AWS 2021: Modular Groups Problem Set 1

Lecturer: Lori Watson

Written by: Tyler Genao, Hyun Jong Kim, Zonia Menendez and Sam Mundy (Assistants)

1 Definitions and Notations

1. Given a ring R, define $M_2(R)$ as the set of 2×2 matrices over R, i.e.,

$$M_2(R) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in R \right\}.$$

2. Given a commutative ring R (with identity), define $\operatorname{GL}_2(R)$ as the set of 2×2 invertible matrices over R, i.e.,

$$\operatorname{GL}_2(R) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(R) : ad - bc \in R^{\times} \right\}.$$

If R has an ordering (for example, $R := \mathbb{R}$), we also define $\operatorname{GL}_2^+(R)$ as the set of 2×2 invertible matrices over R with positive determinant.

3. Define $SL_2(R)$ as the set of 2×2 matrices over R with determinant 1, i.e.,

$$\operatorname{SL}_2(R) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(R) : ad - bc = 1 \right\}.$$

Note that $\operatorname{GL}_2(R)$ and $\operatorname{SL}_2(R)$ are groups and $\operatorname{SL}_2(R) \subset \operatorname{GL}_2(R)$. We let *I* denote the identity matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

4. Recall that \mathcal{H} or \mathbb{H} denotes the upper half plane in the plane \mathbb{C} of complex numbers, i.e.,

$$\mathcal{H} := \{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \}.$$

5. There is an action of $\operatorname{GL}_2(\mathbb{C})$ on $\mathbb{C} \cup \{\infty\}$. For $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{GL}_2(\mathbb{R})$ and $\tau \in \mathcal{H}$, this action¹ is given by²

 $\frac{a\tau + b}{c\tau + d}$

and

$$\gamma\infty := \frac{a}{c}.$$

This action is often called a *linear fractional transformation*.

- 6. Given $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{GL}_2(\mathbb{R})$ and $\tau \in \mathcal{H}$, we let $j(\gamma, \tau) := c\tau + d$.
- 7. $D \subset \mathbb{C}$ denotes the unit disk, i.e., $D := \{z \in \mathbb{C} : |z| < 1\}.$

¹More specifically, there is an action of $\operatorname{GL}_2(\mathbb{R})$ on $\mathcal{H} \cup \mathbb{R} \cup \{\infty\}$ – most of the time, we will be concerned with real matrices, and in fact matrices $\gamma \in \operatorname{SL}_2(\mathbb{Z})$.

²Note if $c \neq 0$ then -d/c gets mapped to ∞ and if $c = 0, \infty$ gets mapped to ∞ .

2 Introductory Problems

Problem 1. Which points of $\mathbb{C} \cup \{\infty\}$ are fixed by the linear fractional transformations given by

1.
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z})?$$

2.
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z})?$$

3.
$$\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z})?$$

Problem 2. Show that if $\gamma \in SL_2(\mathbb{Z})$, then the linear fractional transformation induced by γ maps $\mathbb{Q} \cup \{\infty\}$ to $\mathbb{Q} \cup \{\infty\}$.

Problem 3. Let R be a ring and let $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(R)$.

1. Given a matrix $\begin{bmatrix} \alpha & 0 \\ 0 & \delta \end{bmatrix} \in \operatorname{GL}_2(R)$, evaluate the conjugate

$$\begin{bmatrix} \alpha & 0 \\ 0 & \delta \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 0 & \delta \end{bmatrix}^{-1}$$

2. Given a matrix
$$\begin{bmatrix} 0 & \beta \\ \gamma & 0 \end{bmatrix} \in \operatorname{GL}_2(R)$$
, evaluate the conjugate $\begin{bmatrix} 0 & \beta \\ \gamma & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & \beta \\ \gamma & 0 \end{bmatrix}^{-1}$

Problem 4 (PROMYS Summer 2014, *Geometry and Symmetry*, P2). What is the stabilizer of $i \in \mathcal{H}$ under the action of $SL_2(\mathbb{R})$? In other words, which elements of $SL_2(\mathbb{R})$ fix i?

Problem 5 (PROMYS Summer 2014, Geometry and Symmetry, P1). Let $B = \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$ be the complex linear fractional transformation $Bz = \frac{z-i}{z+i}$. It turns out that B maps \mathcal{H} into D, the unit disk, cf. Problem 11.

- 1. What is $B \cdot 0$?
- 2. What is $B \cdot i\infty$, i.e., $\lim_{y \to \infty} B \cdot iy$?
- 3. Show that B is a bijection by finding an inverse for B.
- 4. Let $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Show that $BSB^{-1} : D \to D$ is a rotation by π around the origin.

Problem 6 (Diamond & Shurman, Exercise 1.1.2).

1. Show that $\operatorname{Im}(\gamma(\tau)) = \operatorname{Im}(\tau)/|c\tau + d|^2$ for all $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{Z}).^3$

2. Show that
$$d\gamma(\tau)/d\tau = 1/(c\tau + d)^2$$
 for $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$

³You will need to use that det $\gamma = 1$.

