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1 Definitions and Notations

1. For an integer N € Z%, let us write the reduction map for SL2(Z) modulo N as red : SLo(Z) —
SLo(Z/NZ).

2. Recall that for a modular curve X (T'), we write Y(I') := T'\'H for its set of noncuspidal points. It is
a non-compact Riemann surface, and can be interpreted as an affine algebraic curve over a suitable
extension of Q.

3. For a field k, we let k denote its algebraic closure.

4. Given a field extension F/Q, if F denotes an algebraic closure of F over Q then the extension F/F is
normal and separable. In particular, F' /F is a Galois extension of infinite degree. Its automorphism
group G := Gal(F'/F) is called the absolute Galois group of F

5. Recall that an algebraic elliptic curve over a field k is a nonsingular curve with a k-rational point. Via
algebraic geometry, such a curve will have a defining equation in general Weierstrass form, y% 4+ a,xy +
azy = % + azx? + azw + ag; see Problem 19 from Problem Set 5. See also Chapter 11 [6].

6. Given an elliptic curve E : y? = 23 + Az + B with A, B € F and an integer N € Z%, the absolute
Galois group G acts on the N-torsion subgroup FE[N] in the natural way, o - (z,y) := (o(z),o(y)).
This group action is a homomorphism from G into the automorphism group of E[N], which will be
written as

PE,N - GF — Aut(E[N])
This action/homomorphism is called the mod-N Galois representation of E.

7. E[N] is a rank two Z/NZ-module. Fixing a basis {P,Q} for E[N], we can represent our action via
2 x 2 matrices. In this case, we may write our mod-N Galois representation as

peN.Pq: Gr — GL2(Z/NZ).

2 Introductory Problems
Problem 1. Let E be the elliptic curve defined by
E:y? =2 —1lz + 14.
Check directly that it has a rational point (1,2). Show that this point has order 4 by calculating its multiples.

Problem 2. Given an elliptic curve over defined by a Weierstrass equation y? = £3 + Ax+ B with A, B € Q,
show that its 2-torsion points are exactly those points of the form (zg, 0) for 29 € Q a root of y? = 23+ Ax+B.

IFor more on infinite Galois theory, see Keith Conrad’s CTNT 2020 notes [I].



Problem 3.

a. Let E/g be the elliptic curveﬂ defined by 3% = 23 + 1. Can you come up with an automorphism of E
other than [£1]7? (Hint: it should be of order 3.)

b. Let E/Q be the elliptic curveﬂ defined by y? = 2 + 2. Can you come up with an automorphism of E
other than [+1]? (Hint: it should be of order 4.)

Problem 4. Show that the equation

y2 + a1y + a3y = 2+ a2x2 + asx + ag
with a; € Q can be transformed via a change of coordinates into the form

v =2+ Ar+ B
for some A, B € Q. (Hint: see Section IIL.1 [6].)
Problem 5.
a. Show that for all A, B € Q the equation
E:y =234+ Az +B (1)

defines a nonsingular curve iff 2® + Az + B has no repeated roots. (Hint: to have a singular point
(70,%0), the polynomial F(z,y) := y*> — (23 + Az + B) must have a solution (x¢,yo) where both of its
partial derivatives vanish at (zo,yo).)

b. One can homogenize the affine algebraic equation given in to get a projective algebraic curve defined
by
Ep :y?z = 23 + Azz® + B23.

This curve lies in projective 2-space,
P? := {(a,b,c) € C*: (a,b,c) # (0,0,0)}/{(a,b,c) ~ (Aa, \b, Xc) : A € C*}.

Show that E}, has a Q-rational point, i.e., a point in P? with an equivalence class representative which
lies in Q.

c. Conclude that an equation of the form given in where 22 4+ Az + B has no repeated roots will define
an elliptic curve as per Definition 5.

Problem 6. Let us recall Mazur’s theorem (originally known as Ogg’s conjecture): any elliptic curve Eq
will have a torsion subgroup

Z/NZ for N =1,2,...,10,12;

E(Q)[tors] =
(@ftors] {2/22 X Z/2NZ for N =1,2,3,4

This was first proven in [2] and [3], and then again in [4].
A key part of the proof in [2] was to show that for any prime ¢ > 11 there are no elliptic curves with a
Q-rational ¢-torsion point. Find an equivalent formulation of this fact in terms of modular curves.

