AWS 2021: Modular Groups
 Problem Set 3

Lecturer: Lori Watson
Written by: Tyler Genao, Hyun Jong Kim, Zonia Menendez and Sam Mundy (Assistants)

Last updated: February 6, 2021

1 Definitions and Notations

1. A lattice in \mathbb{C} is a rank two \mathbb{Z}-submodule of \mathbb{C} whose \mathbb{R}-span is \mathbb{C}. Less formally, it is a subgroup $\Lambda \subseteq(\mathbb{C},+)$ generated by two \mathbb{R}-linearly independent complex numbers ω_{1}, ω_{2}. When we have a basis in mind, we usually write Λ as $\left[\omega_{1}, \omega_{2}\right]:=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$.
2. One says that two lattices $\Lambda_{1}, \Lambda_{2} \subseteq \mathbb{C}$ are homothetic if for some $\lambda \in \mathbb{C}^{\times}$one has

$$
\Lambda_{2}=\lambda \Lambda_{1}
$$

3. Given two complex elliptic curves, i.e., two complex tori \mathbb{C} / Λ_{1} and \mathbb{C} / Λ_{2}, we say that a map

$$
\phi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}
$$

is holomorphic if there is a holomorphic map $f: \mathbb{C} \rightarrow \mathbb{C}$ and a commutative diagram

Let us require that our lifts also satisfy $f(0)=0$.
4. An isogeny between two complex elliptic curves \mathbb{C} / Λ_{1} and \mathbb{C} / Λ_{2} is a holomorphic map

$$
\phi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}
$$

such that $\phi(0)=0$.
5. The degree of an isogeny $\phi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}$ is defined as the size of its kernel. If $\phi \neq 0$, then $\operatorname{deg}(\phi)>0$; let us set $\operatorname{deg}(0):=0$.

Alex Barrios's notes contain an introduction to holomorphic (also called analytic) functions. You can find a link to them on the AWS website.

2 Introductory Problems

Problem 1 (Lattices, I). The following two exercises are meant to get you acquainted with the basics of lattices. As shown in the lectures, there are important connections between lattices and elliptic curves over \mathbb{C} : such an elliptic curve "is" a complex torus \mathbb{C} / Λ, and vice-versa.
a. (See Problem 6.1 on Problem Set 1) Show that for $z \in \mathbb{C}$ and $\gamma:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{GL}_{2}(\mathbb{R})$, one has imaginary part

$$
\operatorname{Im}(\gamma \cdot z)=\frac{\operatorname{det}(\gamma) \operatorname{Im}(z)}{|c z+d|^{2}}
$$

b. We say that a lattice $\left[\omega_{1}, \omega_{2}\right] \subseteq \mathbb{C}$ is oriented if $\omega_{1} / \omega_{2} \in \mathbb{H}$. Using part a., show that two oriented lattices $\left[\omega_{1}, \omega_{2}\right]$ and $\left[\omega_{1}^{\prime}, \omega_{2}^{\prime}\right]$ are equal if and only if there exists a matrix $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$ such that both

$$
\omega_{1}^{\prime}=a \omega_{1}+b \omega_{2}
$$

and

$$
\omega_{2}^{\prime}=c \omega_{1}+d \omega_{2}
$$

Therefore, $\mathrm{SL}_{2}(\mathbb{Z})$ is the group of oriented basis changes of $\left[\omega_{1}, \omega_{2}\right]$.
Problem 2 (Lattices, II).
a. Show that homothety of lattices is an equivalence relation.
b. Show that any lattice $\Lambda \subseteq \mathbb{C}$ is "orientable": Λ is homothetic to some lattice $[1, \tau]$ where $\tau \in \mathbb{H}$.
c. Given two lattices $\Lambda_{1}, \Lambda_{2} \subseteq \mathbb{C}$ with $\lambda \in \mathbb{C}^{\times}$such that

$$
\lambda \Lambda_{1} \subseteq \Lambda_{2}
$$

show that we have a group homomorphism of complex elliptic curves

$$
\mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}
$$

via multiplication by λ.
d. Show that two homothetic lattices $\Lambda_{1}, \Lambda_{2} \subseteq \mathbb{C}$ induce canonically isomorphic complex elliptic curves,

$$
\left(\mathbb{C} / \Lambda_{1},+\right) \cong\left(\mathbb{C} / \Lambda_{2},+\right)
$$

Problem 3.

