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NB: throughout this section, | · | will denote the p-adic absolute value.

5.1 Functions and Continuity

We have now built up Qp as an analogue of R (in particular, as another completion of Q).
We want to develop a theory of functions on Qp.

Since we have an absolute value on Qp, we can define continuity the same way we do in R:

Definition 5.1

Let U ⊂ Qp be an open set. A function f : U → Qp is continuous at x0 ∈ U if for
all δ > 0 there exists ε > 0 such that

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε

For example, polynomials are continuous everywhere (same proof as in R). However, the
function defined by f(x) = 1/x for x 6= 0 and f(0) = 0 is not continuous at 0, since
limn p

n = 0 but 1/pN →∞.

We can also define derivatives similarly!

Definition 5.2

Let U ⊂ Qp be an open set. A function f : U → Qp is differentiable at x0 ∈ U if
the limit

f ′(x0) := lim
h→0

f(x0 + h)− f(x0)

h

exists. If f ′(x) exists for every x ∈ U we say f is differentiable in U .

For example, polynomials are differentiable everywhere (same proof as in R), and the
derivative is what you’d expect.

However, we run into trouble attempting to continue along the real path, since analogues
of key theorems needed for calculus and analysis in R are false. We can state a version of
the mean value theorem for Qp, but it’s false! Also, there are functions on Qp which are
not locally constant but have derivative 0 (for example, consider f : Zp → Qp defined by
f(
∑∞

i=0 aip
i) =

∑∞
i=0 aip

2i).

Since we are missing such key theorems, we can’t develop calculus and analysis for differ-
entiable functions like we do in R. But all is not lost.
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5.2 A series of fortunate events

We restrict our attention to functions defined by power series. This is pretty natural since
many important functions in R arise from power series, like eX and sinX.

Given a formal power series, we want to determine where it defines a function, i.e. where
it converges.

Theorem 5.3

Let f(X) =
∑∞

n=0 anX
n ∈ Qp[[X]] and define

ρ =
1

lim sup n
√
|an|

.

1. If ρ = 0, then f(x) converges only when x = 0.

2. If ρ =∞, then f(x) converges for every x ∈ Qp.

3. If 0 < ρ < ∞ and limn→∞ |an|ρn = 0, then f(x) converges if and only if
|x| ≤ ρ.

4. If 0 < ρ < ∞ and |an|ρn does not converge to 0, then f(x) converges if and
only if |x| < ρ.

5. Let Df = {x ∈ Qp : f(x) converges}. The function f : Df → Qp, x 7→ f(x) is
continuous.

Proof: this theorem follows from the fact that a series converges in Qp if and only if
the terms of the series converge to 0, so f(x) =

∑∞
n=0 anx

n converges if and only if
limn |an||x|n = 0.

So, for example, for f(X) =
∑
pnXn, ρ = ∞ so f converges everywhere. For g(X) =∑

Xn, ρ = 1 and since the coefficients don’t converge to 0, the region of convergence for g
is B(0, 1) = pZp.

Given formal power series

f(X) =
∑
n=0

anX
n and g(X) =

∑
n=0

bnX
n

we can define their sum and product series as

(f + g)(X) :=
∑
n=0

(an + bn)Xn and (fg)(X) =
∑
n=0

n∑
k=0

akbn−kX
n.
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You can check that these series behave how we would expect, that is, that if f, g converge at
x ∈ Qp, then f+g and fg converge at x, and (f+g)(x) = f(x)+g(x) and fg(x) = f(x)g(x).

We will also want to compose functions; can a composition of functions defined by power
series be written as a power series, and if so, how? We can solve recursively for what the
coefficients of such a series would be, and we call that series their formal composition.

As it turns out, the formal composition is not the composition as a function unless we have
some particular conditions.

Theorem 5.4

Let f(X) =
∑

n=0 anX
n and g(X) =

∑
n=0 bnX

n, and let h(X) be the formal com-
position (f ◦ g)(X). Let x ∈ Qp and suppose that

1. g(x) converges,

2. f converges on the value g(x), and

3. for all n, we have |bnxn| ≤ |g(x)|

Then h(x) also converges, and f(g(x)) = h(x).