Problem 7. Another result of Barry Mazur classifies rational isogenies of prime degree for elliptic curves
over Q [4]. He shows that if an elliptic curve E/q admits a rational isogeny of prime degree ¢, then

¢ €{2,3,5,7,11,13,17,19, 37, 43,67, 163}.

Find an equivalent formulation of this in terms of modular curves.

2This elliptic curve has j-invariant 0.
3This elliptic curve has j-invariant 1728.



3 Intermediate Problems

Problem 8. Following Problem [2| construct infinitely many noncuspidal rational points on Y7(2) (Note
that this will require infinitely many distinct j-invariants).

Problem 9 (There are no Q-rational torsion points of order 11 on any elliptic curve). The aim of this
exercise is to show that

X1(11)(Q) = {cusps}.

Since the noncuspidal points of X (11)(Q) will correspond to I';(11)-isomorphism classes of elliptic curves
with a Q-rational torsion point of order 11, this exercise will show there are no elliptic curves over Q with a
Q-rational torsion point of order 11.

a. Prove that the genus g(X;(11)) = 1. Noting that the cusp at infinity on X; (V) is always Q-rational,
conclude that X;(11) is an elliptic curve defined over Q. (For a genus formula for X; (), see Problem
18 on Problem Set 5.)

b. By part a., there is a model for E := X;(11) over Q. One such model is

By —y=2a% -2
By the Mordell-Weil theorem, we know that E(Q) is a finitely generated abelian group. Therefore, it

has a decomposition
E(Q) 2 Z" x E(Q)[tors].

Here, r is the rank of E over Q, and E(Q)[tors] is its torsion subgroup over Q.

Via a computer algebra system or otherwise, show that E has rank 0 over Q.

c. By part b., E(Q) = E(Q)[tors] is a finite group. In particular, E has finitely many Q-rational points.
Via a computer algebra system or otherwise, show that #E(Q)[tors] = 5.

d. By Problem 12 on Problem Set 5, we know that X;(11) has ten cusps. Let us take for granted that
exactly five cusps are Q-rational. Conclude that X;(11) has no noncuspidal Q-rational points. In
particular, there do not exist QQ-rational torsion points of order 11 on any elliptic curve.

Problem 10. This problem assumes some basic algebraic geometry, but read the conclusion anyways!

Let C'/Q be a smooth curve of genus g(C) = 0. There is a notion of divisors on curves which is similar
to the notion of divisors on Riemann surfaces. There are also “rational” functions on C' — analogous to
meromorphic functions on a compact Riemann surface — which can be interpreted as algebraic maps C' — P!,
There is also a notion of a Riemann Roch space for a divisor on C, L(D) := {f a rational function on C :
div f + D > 0}. As it turns out, its dimension over Q is finite; we set I(D) := dimg L(D).

A corresponding Riemann-Roch theorem holds and says the following: there is a divisor K (of degree
2g — 2, compare to Problem 17 on Problem Set 5) on C such that for all divisors D on K, one has

I(D) = (K — D) =deg D — g + 1.

Suppose that C has a rational point P € C(Q). Apply this Riemann-Roch theorem to the divisor
D := (P) to show that C' is actually isomorphic to Pg.

Problem 11. It is a fact that for N € Z* the modular curves X;(N) and Xo(N) can be defined over Q,
and will have at least one Q-rational point: the cusp at infinity. It is also a fact that any algebraic curve
C/q with genus g(C') > 1 will have finitely many Q-rational points (see Falting’s Theorem).

Use these facts and the previous exercise to determine all primes ¢ € ZT for which either X (¢) or Xo(¥)
has infinitely many Q-rational points. (Let us assume the genus one modular curves X;(¢) and Xo(¢) all
have rank zero, i.e., #X;(£)(Q) < oo and #X(¢)(Q) < co. Let us also assume that g(Xo(2)) = g(Xo0(3)) =

9(X1(2)) = 9(X1(3)) = 0.)



Problem 12 (GLy-modular curves, I). This generalization of modular curves comes up more naturally when
studying mod—N Galois representations of elliptic curves. These five exercises on GLo-modular curves will
closely follow Samir Siksek’s notes [5] (which itself follows [2]).

