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6.1 p-adic Modular Forms

In the first half of this Arizona Winter Semester, you learned about modular forms. Here
we focus on the modular forms for the full modular group Γ = SL2(Z). A modular form
can be studied via its Fourier series, which can be viewed as a formal power series in q.
Modular forms are graded by weight: given a coefficient ring A ⊂ C and weight k, we let
Mk(A) denote the space of modular forms of weight k whose Fourier series has coefficients
in A. We can also consider the space of modular forms of all weights, M(A) = ⊕kMk(A).

Now we can define p-adic modular forms by taking p-adic limits of modular forms in M(Q):

Definition 6.1

A p-adic modular form is a formal power series f ∈ Qp[[q]] such that there exists a
sequence (fi) : fi ∈M(Q) whose coefficients converge uniformly to f .

Note that we have not said anything yet about what the weight of a p-adic modular form
is, though we will get to that later.

For now, to get a first look at what p-adic modular forms might look like, we consider
certain limits of the Eisenstein series. We use the following normalizations which have
rational coefficients:

Gk = −Bk
2k

+
∑
n≥1

σk−1(n)qn

Ek = 1− 2k

Bk

∑
n≥1

σk−1(n)qn

Here Bk are the Bernoulli numbers and σk(n) =
∑

d|n d
k.

We can take a limit of the Gk as follows. We introduce a version of σk with the p-part
removed:

σ∗k(n) :=
∑
d|n,p-d

dk

Let m ≥ 1 be a positive natural number. Since the values of d appearing in the sum are
units in Z/pmZ, and the group of units has order pm−1(p− 1), it follows that

σ∗k(n) ≡ σ∗k′(n) (mod pm) whenever k ≡ k′ (mod pm−1(p− 1))

So if (ki) is a sequence of weights which is eventually stable in Z/pm−1(p−1)Z, then σki(n)
is a uniformly Cauchy set of sequences in Zp (here we use the fact that the p-part of σk(n)
eventually vanishes mod pm).

1



AWS p-aradigm Shift Lecture Notes 6

This guarantees that the nonconstant part of the Gki converge in Qp[[q]. The convergence
of the constant term requires some work, but as we will see later, it converges as well.

Note that the limit of such a sequence (ki) can be understood to live in

X := lim
←

Z/pm−1(p− 1) = lim
←

Z/pm−1 × Z/(p− 1) = Zp × Z/(p− 1)

So if k = limi→∞(ki) ∈ X, we can define

σ∗k(n) := lim
i→∞

σ∗ki(n)

which is well-defined by the above considerations, and we have

G∗k = lim
i→∞
−Bki

2ki
+

∑
n≥1

σ∗k(n)qn

a p-adic modular form! In fact, the constant term of this series can be used to define the
p-adic ζ function as you will see in this week’s problem set.

Now we take a closer look at the structure of p-adic modular forms. We introduce some
definitions.

• We’ll let A(p) denote the subring of Q

A(p) := Q ∩ Zp =
{a
b
∈ Q : p - b

}
(note: this is usually denoted Z(p)).

• Let Mk(A(p)) denote the modular forms of weight k with coefficients in A(p).

• Suppose f =
∑∞

n=0 aiq
i ∈ Mk(A(p)); we denote f :=

∑∞
n=0 aiq

i where ai is the
reduction of ai mod p.

• Let Mk(Fp) ⊂ Fp[[q]] denote the image under reduction mod p of Mk(A(p)), so

Mk(Fp) = {f : f ∈Mk(A(p))}

Let’s get a clearer picture of the elements of Mk(Fp). We can use the plentiful results we
have about modular forms built up in the first half of AWS.

Firstly, we can use results on the Bernoulli numbers to determine the image of Eisenstein
series mod p. The Clausen–Von Staudt theorem tells us that if p − 1 divides k, then
vp(k/Bk) ≥ 1. So all nonconstant terms of Ep−1 vanish mod p, and so

Ep−1 ≡ 1 (mod p).
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We note that if f ∈Mk(A(p)), then fEp−1 has weight k + p− 1, and since Ep−1 = 1,

f = fEp−1 ∈Mk+p−1

Thus we have a chain of inclusions

Mk(Fp) ⊂Mk+p−1(Fp) ⊂Mk+2(p−1) ⊂ · · ·

If α ∈ Z/(p− 1)Z, we let Mα(Fp) :=
⋃

k≡α (mod p−1)

Mk(Fp), a union of such a chain.