Problem 7. Given $\gamma_1, \gamma_2 \in \operatorname{GL}_2(\mathbb{R})$ and $\tau \in \mathcal{H}$, show that⁴

$$\gamma \begin{bmatrix} z \\ 1 \end{bmatrix} = j(\gamma, z) \begin{bmatrix} \gamma z \\ 1 \end{bmatrix}.$$

Problem 8 (Constructing elements of $SL_2(\mathbb{Z})$).

a. Find two integers $x, y \in \mathbb{Z}$ for which

$$\begin{bmatrix} 7 & x \\ 12 & y \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

How many more can you find?

b. Given two integers $a, b \in \mathbb{Z}$ not both zero, and their greatest common divisor

$$d := \gcd(a, b),$$

determine all pairs of integers $(x, y) \in \mathbb{Z}^2$ for which

$$\begin{bmatrix} a & x \\ b & y \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

(*Hint:* Use the Euclidean algorithm.)

3 **Intermediate Problems**

Problem 9. Show that the action of $\operatorname{GL}_2^+(\mathbb{R})$ on $\mathcal{H} \cup \mathbb{R} \cup \{\infty\}$ is indeed a group action, i.e.,

- 1. $I\tau = \tau$ for all $\tau \in \mathcal{H} \cup \{\infty\}$ and
- 2. $\gamma_1(\gamma_2\tau) = (\gamma_1\gamma_2)\tau$ for all $\gamma_1, \gamma_2 \in \operatorname{GL}_2(\mathbb{R})$ and $\tau \in \mathcal{H} \cup \mathbb{R} \cup \{\infty\}$.

Problem 10 (PROMYS Summer 2014, Geometry and Symmetry, P2).

- 1. Show that the action of $SL_2(\mathbb{R})$ on \mathcal{H} is transitive. In other words, show that for all $\tau_1, \tau_2 \in \mathcal{H}$, there is some $\gamma \in SL_2(\mathbb{R})$ such that $\gamma \tau_1 = \tau_2$.
- 2. Show that the action of $SL_2(\mathbb{Z})$ on \mathcal{H} is not transitive.

Problem 11. Let $B = \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$ be the complex linear fractional transformation $Bz = \frac{z-i}{z+i}$, just as in Problem 5. Show that if $z \in \mathcal{H}$ then |Bz| < 1, and so B maps \mathcal{H} into the unit disk.

Problem 12. Given $\gamma_1, \gamma_2 \in GL_2(\mathbb{R})$ and $\tau \in \mathcal{H}$, show that⁵

$$j(\gamma_1\gamma_2, au) = j(\gamma_1, \gamma_2 au)j(\gamma_2, au).$$

Problem 13 (Generators of $SL_2(\mathbb{Z})$). This exercise will show that $SL_2(\mathbb{Z})$ is generated by "translation"

$$T := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

together with "negative inversion"

$$S:=\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$

i.e.,

$$SL_2(\mathbb{Z}) = \langle S, T \rangle.$$

 $\mathrm{SL}_{2}(\mathbb{Z}) = \langle S, T \rangle.$ ⁴Here, $\gamma \begin{bmatrix} z \\ 1 \end{bmatrix}$ is a multiplication of two matrices, γz is defined in Definition 5, and $j(\gamma, z) \begin{bmatrix} \gamma z \\ 1 \end{bmatrix}$ is a scalar multiple of a column matrix.

⁵You can show this by a direct computation, but you can also do so by computing $\gamma_1 \gamma_2 \begin{bmatrix} \tau \\ 1 \end{bmatrix}$ in two different ways, cf. Problem 7.

- a. Show that $S^2 = -I$, and that for $n \in \mathbb{Z}$ one has $T^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$.
- b. Consider a matrix $\gamma := \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ where $c \neq 0$.

Suppose that $|a| \ge |c|$. Use the Euclidean algorithm to find an integer $q \in \mathbb{Z}$ for which

$$T^{-q}\gamma = \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix}$$

with |a'| < |c|.

c. Continuing the above, show that

$$ST^{-q}\gamma = \begin{bmatrix} a'' & b'' \\ c'' & d'' \end{bmatrix}$$

with |c| > |c''|.

d. Continuing this process of applying ST^k to γ for various $k \in \mathbb{Z}$ a finite number of times, we may assume that γ is upper triangular,

$$\gamma = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}.$$

Determine what a and d are, and conclude that $\gamma \in \langle S, T \rangle$.

4 Advanced Problems

Problem 14 (Ping-Pong Lemma). Let G be a group generated by two elements a and b. Suppose G acts on a set X and we can find two subsets $X_1, X_2 \subset X$ such that $X_1 \not\subset X_2$ and $X_2 \not\subset X_1$, and such that for every integer $n \neq 0$ we have

$$a^n(X_1) \subset X_2, \qquad b^n(X_2) \subset X_1$$

Show that G is freely generated by a and b. (*Hint:* Write any $g \in G$ as a word in a and b and see where it sends X_1 or X_2 .)

Problem 15. Use the previous problem to show that the subgroup of $SL_2(\mathbb{Z})$ generated by

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

is free. To do this, let $SL_2(\mathbb{Z})$ act on column vectors in \mathbb{R}^2 by usual matrix multiplication, and let

$$X_1 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : |x| < |y| \right\},\$$

and

$$X_2 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : |x| > |y| \right\}.$$

Problem 16. Show that the group constructed in the previous problem is free by instead letting it act on the upper half plane, with

$$X_1 = \{x + iy \in \mathcal{H} : |x| < 1\},\$$

and

$$X_2 = \{ x + iy \in \mathcal{H} : |x| > 1 \}.$$