This is a result one would hope for in general, but, alarmingly, you can find series f, g and
a value x ∈ Qp such that h does converge, but not to f evaluated at g(x) if the above
conditions are not satisfied. We omit the proof of the theorem here, but you can find it in
Fernando Gouvea’s p-adic Numbers (Theorem 5.3.3).

Given a power series and a point α in its region of convergence, we can recenter the power
series around α, writing it as a power series in X − α. We can then ask where the new
series converges.
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Theorem 5.5

Let f(X) =
∑
anX

n ∈ Qp[[X]], and let α ∈ Df (so f converges at α). For each
m ≥ 0, define

bm =
∑
n≥m

(
n

m

)
anα

n−m and g(X) =

∞∑
m=0

bm(X − α)m.

1. The series defining bm converges for all m

2. Df = Dg (same region of convergence)

3. For any x ∈ Df , f(x) = g(x).

We omit the proof (see Gouvea Proposition 5.4.2) but note that it’s enough to show that
f and g have the same radius of convergence, since α ∈ Df ∩ Df , and p-adic disks “are
either concentric or disjoint (like drops of mercury)”–Yves Andrès.

This is a very cool fact, but it does mean that we can’t do analytic continuation the same
way we do in C.

We now describe some ways of determining when power series are equal, and some prop-
erties of their derivatives.

Theorem 5.6

Let f, g ∈ Qp[[x]], and suppose there is a non-stationary (i.e. not eventually con-
stant) sequence xm ∈ Qp with limxm = 0 such that f(xm) = g(xm) for all m. Then
f(X) = g(X) (i.e. f, g have the same coefficients).

Proof sketch: this is the same proof as in R. We look at the formal power series of the
difference f − g, noting that for a power series h, h(xm) converges to the constant term of
h as xm → 0.

Theorem 5.7

Let f(X) =
∑
anX

n ∈ Qp[[X]] and let f ′ be the formal derivative of f . Let x ∈ Qp.
If x ∈ Df , then x ∈ Df ′ , and

f ′(x) = lim
h→0

f(x0 + h)− f(x0)

h
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Proof: First, we note that for x 6= 0,

|nanxn−1| ≤ |anxn−1| =
1

|x|
|anxn| → 0

and so f ′(x) converges (series in Qp). Next, let r ∈ Q such that Df = Bcl(0, r). Suppose
x 6= 0 and suppose |h| < |x| ≤ r. Then

f(x+ h)− f(x)

h
=

∞∑
n=1

n∑
m=1

an

(
n

m

)
xn−mhm−1.

Then

|an
(
n

m

)
xn−mhm−1| ≤ |an|rn−1

where the right quantity converges to 0 and does not depend on h, so we can set h = 0 to
conclude

f ′(x) =

∞∑
n=1

nanx
n−1.

Now we can see a compelling reason to focus on power series: we do not have the disturbing
phenomenon of non-locally constant functions with derivative 0.

Theorem 5.8

Suppose f(X), g(X) ∈ Qp[[x]], and that f, g both converge for |x| < ρ. If f ′(x) =
g′(x) for all |x| < ρ, then there exists a constant C ∈ Qp such that f(X) = g(X)+C.

Proof: from Theorem 5.6 and Theorem 5.7, f ′ and g′ have the same coefficients, so f and
g have the same coefficients aside from possibly the constant term.

5.3 Rooting around (because pigs root around)

We’ll now explore the zeros of functions coming from power series. There are a lot of
wonderful results!

Theorem 5.9

Zp is compact.

Proof: Zp is a closed subset of Qp, so it is complete. And for any ε > 0, one can find N ∈ N
such that p−N < ε, and

Zp =

pN−1⋃
i=0

i+ pNZp
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is a covering of Zp by finitely many balls of radius less than ε. So Zp is complete and totally
bounded, so it is compact.

Theorem 5.10 Strassman’s Theorem

Let f(X) =
∑∞

n=0 anX
n be a nonzero element of Qp[[X]]. Suppose that

limn→∞ an = 0. Let N be the integer such that

|aN | = max
n
|an| and |an| < |aN | for n > N.