Fix an integer N € Z*. Recall that for a primitive N’th root of unity (y € C, one has that Q({y)/Q is
a Galois extension with Galois group

Gal(Q(¢w)/Q) = (Z/NZ)*. (2)
Consider a subgroup H C GLy(Z/NZ). We can define its determinant subgroup as
det(H) := {det(y) : v € H}.

Observe that det(H) C (Z/NZ)*, and so det(H) acts on Q(¢x). By Galois theory, it has a corresponding
fixed field of Q((x), which we will denote by Q(¢)dt(H),

a. Show that det(H) = (Z/NZ)* iff Q(¢y)%tH) = Q.
b. Define the Borel subgroup of GL2(Z/NZ) as

Bo(N) := Hg Z} € GLQ(Z/MZ)}.

Show that By(N) N SLy(Z/NZ) = red(To(N)), and that Q(Cy)detBe(V) = Q.
¢. Define the GLy(Z/NZ) subgroup

Bi(N) = {[(1) Z] € GLQ(Z/NZ)}.

Show that By (N) N SLy(Z/NZ) = red(T';(N)), and that Q({x )P (V) = Q.

d. Define the GL3(Z/NZ) subgroup
B(N) :={I}.

Show that B(N) N SLy(Z/NZ) = red(T(N)), and that Q(Cy)dt BN = Q(¢w).

Problem 13 (GLs-modular curves, II). Fix an integer N € Z* and a subgroup H C GLy(Z/NZ). Taking
the preimage of H N SLy(Z/NZ) under the reduction map red : SLy(Z) — SLo(Z/NZ) gives a congruence
subgroup 'y of level N, whence we have a corresponding modular curve Xy := X(I'y). This algebraic
curve has a nic model over Q(¢x)*H). See Problem [12| for examples of 'y and the fixed fields Qd¢t(#),

As it turns out, such modular curves Xz will be moduli spaces for H-isomorphism classes of elliptic curves

with “level N structure”. Such an H-isomorphism is as follows: suppose that E and E’ are two elliptic curves
with bases {P,Q} and {P’,Q’} for E[N] and E’[N], respectively. For a vector v := [ﬂ € Matax1(Z/NZ),

let us write R, := 2P +yQ and R) := P’ + yQ'. Then the elliptic curves F and E’ are H-isomorphic with
respect to {P,Q} and {P’,Q'} if there exists an isomorphism ¢ : E = E’ and an element h € H so that for
all column vectors v € Matayx1(Z/NZ), one has

¢(RU) = R;w

What this means: since ¢ is an isomorphism from E to E’, it is also an isomorphism from E[N] to E'[N]. Both
are isomorphic as Z/NZ-modules. Picking a basis for each (Z/NZ)-module, it has a matrix representation
My by taking one basis to the other. Then ¢ is an H-isomorphism (w.r.t. these bases) iff M, € H.

For H-isomorphic elliptic curves, we will write (E, P,Q) ~g (E', P',Q’).

a. Show that H-isomorphism is an equivalence relation.

b. Show that each equivalence class [(E, P,Q)]y has a well-defined j-invariant.

4Smooth, projective, geometrically integral.



c. Based on the previous exercise, show that I'g,(n) = T'o(N), T'p,(n) = T'1(N) and I'g(ny = T'(N).

d. Show that when H := By(N), one has (E,P,Q) ~g (E',P',Q") iff there exists an isomorphism
¢ : E = E’ so that the subgroups (¢(P)) = (P). Conclude that the “data” of a By(IV)-isomorphism
is an elliptic curve E with a cyclic subgroup of order INV.

e. Show that when H := B;(N), one has that (F,P,Q) ~g (E', P',Q’) iff there exists an isomorphism
¢ : E = E’ so that ¢(P) = P'. Conclude that the “data” of a B;(NN)-isomorphism is an elliptic curve
E with a torsion point of order N.

f. Show that when H := B(N), one has that (F,P,Q) ~g (E', P',Q’) iff there exists an isomorphism
¢ : E = E' so that ¢(P) = P’ and ¢(Q) = Q’'. Conclude that the “data” of a B(NN)-isomorphism is
an elliptic curve E with a basis for its N-torsion.

4 Advanced Problems

Problem 14 (GLs-modular curves, IIT). This problem concerns rational points on GLg-modular curves,
and their moduli space interpretation.

