1 Definitions and Notations

1. Recall that we have an extended upper half plane H^*, or \mathbb{H}^*, via adding a projective line to \mathbb{H}, $H^* := \mathbb{H} \cup \mathbb{P}^1(\mathbb{Q}) := \mathbb{H} \cup \mathbb{Q} \cup \{\infty\}$. Here, we can regard our elements of $\mathbb{H} \subseteq H^*$ as column vectors $\begin{bmatrix} \tau \\ 1 \end{bmatrix}$. We regard elements of $\mathbb{Q} \cup \{\infty\}$ as equivalence classes of column vectors: a rational number $a/b \in \mathbb{Q}$ is regarded as $\begin{bmatrix} a \\ b \end{bmatrix}$, and is equivalent to $\begin{bmatrix} ra \\ rb \end{bmatrix}$ for all $r \in \mathbb{Q} \times \mathbb{Q}$. We also set $\infty := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

2. Via matrix multiplication, we have an action of $SL_2(\mathbb{Z})$ on H^* which extends the usual action on \mathbb{H}: for $\gamma := \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z})$ and $\begin{bmatrix} x \\ y \end{bmatrix} \in H^*$, we set $\gamma \cdot \begin{bmatrix} x \\ y \end{bmatrix} := \frac{ax + by}{cx + dy}$.

3. For any congruence subgroup $\Gamma \subseteq SL_2(\mathbb{Z})$, we also have that Γ acts on H^*. The orbits of $\mathbb{P}(\mathbb{Q})$ under Γ are called the cusps of Γ.

4. Let X and Y be Riemann surfaces and $f : X \to Y$ a nonconstant holomorphic map. Fix $x \in X$, and set $y = f(x)$. If u and t are local parameters1 at x and y, respectively, which map x and y to the origin, then in some neighborhood of x we can express f in the form

$$t(f(z)) = a_{e}u(z)^{e} + a_{e+1}u(z)^{e+1} + \cdots, \quad a_{e} \neq 0$$

for some positive integer e. This integer is independent of the choice of u and t. It is called the ramification index of the covering map f at x. If $e > 1$, then x is said to be a ramified point of f, and that y ramifies in X under f.

The following definitions concern a generalization of modular groups, called Fuchsian groups. They will be used in Problems 5, 6, 10 and 19.

5. A Fuchsian group is a discrete subgroup of $SL_2(\mathbb{R})$. In particular, $SL_2(\mathbb{Z})$ and all of its subgroups are Fuchsian groups.

1In particular, for some open subsets $U, U' \subset Y$, one has that $u : U \to \mathbb{C}$ and $t : U' \to \mathbb{C}$ are maps which are homeomorphic onto their images, and the transition maps $u \circ t^{-1} : t(U \cap U') \to u(U \cap U')$ and $t \circ u^{-1} : u(U \cap U') \to t(U \cap U')$ are both holomorphic maps.
6. A non-scalar element of α of $GL_2^+(\mathbb{R})$ is called elliptic, parabolic, or hyperbolic when it satisfies

$$\text{tr}(\alpha)^2 < 4 \det(\alpha), \quad \text{tr}(\alpha)^2 = 4 \det(\alpha), \quad \text{or} \quad \text{tr}(\alpha)^2 > 4 \det(\alpha)$$

respectively.

7. A Fuchsian group Γ acts on $\mathcal{H} \cup \mathbb{R} \cup \{\infty\}$ via linear fractional transformations. One can show that an element $\alpha \in \Gamma$ is:

- elliptic if and only if α has fixed points z_0 and \overline{z}_0 for some $z_0 \in \mathcal{H}$;
- parabolic if and only if α has a unique fixed point on $\mathbb{R} \cup \{\infty\}$;
- hyperbolic if and only if α has two distinct fixed points on $\mathbb{R} \cup \{\infty\}$.

8. Fix a Fuchsian group Γ, and let $z \in \mathcal{H} \cup \mathbb{R} \cup \{\infty\}$. We call z an elliptic point, parabolic point, or hyperbolic point of Γ if there is some elliptic/parabolic/hyperbolic element of Γ fixing z, respectively.