The following theorem shows that the relation Ep−1 = 1 tells us all relations, and that the
Mα(Fp) provide a grading of M(Fp):

Theorem 6.2 Swinnerton-Dyer

For p ≥ 5, we have
M(Fp) = Fp[E4, E6]/(Ep−1 − 1)

M(Fp) =
⊕

α∈Z/(p−1)Z

Mα(Fp)

Next, we refine our study, from coefficients in Fp to coefficients in Z/pmZ:

Theorem 6.3 Weight congruences for congruent forms

Let f ∈Mk(A(p)) and f ′ ∈Mk′(A(p)). If

f ≡ f ′ (mod pm)

then
k ≡ k′ (mod pm−1(p− 1)) if p ≥ 3

k ≡ k′ (mod 2m−2) if p = 2

The case of this theorem when p ≥ 5 and m = 1 follows from Theorem 5.2.

The consequence of this Theorem is that we can make sense of the weight of a p-adic
modular form! Indeed, if f ∈ Qp[[q]] is a p-adic modular form, it must be the uniform limit
of a sequence of rational modular forms fi. These fi eventually agree mod pm for each m
and hence their weights ki eventually agree mod pm−1(p− 1) for each m, thus converging
to a limit in X. Given k ∈ X, we let Mk(Qp) denote the space of modular forms of weight k.
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The following theorem assures us that it suffices to establish uniform convergence for the
nonconstant coefficients, so in particular the p-adic limit of the Eisenstein series discussed
above indeed exists.

Proposition 6.4

Let fi be rational modular forms of weights ki such that limi→∞ ki = k ∈ X and
the nonconstant Fourier coefficients of the fi converge uniformly in Zp. Then the
constant coefficients converge in Zp as well, so that the fi converge to a p-adic
modular form f ∈Mk(Qp).

Moreover, if f =
∑∞

n=0 anq
n ∈Mk(Qp), and if k 6≡ 0 (mod pm−1(p− 1)) then

vp(a0) +m ≥ inf
n≥1

vp(an)

6.2 Another Inverse Limit: Gal(Q/Q)

Let Q be the algebraic closure of Q in C. Then every element α ∈ Q lies in some finite
Galois extension of Q (for example, the splitting field of the minimal polynomial of α).

If L/Q is a finite Galois extension (with L ⊂ Q), then any automorphism σ : Q→ Q which
acts as the identity on Q restricts to an automorphism σ : L → L over Q (this can be
viewed as a defining property of being Galois). So we get a map

Gal(Q/Q)→ Gal(L/Q)

which is surjective (by a Zorn’s lemma argument).

We want to study Gal(Q/Q). Let {Li}i∈I be the finite Galois extensions of Q in Q, and
let Gi = Gal(Li/Q). If σ ∈ Gal(Q/Q) and α ∈ Q, then α ∈ Li for some Li/Q finite, and
σ(α) = (πiσ)(α), so σ is determined by its images in Gi. Hence

GQ := Gal(Q/Q) ∼= lim←−
Li/Q fin.Gal.

Gal(L/Q)

This inverse limit construction is analogous to the construction of Zp as lim
←

(Z/pnZ), except

that here the system {Li} of finite Galois extensions is not linearly ordered. Still, for any
two finite Galois extensions Li and Lj of Q, there exists another finite Galois extension Lij
containing them both, allowing us to talk about compatibility in the inverse limit.

Just as in the case of the p-adics, we can define a topology on the inverse limit. In this
case, we define the topology abstractly with no reference to a metric: it is the coarsest
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topology such that every projection GQ → Gal(L,Q), where L is finite Galois over Q, is
continuous, where Gal(L,Q) is equipped with the discrete topology. This is called the
profinite topology. To gain intuition about this construction, think about why the same
construction for Zp as the inverse limit lim

←
(Z/pnZ) recovers the topology on Zp.

6.3 Galois Representations

6.3.1 Elliptic Curve Galois Representations

Let E be an elliptic curve defined over Q. Recall that the complex points of E have an
abelian group structure, where the point at infinity is the identity, and that the group of
n-torsion points of E is defined as

E[n] := {P : P ∈ E(C), n · P = 0}

and we have E[n] ∼= (Z/nZ)2.

Moreover, these torsion points have coefficients in Q since being torsion can be expressed as
an algebraic condition on each coordinate involving the coefficients of the equation defining
E. So the Galois group GQ acts on the torsion points. In particular we will be interested
in its action on E[pn] ∼= (Z/pnZ)2 for a prime p. These compatible actions taken in the
limit as n → ∞ induce an action of GQ on (Zp)2. Each σ ∈ GQ acts on (Zp)2 linearly, so
we get a group homomorphism

ρE : GQ → GL2(Zp)

In fact, this homomorphism is continuous (both groups are equipped with a topology).
This motivates the following definition:

Definition 6.5

A two-dimensional Galois representation over A is a continuous homomor-
phism

ρ : GQ → GL2(A)

We can also associate to ρ a determinant function det ρ : GQ → A× as the composition

GQ
ρ−→ GL2(A)

det−−→ A×
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6.3.2 Local Galois Groups

Let ` be a prime and let
G` := Gal(Q`/Q`)

G∞ := Gal(C/R)

Also, any σ ∈ G` restricts to an automorphism of Q over Q since Q is Galois over Q. And
since Q is dense in Q`, the restriction is injective, so

G` ⊆ GQ.