a. Given a lattice $\Lambda \subseteq \mathbb{C}$, what is the group structure of the N-torsion subgroup of \mathbb{C} / Λ ? Recall that the N-torsion subgroup of an abelian group M is the subgroup $\{m \in M: N m=0\}$.
b. Note that each torus \mathbb{C} / Λ has a multiplication-by- N isogeny $[N]: \mathbb{C} / \Lambda \rightarrow \mathbb{C} / \Lambda$ (more specifically, $[N]$ is an endomorphism, see Problem 11). What is $\operatorname{deg}[N]$?
Problem 4. As noted in the lectures, for a lattice $\Lambda \subseteq \mathbb{C}$ one can define an elliptic curve over \mathbb{C} via the cubic equation

$$
y^{2}=4 x^{3}-g_{2}(\Lambda) x-g_{3}(\Lambda)
$$

where $g_{2}(\Lambda):=60 G_{4}(\Lambda) \in \mathbb{C}$ and $g_{3}(\Lambda):=140 G_{6}(\Lambda) \in \mathbb{C}$.
a. If Λ is homothetic to the Gaussian integer ring $\mathbb{Z}[i]:=[1, i]$, then after a coordinate change $(x, y) \mapsto$ ($x, y / 2$) our equation becomes

$$
y^{2}=x^{3}+A x
$$

for some $A \in \mathbb{C}^{\times}$.
b. If Λ is homothetic to the cyclotomic integer ring $\mathbb{Z}\left[\zeta_{3}\right]:=\left[1, \zeta_{3}\right],{ }^{1}$ then after a coordinate change $(x, y) \mapsto(x, y / 2)$ our equation becomes

$$
y^{2}=x^{3}+B
$$

for some $B \in \mathbb{C}^{\times}$.
(These are the "first" examples of elliptic curves which have complex multiplication.)
Problem 5. For this problem, read Problem 11 first.
There is an elliptic curve E over \mathbb{C} given by the Weierstrass equation $y^{2}=x^{3}+x$. On E, there is an endomorphism $\phi: E \rightarrow E$ given by $(x, y) \mapsto(-x, i y)$. Can you tell what the composition $\phi \circ \phi$ is?

[^0]
3 Intermediate Problems

Problem 6. Let $N \geq 1$ be an integer. How many points of exact order N are there on a complex elliptic curve?

By Problem 10 , every isogeny $\phi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}$ is multiplication by a complex number $\alpha \in \mathbb{C}$ with $\alpha \Lambda_{1} \subseteq \Lambda_{2}$. We assume this result in the following three problems.

Problem 7. Show that the kernel of any nonzero isogeny $\phi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}$ is finite and generated by two elements.

Problem 8 (The dual isogeny). Show that for any isogeny $\phi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}$, there is another isogeny $\hat{\phi}: \mathbb{C} / \Lambda_{2} \rightarrow \mathbb{C} / \Lambda_{1}$ such that $\phi \circ \hat{\phi}=[\operatorname{deg} \phi]$ and that $\hat{\phi} \circ \phi=[\operatorname{deg} \phi]$.

Problem 9.
a. Show that for any two isogenies $\phi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}$ and $\varphi: \mathbb{C} / \Lambda_{2} \rightarrow \mathbb{C} / \Lambda_{3}$, their composition $\varphi \circ \phi$: $\mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{3}$ is an isogeny, and satisfies $\operatorname{deg}(\varphi \circ \phi)=\operatorname{deg}(\varphi) \operatorname{deg}(\phi)$.
b. Using part a., show that the endomorphism $\operatorname{ring} \operatorname{End}(\mathbb{C} / \Lambda)$ is an integral domain.

4 Advanced Problems

Problem 10 (Isogenies). This exercise will classify all isogenies between two complex elliptic curves \mathbb{C} / Λ_{1} and \mathbb{C} / Λ_{2}.
a. Show that for a complex number $\alpha \in \mathbb{C}$, if $\alpha \Lambda_{1} \subseteq \Lambda_{2}$ then multiplication by α induces a holomorphic group homomorphism

$$
\phi_{\alpha}: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}
$$

with $\phi_{\alpha}(0)=0$. In particular, ϕ_{α} is an isogeny.
b. Show that two isogenies $\phi_{\alpha}, \phi_{\beta}: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}$ are equal iff $\alpha=\beta$.
c. Recall that an elliptic function (relative to a lattice Λ) is a meromorphic function

$$
f: \mathbb{C} \rightarrow \mathbb{C}
$$

which is " Λ-periodic", i.e.,

$$
f(z+\omega)=f(z)
$$

for all $\omega \in \Lambda, z \in \mathbb{C}$. Show that a holomorphic elliptic function is constant. (Hint: Liouville's Theorem.)
d. Show that an isogeny $\phi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}$ is equal to some isogeny ϕ_{α} for some $\alpha \in \mathbb{C}$ - i.e.,

