AWS 2021: Modular Groups
 Problem Set 1

Lecturer: Lori Watson

Written by: Tyler Genao, Hyun Jong Kim, Zonia Menendez and Sam Mundy (Assistants)

1 Definitions and Notations

1. Given a ring R, define $M_{2}(R)$ as the set of 2×2 matrices over R, i.e.,

$$
M_{2}(R):=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in R\right\}
$$

2. Given a commutative ring R (with identity), define $\mathrm{GL}_{2}(R)$ as the set of 2×2 invertible matrices over R, i.e.,

$$
\mathrm{GL}_{2}(R):=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2}(R): a d-b c \in R^{\times}\right\}
$$

If R has an ordering (for example, $R:=\mathbb{R}$), we also define $\mathrm{GL}_{2}^{+}(R)$ as the set of 2×2 invertible matrices over R with positive determinant.
3. Define $\mathrm{SL}_{2}(R)$ as the set of 2×2 matrices over R with determinant 1, i.e.,

$$
\mathrm{SL}_{2}(R):=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2}(R): a d-b c=1\right\}
$$

Note that $\mathrm{GL}_{2}(R)$ and $\mathrm{SL}_{2}(R)$ are groups and $\mathrm{SL}_{2}(R) \subset \mathrm{GL}_{2}(R)$.
We let I denote the identity matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
4. Recall that \mathcal{H} or \mathbb{H} denotes the upper half plane in the plane \mathbb{C} of complex numbers, i.e.,

$$
\mathcal{H}:=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} .
$$

5. There is an action of $\mathrm{GL}_{2}(\mathbb{C})$ on $\mathbb{C} \cup\{\infty\}$. For $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{GL}_{2}(\mathbb{R})$ and $\tau \in \mathcal{H}$, this action ${ }^{1}$ is given by 2

$$
\frac{a \tau+b}{c \tau+d}
$$

and

$$
\gamma \infty:=\frac{a}{c} .
$$

This action is often called a linear fractional transformation.
6. Given $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{GL}_{2}(\mathbb{R})$ and $\tau \in \mathcal{H}$, we let $j(\gamma, \tau):=c \tau+d$.
7. $D \subset \mathbb{C}$ denotes the unit disk, i.e., $D:=\{z \in \mathbb{C}:|z|<1\}$.

[^0]
2 Introductory Problems

Problem 1. Which points of $\mathbb{C} \cup\{\infty\}$ are fixed by the linear fractional transformations given by

1. $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$?
2. $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$?
3. $\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$?

Problem 2. Show that if $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$, then the linear fractional transformation induced by γ maps $\mathbb{Q} \cup\{\infty\}$ to $\mathbb{Q} \cup\{\infty\}$.

Problem 3. Let R be a ring and let $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2}(R)$.

1. Given a matrix $\left[\begin{array}{cc}\alpha & 0 \\ 0 & \delta\end{array}\right] \in \operatorname{GL}_{2}(R)$, evaluate the conjugate

$$
\left[\begin{array}{ll}
\alpha & 0 \\
0 & \delta
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
\alpha & 0 \\
0 & \delta
\end{array}\right]^{-1}
$$

2. Given a matrix $\left[\begin{array}{ll}0 & \beta \\ \gamma & 0\end{array}\right] \in \mathrm{GL}_{2}(R)$, evaluate the conjugate

$$
\left[\begin{array}{ll}
0 & \beta \\
\gamma & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & \beta \\
\gamma & 0
\end{array}\right]^{-1}
$$

Problem 4 (PROMYS Summer 2014, Geometry and Symmetry, P2). What is the stabilizer of $i \in \mathcal{H}$ under the action of $\mathrm{SL}_{2}(\mathbb{R})$? In other words, which elements of $\mathrm{SL}_{2}(\mathbb{R})$ fix i ?