Fix an integer N € Z*, and let H C GL3(Z/NZ) be a subgroup. As noted in the previous exercise on
GLy-modular curves, Xy is a nice curve over Q(CN)det(H). In fact, the points on Xy may be regarded as
H-isomorphism classes of elliptic curves with fixed level N structure. We will write such points as (F, P, Q),
suppressing notation for H.

For each algebraic extension F/Q(Cy)%t ()| there is an action of the absolute Galois group G on the
set Yz (F) of noncuspidal algebraic points as follows. For each o € G, let us define

(E,P,Q)° :==(E7,P?,Q°).

Then one says that a point (E, P,Q) € Yy (F) is F-rational iff Vo € G one has
(E,P,Q)° ~u (E,P,Q).

In such a case, let us write (E, P,Q) € Yy (F).

a. Show that if —I € H, then for a point z € Yy (F) with j-invariant # 0,1728, one has z € Yy (F') iff
there is a representative x = (E, P,Q) with FE defined over F and its mod-N Galois representation
peN,Po(Gr) C H. In such a case, any representative (E, P, () with E defined over F will also have
pe N Po(Gr) C H.

b. Show that if —1 ¢ H, then for a point x € Yy (F) with j-invariant # 0,1728, one has x € Yy (F) iff
there is a representative x = (E, P,Q) with E defined over F and its mod-N Galois representation
peN,Po(Gr) € H. In such a case, any representative (E, P, Q) with E defined over F will also have
pe.NPo(Gr) C{L£I}H. (Hint: replace a representative z = (E, P, Q) with a quadratic twist of E.)

Problem 15 (GLg-modular curves, IV). Let H be a subgroup of GLy(Z/NZ).

a. Suppose —I € H. Show that Yy is a coarse moduli space away from j-invariants 0, 1728: for any finite
extension F/Q, an F-rational point x € Yy with j(x) # 0,1728 has infinitely many representatives
(E, P,Q) with E defined over F' which are not H-isomorphic over F. (Hint: use quadratic twists.)

b. Suppose —I ¢ H. Show that Yy is a fine moduli space away from j-invariants 0, 1728: for any algebraic
extension F'/Q, an F-rational point x € Yy with j(z) # 0,1728 will have a unique representative
(E, P,Q) with E defined over F, up to H-isomorphism. (Hint: show that any H-isomorphism between
two representatives of x is F-rational.)

Problem 16 (GLg-modular curves, V).

a. Pick your favorite subgroup H of GLy(Z/NZ) for some N € Z*. Try and determine both Q4°*#) and
I'y, and the “data” of a point on Yy. Also determine if Yy is a coarse or fine moduli space.



b. Many number theorists are interested in classifying Galois representations of elliptic curves over various
fields, especially over Q. This classification is at the core of Mazur’s Program B, introduced in [2].
Read [7] for a survey on progress towards Mazur’s Program B over Q. Studying Q-rational points on
modular curves has helped make significant progress towards this program.

The next two problems assume basic knowledge of complex multiplication.

Problem 17 (CM points of bounded degree on X(NN)). Let K be an imaginary quadratic number field,
and let O C K be its ring of integers. Let N € Z™, and suppose that the pair (N, O) satisfies the Heegner
hypothesis, i.e., each prime p | N splits in O.

a. Show there exists an ideal I C Ok of norm N.

b. Deduce that there exists a K (D-rational cyclic N-isogeny between Ox-CM elliptic curves, I]: E —

E'[l

c. Conclude that we have a noncuspidal point (E,[I]) € Xo(N)(K(®)) whose degree over Q is at most
2h g, where the class number hy := #Cl1(Ok).

d. Redo parts a., b. and c. after replacing Ok with an arbitrary order © C K, K1) with the ring class
field K(O), and hg with the class number hp := #C1(O).

e. * What is the least degree of a CM point on Xo(N)?
Problem 18. Let K be an imaginary quadratic number field.

a. Show that for infinitely many primes ¢ € Z™*, the modular curves X,(¢) have a noncuspidal K M.
rational point.

b. Show that Xy (¢) has a noncuspidal Q-rational point when ¢ € {2,3,7,11,19,43,67,163}. (Hint: which
fields Q(v/—¢) have class number one?)
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5K() denotes the Hilbert class field of K. It is the maximal unramified abelian extension of K. By the theory of CM, one
has K1) = K(j(E)) for any Ox-CM elliptic curve E.
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