$$
\phi(z)=\alpha z
$$

for all $z \in \mathbb{C} / \Lambda_{1}$. (Hint: apply part c. to f^{\prime}, where $f: \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic lift of ϕ.)
e. Conclude that there exists a bijection between the set of holomorphic maps

$$
\phi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}
$$

with $\phi(0)=0$, and the set of complex numbers $\alpha \in \mathbb{C}$ with $\alpha \Lambda_{1} \subseteq \Lambda_{2}$.
Problem 11 (Complex Multiplication). This problem assumes some basic algebraic number theory.
By Problem 10, for a lattice $\Lambda \subseteq \mathbb{C}$ we can define the set of isogenies from \mathbb{C} / Λ to itself, the ring of endomorphisms

$$
\operatorname{End}(\mathbb{C} / \Lambda):=\{\alpha \in \mathbb{C}: \alpha \Lambda \subseteq \Lambda\}
$$

a. Problem 9 shows that $\operatorname{End}(\mathbb{C} / \Lambda)$ is an integral domain. Using that Λ is homothetic to $[1, \tau]$ for some $\tau \in \mathbb{H}$, show that $\operatorname{End}(\mathbb{C} / \Lambda)$ is either \mathbb{Z} or an order in an imaginary quadratic field. ${ }^{2}$
b. We say that a complex elliptic curve \mathbb{C} / Λ has complex multiplication, or CM , if $\operatorname{End}(\mathbb{C} / \Lambda) \neq \mathbb{Z}$. By part a., a CM complex elliptic curve \mathbb{C} / Λ has not just "integer multiplications", but also "complex multiplications".
i. Show that for any imaginary number $\tau \in \mathbb{C}$ with $\tau[1, \tau] \subseteq[1, \tau]$, one has

$$
\operatorname{End}(\mathbb{C} /[1, \tau])=[1, \tau] .
$$

ii. More generally, show that for any imaginary $\tau \in \mathbb{C}$ the complex elliptic curve $\mathbb{C} /[1, \tau]$ has CM iff τ is a quadratic algebraic number.
c. Let $I \neq 0$ be an ideal in the ring of integers \mathcal{O}_{K} of an imaginary quadratic number field K. Show that $I \subseteq \mathbb{C}$ is a lattice, and that the complex elliptic curve \mathbb{C} / I has complex multiplication by \mathcal{O}_{K}.
d. For an imaginary quadratic number field K, show there exists a bijection between the ideal class group $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ of K and the set of homothety classes of lattices $\Lambda \subseteq \mathbb{C}$ for which $\operatorname{End}(\mathbb{C} / \Lambda)=\mathcal{O}_{K}$.
e. Up to isomorphism, how many complex elliptic curves \mathbb{C} / Λ are there with $\operatorname{End}(\mathbb{C} / \Lambda)=\mathbb{Z}[i]$?
f. Give two non-isomorphic complex elliptic curves \mathbb{C} / Λ_{1} and \mathbb{C} / Λ_{2} with CM by $\mathbb{Z}[\sqrt{-5}]$.

Problem 12. This problem assumes some topology.
Let $\phi: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}$ be a map between two complex tori. Show that ϕ is holomorphic, in the sense given in the section in this problem set on definitions, if and only if the following condition holds: First, let π_{1} and π_{2} be the natural projection maps $\mathbb{C} \rightarrow \mathbb{C} / \Lambda_{1}$ and $\mathbb{C} \rightarrow \mathbb{C} / \Lambda_{2}$, respectively. Then for any open subsets $U_{1} \subset \mathbb{C}$ and $U_{2} \subset \mathbb{C}$ such that $\pi_{i}\left(U_{i}\right)$ is in bijection with its image in \mathbb{C} / Λ_{i} for $i=1,2$, and such that $\phi\left(\pi_{1}\left(U_{1}\right)\right) \subset \pi_{2}\left(U_{2}\right)$, the function $\left(\pi_{2} \mid U_{2}\right)^{-1} \circ \phi \circ \pi_{1}: U_{1} \rightarrow U_{2}$ is holomorphic. [Hint: What are the universal covers of these complex tori?]

[^1]
[^0]: ${ }^{1}$ Here, ζ_{3} is a primitive cube root of unity, i.e., $\zeta_{3}^{3}=1$ and $\zeta_{3} \neq 1$.

[^1]: ${ }^{2}$ An order \mathcal{O} in a number field K is a subring of \mathcal{O}_{K}, and a \mathbb{Z}-submodule of rank $[K: \mathbb{Q}]$. The rank condition implies the index $\left[\mathcal{O}_{K}: \mathcal{O}\right]<\infty$.