Problem 5 (PROMYS Summer 2014, Geometry and Symmetry, P1). Let $B=\left(\begin{array}{cc}1 & -i \\ 1 & i\end{array}\right)$ be the complex linear fractional transformation $B z=\frac{z-i}{z+i}$. It turns out that B maps \mathcal{H} into D, the unit disk, cf. Problem 11.

1. What is $B \cdot 0$?
2. What is $B \cdot i \infty$, i.e., $\lim _{y \rightarrow \infty} B \cdot i y$?
3. Show that B is a bijection by finding an inverse for B.
4. Let $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. Show that $B S B^{-1}: D \rightarrow D$ is a rotation by π around the origin.

Problem 6 (Diamond \& Shurman, Exercise 1.1.2).

1. Show that $\operatorname{Im}(\gamma(\tau))=\operatorname{Im}(\tau) /|c \tau+d|^{2}$ for all $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z}) .^{3}$
2. Show that $d \gamma(\tau) / d \tau=1 /(c \tau+d)^{2}$ for $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \operatorname{SL}_{2}(\mathbb{Z})$.
[^1]Problem 7. Given $\gamma_{1}, \gamma_{2} \in \mathrm{GL}_{2}(\mathbb{R})$ and $\tau \in \mathcal{H}$, show that ${ }^{4}$

$$
\gamma\left[\begin{array}{l}
z \\
1
\end{array}\right]=j(\gamma, z)\left[\begin{array}{c}
\gamma z \\
1
\end{array}\right]
$$

Problem 8 (Constructing elements of $\mathrm{SL}_{2}(\mathbb{Z})$).
a. Find two integers $x, y \in \mathbb{Z}$ for which

$$
\left[\begin{array}{cc}
7 & x \\
12 & y
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})
$$

How many more can you find?
b. Given two integers $a, b \in \mathbb{Z}$ not both zero, and their greatest common divisor

$$
d:=\operatorname{gcd}(a, b)
$$

determine all pairs of integers $(x, y) \in \mathbb{Z}^{2}$ for which

$$
\left[\begin{array}{ll}
a & x \\
b & y
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})
$$

(Hint: Use the Euclidean algorithm.)

3 Intermediate Problems

Problem 9. Show that the action of $\mathrm{GL}_{2}^{+}(\mathbb{R})$ on $\mathcal{H} \cup \mathbb{R} \cup\{\infty\}$ is indeed a group action, i.e.,

1. $I \tau=\tau$ for all $\tau \in \mathcal{H} \cup\{\infty\}$ and
2. $\gamma_{1}\left(\gamma_{2} \tau\right)=\left(\gamma_{1} \gamma_{2}\right) \tau$ for all $\gamma_{1}, \gamma_{2} \in \mathrm{GL}_{2}(\mathbb{R})$ and $\tau \in \mathcal{H} \cup \mathbb{R} \cup\{\infty\}$.

Problem 10 (PROMYS Summer 2014, Geometry and Symmetry, P2).

1. Show that the action of $\mathrm{SL}_{2}(\mathbb{R})$ on \mathcal{H} is transitive. In other words, show that for all $\tau_{1}, \tau_{2} \in \mathcal{H}$, there is some $\gamma \in \operatorname{SL}_{2}(\mathbb{R})$ such that $\gamma \tau_{1}=\tau_{2}$.
2. Show that the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H} is not transitive.

Problem 11. Let $B=\left(\begin{array}{cc}1 & -i \\ 1 & i\end{array}\right)$ be the complex linear fractional transformation $B z=\frac{z-i}{z+i}$, just as in Problem 5. Show that if $z \in \mathcal{H}$ then $|B z|<1$, and so B maps \mathcal{H} into the unit disk.
Problem 12. Given $\gamma_{1}, \gamma_{2} \in \mathrm{GL}_{2}(\mathbb{R})$ and $\tau \in \mathcal{H}$, show that ${ }^{5}$

$$
j\left(\gamma_{1} \gamma_{2}, \tau\right)=j\left(\gamma_{1}, \gamma_{2} \tau\right) j\left(\gamma_{2}, \tau\right)
$$