9. Fix a Fuchsian group Γ.

- Let P_Γ denote the set of parabolic points of Γ. Elements of P_Γ are sometimes called cusps of Γ.
- The space \mathcal{H}^* denotes $\mathcal{H} \cup P_\Gamma$.
- The space $X(\Gamma)$ denotes the quotient space $\Gamma \backslash \mathcal{H}^*$.

10. Fix a Fuchsian group Γ, and let $\pi : \mathcal{H}^* \to \Gamma \backslash \mathcal{H}^* = X(\Gamma)$ be the quotient map. A point $a \in X(\Gamma)$ is called an elliptic point or a cusp, respectively, when there is a lift $z \in \mathcal{H}^*$ of a that is either an elliptic point or a cusp for Γ. When a is neither an elliptic point nor a cusp, it is called an ordinary point.

2 Introductory Problems

Problem 1. Determine the stabilizers of i, ζ_3 and ∞ under $SL_2(\mathbb{Z})$, where $\zeta_3 := \frac{-1 + \sqrt{-3}}{2}$.

Problem 2.

a. Prove that $SL_2(\mathbb{Z})$ has exactly one cusp.

b. Show that any congruence subgroup $\Gamma \subseteq SL_2(\mathbb{Z})$ has finitely many cusps.

Problem 3. $SL_2(\mathbb{Z})$ acts on \mathcal{H} properly discontinuously. In other words, for any two points x, y of \mathcal{H}, there exist neighborhoods U and V of x and y, respectively, such that $\# \{ \gamma \in SL_2(\mathbb{Z}) : \gamma U \cap V \neq \emptyset \} < \infty$. Convince yourself that this is the case.

Problem 4.

1. Show that \mathbb{C} is a Riemann surface.

2. At what points is the map $\mathbb{C} \to \mathbb{C}, z \mapsto z^2$ ramified?

Problem 5. Let $\alpha \in GL_2^+(\mathbb{R})$ be a non-scalar element. Show that the listed definitions for α to be elliptic/parabolic/hyperbolic are indeed equivalent.

Problem 6. Let Γ be a Fuchsian group and $\alpha \in \Gamma$ a non-scalar element.

1. Show that if α is an elliptic/parabolic/hyperbolic element of Γ, then for any $\gamma \in \Gamma, \gamma \alpha \gamma^{-1}$ is also an elliptic/parabolic/hyperbolic element, respectively.

2. How do the fixed points of α and $\gamma \alpha \gamma^{-1}$ compare?

Problem 7. Show that homothetic lattices have equal j-invariants.

Problem 8. The j-function has a Laurent series expansion in terms of $q := e^{2\pi i \tau}$,

$$j(\tau) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + 86429970q^3 + 20245856256q^4 + 333202640600q^5 + \ldots$$

By the theory of complex multiplication, one has for imaginary quadratic $\tau \in \mathcal{H}$ that $j(\tau)$ is an algebraic integer. Assuming that $j\left(\frac{1+\sqrt{-163}}{2}\right) \in \mathbb{Z}$, use this j-function expansion to show that $e^{\pi \sqrt{163}}$ is very close to an integer.
3 Intermediate Problems

Problem 9 (Diamond & Shurman, Exercise 3.1.4). Show that for a prime \(p \in \mathbb{Z}^+ \), \(\Gamma_0(p) \) has exactly two cusps.

Problem 10.

a. Show that every elliptic element of \(\text{SL}_2(\mathbb{Z}) \) is of order dividing 4 or 6.

b. What elements of \(\text{SL}_2(\mathbb{Z}) \) represent the conjugacy classes of elliptic elements?

c. What are the elliptic points of \(\text{SL}_2(\mathbb{Z}) \)?

Problem 11 (Miyake, Lemma 1.7.1). Let \(G \) be a topological group acting continuously on \(X \). Assume that for any two points \(x, y \) of \(X \), there exist neighborhoods \(U \) of \(x \) and \(V \) of \(y \) such that \(gU \cap V = \emptyset \) for all \(g \in G \) satisfying \(x \neq y \). Show that \(G \backslash X \) is a Hausdorff space.

