2+y2 = x2+2xd+d2+y2 = xd+d2+|τ |2 ≤ 1,
we have |d| ≤ 1, and we consider three subcases.

Case c = 1, d = 0: if d = 0, then |τ | ≥ 1 and |cτ + d|2 = |τ | ≤ 1 implies |τ | = 1. Additionally,
since d = 0 and ad − bc = −bc = 1, b = −1. Therefore, γτ = aτ−1

τ = a − 1
τ . If a = 0, then

we are in case (B)(ii), otherwise, a = ±1 (if |a| > 1, then we cannot have both a − 1
τ ∈ F and∣∣∣− 1

τ

∣∣∣ = 1). If a = −1, then τ = ω, and γ = (ST )2 =
(−1 −1

1 0
)
, γ fixes ω. If a = 1, then τ = −ω̄ and

γ = TS =
( 1 −1

1 0
)
, and γ fixes −ω̄.

Case c = 1, d = 1: Again letting x = Re(τ) and y = Im(τ), note that on the one hand
1 ≥ |cτ +d|2 = |τ +1|2 = (x+1)2 +y2 = x2 +2x+1+y2 = (x2 +y2)+2x+1 = |τ |2 +2x+1 ≥ |τ |2,
where in the last inequality, we use x ≥ −1/2. Since by definition of τ ∈ F , we know that |τ | ≥ 1,
we conclude |τ | = 1. On the other hand, |τ |2 ≥ 1 ≥ |cτ+d| = |τ+1|2. Then x2+y2 ≥ (x+1)2+y2 =
x2 + 2x+ 1 + y2 holds only if 0 ≥ 2x+ 1 or equivalently −1/2 ≥ x. Thus x = −1/2. Since τ ∈ H,
|τ | = 1 and Re(τ) = −1/2, τ = ω. Then since c = d = 1, γ =

(
a b
1 1
)
, in which case b = a − 1, and

γτ = a− 1
ω+1 = a+ ω. Since a+ ω ∈ F , we conclude that either a = 0, in which case γ = ST and

γ fixes ω, or a = 1 and γτ = ω + 1.
Case c = 1, d = −1: Then 1 ≥ |τ − 1|2 = |τ |2 − 2x + 1 (where x = Re(τ) as before). Then

since 1/2 ≥ x, we have 1 ≥ 2x ≥ |τ |2 ≥ 1, so |τ | = 1. Similar to above, |τ − 1|2 ≤ |τ |2 gives
|τ |2 − 2x + 1 ≤ |τ |2 so that x ≤ 1/2, and we conclude x = 1/2 and τ = −ω̄. Since c = 1, d = −1,
we have γ =

(
a b
1 −1

)
, so b = −a− 1. Thefore, γτ = a− 1

−ω̄−1 = a− 1
ω = a+ ω. This requires either

a = 0 so that γ = (TS)2 and γ fixes −ω̄, or a = −1 and γτ = ω − 1.
The case for c = −1 is similar to the case c = 1. �

To end this first lecture, we give a corollary to the above proposition:

Corollary 10 The matrices S and T generate SL2(Z).

Proof: Let G be the subgroup of SL2(Z) generated by S and T , let τ be any element in the interior
of F , and let γ ∈ SL2(Z). By the proof of part (A) of the proposition, there is some γ′ ∈ G such
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that γ′(γτ) ∈ F . By part (B), since both γ′(γτ) = (γ′γ)τ and τ are in the interior of F rather
than the boundary, they must be equal. Therefore we must have γ′γ = ±I2 so that γ = ±(γ′)−1.
Since S2 = −I2 ∈ G, we conclude that γ ∈ G. �
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