Problem 13 (Generators of $\mathrm{SL}_{2}(\mathbb{Z})$). This exercise will show that $\mathrm{SL}_{2}(\mathbb{Z})$ is generated by "translation"

$$
T:=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

together with "negative inversion"

$$
S:=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

i.e.,

$$
\mathrm{SL}_{2}(\mathbb{Z})=\langle S, T\rangle
$$

[^2]a. Show that $S^{2}=-I$, and that for $n \in \mathbb{Z}$ one has $T^{n}=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$.
b. Consider a matrix $\gamma:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \operatorname{SL}_{2}(\mathbb{Z})$ where $c \neq 0$.

Suppose that $|a| \geq|c|$. Use the Euclidean algorithm to find an integer $q \in \mathbb{Z}$ for which

$$
T^{-q} \gamma=\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right]
$$

with $\left|a^{\prime}\right|<|c|$.
c. Continuing the above, show that

$$
S T^{-q} \gamma=\left[\begin{array}{ll}
a^{\prime \prime} & b^{\prime \prime} \\
c^{\prime \prime} & d^{\prime \prime}
\end{array}\right]
$$

with $|c|>\left|c^{\prime \prime}\right|$.
d. Continuing this process of applying $S T^{k}$ to γ for various $k \in \mathbb{Z}$ a finite number of times, we may assume that γ is upper triangular,

$$
\gamma=\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right]
$$

Determine what a and d are, and conclude that $\gamma \in\langle S, T\rangle$.

4 Advanced Problems

Problem 14 (Ping-Pong Lemma). Let G be a group generated by two elements a and b. Suppose G acts on a set X and we can find two subsets $X_{1}, X_{2} \subset X$ such that $X_{1} \not \subset X_{2}$ and $X_{2} \not \subset X_{1}$, and such that for every integer $n \neq 0$ we have

$$
a^{n}\left(X_{1}\right) \subset X_{2}, \quad b^{n}\left(X_{2}\right) \subset X_{1}
$$

Show that G is freely generated by a and b. (Hint: Write any $g \in G$ as a word in a and b and see where it sends X_{1} or X_{2}.)

Problem 15. Use the previous problem to show that the subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ generated by

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

is free. To do this, let $\mathrm{SL}_{2}(\mathbb{Z})$ act on column vectors in \mathbb{R}^{2} by usual matrix multiplication, and let

$$
X_{1}=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]:|x|<|y|\right\}
$$

and

$$
X_{2}=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]:|x|>|y|\right\}
$$

Problem 16. Show that the group constructed in the previous problem is free by instead letting it act on the upper half plane, with

$$
X_{1}=\{x+i y \in \mathcal{H}:|x|<1\}
$$

and

$$
X_{2}=\{x+i y \in \mathcal{H}:|x|>1\} .
$$

[^0]: ${ }^{1}$ More specifically, there is an action of $\mathrm{GL}_{2}(\mathbb{R})$ on $\mathcal{H} \cup \mathbb{R} \cup\{\infty\}$ - most of the time, we will be concerned with real matrices, and in fact matrices $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$.
 ${ }^{2}$ Note if $c \neq 0$ then $-d / c$ gets mapped to ∞ and if $c=0, \infty$ gets mapped to ∞.

[^1]: ${ }^{3}$ You will need to use that $\operatorname{det} \gamma=1$.

[^2]: ${ }^{4}$ Here, $\gamma\left[\begin{array}{l}z \\ 1\end{array}\right]$ is a multiplication of two matrices, γz is defined in Definition 5 , and $j(\gamma, z)\left[\begin{array}{c}\gamma z \\ 1\end{array}\right]$ is a scalar multiple of a column matrix.
 ${ }^{5}$ You can show this by a direct computation, but you can also do so by computing $\gamma_{1} \gamma_{2}\left[\begin{array}{l}\tau \\ 1\end{array}\right]$ in two different ways, cf. Problem 7.