6.3.3 Inertia and Ramification

We can define a subgroup of G` of automorphisms with specified behavior at the point `.

For ` 6=∞, let
Z` := {x ∈ Q` : |x|` ≤ 1}

λ := {x ∈ Q` : |x|` < 1}

Then Z`/λ ∼= F` and G` acts on F`.
Definition 6.6

The inertia group at ` is

I` := {σ ∈ G` : σ acts as the identity on F`}

Now we can look into “local properties” of Galois representations. For a ring A and a global
Galois representation ρ : GQ → GL2(A), restrictions give local Galois reprsentations

ρ|G`
G` → GL2(A)

Definition 6.7

Properties of a representation ρ : GQ → GL2(A)

1. ρ is odd if, for c the element of Gal(C/R) corresponding to complex conjuga-
tion, det ρ(c) = −1.

2. for a prime `, ρ is unramified at ` if I` ⊆ ker ρ|G`
.

3. ρ is flat at a prime p if ∀ ideals J ⊂ A such that A/J is finite, then ρ : Gp →
GL2(A/J) extends to a finite flat group scheme.

4. ρ is irreducible if it has no nontrivial subrepresentation.
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6.4 Fermat’s Last Theorem

Theorem 6.8

The equation an + bn = cn has no nontrivial integer solutions if n ≥ 3.

““““‘Proof”””””””””””: If n = pm for a prime p, then the equation can be rewritten as

(am)p + (bm)p = (cm)p

so it suffices to prove FLT for n = p and n = 4 (but the case n = 4 was done by Fermat).

Suppose for contradiction that ap + bp = cp for a, b, c coprime integers such that abc 6= 0.
We can associate to this curve an elliptic curve, the Frey curve

Eap,bp,cp : y2 = x(x− ap)(x+ bp)

The Galois representation associated to this has some remarkable properties.

Theorem 6.9 Frey, Serre

Let p ≥ 5 prime and a, b, c ∈ Z such that ap + bp + cp = 0. Suppose a ≡ −1 (mod 4)
and 2|b. Then ρap,bp,cp is absolute irreducible, odd, and unramified outside of 2, p
and flat at p.

This theorem will be a black box for us.

These properties are so remarkable that people suspect that no Galois representation has
them.

We try to get at ρap,bp,cp another way, via modular forms.

The Eichler–Shimura construction gives us a way of associated an elliptic curve to a level
N rational newform f → Ef such that the conductor N of Ef equals the level of f , and
the traces of Frobenius ap(E) encode coefficients of f .

The modularity theorem (Wiles, Taylor–Wiles, Breuil–Conrad–Diamond–Taylor) allows
us to conclude that every elliptic curve arises this way! So we can associate to Eap,bp,cp a
modular form, and use results about Galois representations associated to modular forms
to derive a contradiction.
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Theorem 6.10 Ribet

Let f be a weight 2 newform of level N , and let ` be a prime such that ` | N but
`2 - N . Suppose ρf is absolutely irreducible and that ρf is unramified at ` or ` = p
and ρf is flat at p.
Then there is a weight 2 newform of level N/` such that ρf

∼= ρg.

We now have all the pieces we need to outline a proof of FLT. We note that p = 3 had
already been completed by Euler and n = 4 completed by Fermat. First, Eap,bp,cp has an
associated modular form fap,bp,cp by modularity theorem. And ρap,bp,cp is “barely ramified”
etc by Frey–Serre. So we can apply Ribet’s Theorem iteratively to the primes dividing the
conductor N =

∏
`|abc ` since N is squarefree; this procedure produces a newform g of

weight 2 and level 2. But the space of level 2 weight 2 cusp forms S2(Γ0(2)) has dimension
equal to the genus of X0(2) which is 0 (see Dr. Watson’s lectures). So there is no such
form g, a contradiction!

So we’ve established the veracity of Fermat’s Last Theorem. But what’s the big deal?
Why do we care so much about FLT, what are its applications? I close with a corollary
that would have shocked the Pythagoreans. And I’m making this choice precisely because
there’s no risk of any of you throwing me off a boat for providing such a ridiculous proof.

Corollary 6.11

3
√

2 is irrational.

Proof: Let c = 3
√

2. If c were in Q, then 13 + 13 = c3 would be a rational solution to
a3 + b3 = c3. But there is no such solution by Fermat’s Last Theorem.

I am just joking. The real reason we care about FLT is all of the cool math we got to learn
in order to (begin to) understand the proof! The real treasure is the friends we made along
the way
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