Problem 12.

1. Show that the projective line \(\mathbb{CP}^1 := \mathbb{P}^1(\mathbb{C}) \) is a Riemann surface.

2. There is a map \(\mathbb{CP}^1 \rightarrow \mathbb{CP}^1 \) given by \([s : t] \mapsto [s^2 : t^2]\). Where is this map ramified, and what ramification indices does it have at those points?

3. Do the same for the map \(\mathbb{CP}^1 \rightarrow \mathbb{CP}^1 \) given by \([s : t] \mapsto [s^2(s-t) : t^3]\).

Problem 13 (Cyclic isogenies). Let \(\mathbb{C}/\Lambda \) be a complex elliptic curve. An isogeny \(\varphi : \mathbb{C}/\Lambda_1 \rightarrow \mathbb{C}/\Lambda_2 \) is called cyclic if its kernel \(\{z + \Lambda_1 \in \mathbb{C}/\Lambda_1 : z \in \Lambda_2\} \) is a cyclic subgroup of \(\mathbb{C}/\Lambda_1 \).

a. Show that a cyclic subgroup \(C \subseteq \mathbb{C}/\Lambda \) induces a cyclic isogeny \(\mathbb{C}/\Lambda \rightarrow \mathbb{C}/C_0 \) with kernel \(C \) for some superlattice\(^2\) \(C_0 \) of \(\Lambda \).

b. Show that any isogeny \(\varphi : \mathbb{C}/\Lambda_1 \rightarrow \mathbb{C}/\Lambda_2 \) factors as a multiplication-by-\(n \) map followed by a cyclic isogeny.

The following four exercises are related to (complex) elliptic curves with complex multiplication, see Problem 11 of Problem Set 3.

Problem 14. Recall that an order \(\mathcal{O} \) of a number field \(K \) is a subring of the ring of integers \(\mathcal{O}_K \) of equal \(\mathbb{Z} \)-rank. Equivalently, \(\mathcal{O} \) is a subring of \(\mathcal{O}_K \) with its own \(\mathbb{Z} \)-basis of algebraic integers. One has that the index \(|\mathcal{O}_K : \mathcal{O}| < \infty \).

a. Show that an order in an imaginary quadratic field \(K = \mathbb{Q}(\sqrt{-d}) \) with squarefree \(d \in \mathbb{Z}^+ \) has the form

\[
\mathcal{O} = [1, f \omega_K]
\]

where

\[
\omega_K := \begin{cases}
\frac{1+\sqrt{-d}}{2} & \text{if } d \equiv 3 \pmod{4} \\
\sqrt{-d} & \text{if } d \equiv 1, 2 \pmod{4}
\end{cases}
\]

and \(f = [\mathcal{O}_K : \mathcal{O}] \).

b. Show that for each integer \(f \in \mathbb{Z}^+ \), the lattice \(\mathcal{O}_f := [1, f \omega_K] \) is an order of \(K \) with index \(f \) in \(\mathcal{O}_K \).

Problem 15. Let \(\mathbb{C}/\Lambda \) be a complex elliptic curve with CM. Then its endomorphism ring \(\mathcal{O} := \text{End}(\mathbb{C}/\Lambda) \) is an order in an imaginary quadratic number field \(K \).

For an endomorphism \(\alpha \in \text{End}(\mathbb{C}/\Lambda) \), we write \((\mathbb{C}/\Lambda)[\alpha] \) for its kernel \(\ker \phi_\alpha = \alpha^{-1}\Lambda/\Lambda \). We call this the \(\alpha \)-torsion subgroup of \(\mathbb{C}/\Lambda \).

Let us assume the following fact: as \(\mathcal{O} \)-modules, we have for \(\alpha \in \text{End}(\mathbb{C}/\Lambda) \) that

\[
(\mathbb{C}/\Lambda)[\alpha] \cong_{\mathcal{O}} \mathcal{O}/\alpha \mathcal{O}.
\]

Then show that the degree of an endomorphism \(\alpha \in \text{End}(\mathbb{C}/\Lambda) \) is the absolute value of its field-theoretic norm, \(\deg(\phi_\alpha) = |\text{Nm}_{K/Q}(\alpha)| \).

\(^{2}\)A superlattice of \(\Lambda \) is less fun than it sounds: it is just a lattice which contains \(\Lambda \). Compare this word to sublattice.
Problem 16. Show that for two isogenous complex elliptic curves \(\mathbb{C}/\Lambda_1 \) and \(\mathbb{C}/\Lambda_2 \), \(\mathbb{C}/\Lambda_1 \) has CM iff \(\mathbb{C}/\Lambda_2 \) has CM.

Problem 17.

a. Show that if a lattice \(\Lambda \subseteq \mathbb{C} \) is homothetic to its complex conjugate \(\overline{\Lambda} \), then \(j(\Lambda) \in \mathbb{R} \). (In fact, this is if and only if.)

b. Show that if \(\mathcal{O} \) is an order in an imaginary quadratic number field, then \(j(\mathcal{O}) \in \mathbb{R} \).

c. Conclude that for any imaginary quadratic order \(\mathcal{O} \), there is some complex elliptic curve \(\mathbb{C}/\Lambda \) with CM by \(\mathcal{O} \) and whose \(j \)-invariant is a real number. (Hint: assume that Problem 11.c on Problem Set 3 works if we replace \(\mathcal{O}_K \) with \(\mathcal{O} \).)

4 Advanced Problems

Problem 18. Let \(f : X \to Y \) be a nonconstant holomorphic map of compact Riemann surfaces.

a. Show that \(f \) is surjective.

b. Show that \(f \) has finite fibers: that is, for all \(y \in Y \) one has \(\# f^{-1}(y) < \infty \).

Note that there is analogous statement in algebraic geometry: any nonconstant morphism \(\phi : C_1 \to C_2 \) of projective algebraic curves is surjective and has finite fibers.

Problem 19. This problem will construct a Fuchsian group which has no cusps.

a. Consider the following real 2 by 2 matrices:

\[
\alpha = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} \sqrt{3} & 0 \\ 0 & -\sqrt{3} \end{pmatrix}, \quad \gamma = \frac{1}{2}(1 + \alpha + \beta + \alpha \beta).
\]

(In the definition of \(\gamma \), the element 1 is being used to denote the identity matrix.) Show that \(\mathcal{O} = \mathbb{Z} \oplus \mathbb{Z} \alpha \oplus \mathbb{Z} \beta \oplus \mathbb{Z} \gamma \) is a (noncommutative but unital) subring of the ring \(M_2(\mathbb{R}) \) of 2 by 2 real matrices. This is a quaternion algebra, as the elements \(\alpha \) and \(\beta \) satisfy \(\alpha^2 = -1, \quad \beta^2 = 3, \quad \alpha \beta = -\beta \alpha \).

b. Consider the conjugation on \(\mathcal{O} \) given for any element of the form \(a = a_0 + a_1 \alpha + a_2 \beta + a_3 \alpha \beta \in \mathcal{O} \) by

\[
\bar{a} = a_0 - a_1 \alpha - a_2 \beta - a_3 \alpha \beta.
\]

Show that conjugation \(a \mapsto \bar{a} \) defines a ring automorphism of \(\mathcal{O} \).

c. For any \(a \in \mathcal{O} \), show that \(a + \bar{a} = \text{tr}(a), \quad a\bar{a} = \text{det}(a) \).

Here, \(\text{tr} \) and \(\text{det} \) are the usual trace and determinant operations on matrices.

d. Let \(\mathcal{O}_1 = \{ a \in \mathcal{O} : a\bar{a} = 1 \} \).

Show that \(\mathcal{O}_1 \) is a Fuchsian group with no cusps. (Hint: Write \(a \) as in part b., and write down the condition that \(a \) would satisfy if it were parabolic explicitly in \(a_0, a_1, a_2, a_3 \). Then do a “descent” procedure by looking modulo 3.)

One can use this problem to show that \(\mathcal{O}_1 \setminus \mathcal{H} \) is a compact Riemann surface.