Then f : Zp → Qp defined by x 7→ f(x) has at most N zeros. Also, if {α1, ..., αm}
are the zeros of f , then g ∈ Qp[[X]] such that

f(X) = (X − α1) · · · (X − αm)g(X)

such that g converges on Zp and has no zeros in Zp.

Proof sketch: induct on N and rearrange series to factor out X − α for roots α.

Next we want to consider roots that aren’t even necessarily in Qp. That’s right, we want
to look in an algebraically closed field. We could take the algebraic closure of Qp, but
it turns out that that’s not complete, so we complete that, and thankfully the result is
algebraically closed (phew!) We will take the preceding statement as a black box, calling
the resulting field Cp. This is summarized in the following theorem:

Theorem 5.11 Complex numbers but make it p-adic

There exists a field Cp and a valuation function vp(·) on Cp (and hence a non-
archemidean absolute value | · | = p−vp(·)) on Cp such that

1. Cp contains Qp, and the restriction of | · | to Qp coincides with the p-adic
absolute value

2. Cp is complete with respect to | · |

3. Cp is algebraically closed

4. Qp is dense in Cp

5. {vp(x) : x ∈ Cp} = Q. In particular, if x ∈ Qp has minimal polynomial of
degree d, then vp(x) ∈ 1

dZ.

Now that we are assured that there is a nice field in which we can find all our roots, we
explore this bucolic idyll with the following tool:
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Definition 5.12

Let f = a0 + a1X + a2X
2 + · · · + anX

n be a polynomial in K[X]. Then the
Newton polygon of f , denoted NPp(f), is the lower convex hull in R2 of the
points {(i, vp(ai)) : i = 0, 1, ..., n and ai 6= 0}.

One can think of the lower convex hull as being formed by the following procedure: ham-
mer a nail into the plane at each point (i, vp(ai)), let a rope hang below all the nails, and
then pull the rope straight up above the points (0, vp(a0)) and (n, vp(an)) until it is taut.

We illustrate with an example:

The boundary edges of the Newton polygon of f convey a lot of information about its
roots! Define the width of a segment to be its length along the x dimension.
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Theorem 5.13

Let K be either Cp or a finite extension of Qp. Let f(X) = a0 + a1X + a2X
2 +

... + anX
n ∈ K[X]. Let m1, ...,mr be the slopes of the boundary edges of NPp(f),

with corresponding widths w1, ..., wr. Then for each k : 1 ≤ k ≤ r, f(X) has exactly
wk roots (in Cp, counting multiplicities) of absolute value pmk (that is, of valuation
−mk).

Proof: We omit the proof of the number of roots with a given valuation, but we prove that,
given a root α ∈ Cp with f(α) = 0, then −vp(α) is a slope of a boundary edge of NPp(f).

Let S denote the set {i, vp(ai) : 0 ≤ i ≤ n, ai 6= 0}, whose lower convex hull is NPp(f). We
have:

∞ = vp(0) = vp(f(α)) = vp(

n∑
i=0

aiα
i) ≥ min

i
{vp(ai(αi)}

= min
i
{vp(α) · i+ vp(ai)} = min{vp(α) · x+ y : (x, y) ∈ S}

If the minimum were uniquely attained, then the inequality would be an equality,which is a
contradiction. Hence there must be some i 6= j such that vp(α)·i+vp(ai) = vp(α)·j+vp(aj).
Thus, the points (i, vp(i)) and (j, vp(j)) minimize the linear function vp(α) ·x+y along the
set S.

Note in general, given a set S of points whose lower convex hull is H, any linear function
l(x, y) = mx+ y attains its minimum on H at an extremal point, or extremal edge. Thus
its minimum on S equals its minimum on the entire convex hull, and is attained at an
extremal point or a set of points lying along an extremal edge. One can see this intuitively
by varying the line l(x, y) = c for different values of c and noting that, if the line intersects
H at some interior point then c can be decreased with the line l(x, y) = c still intersecting
H.

In our case, we are minimizing the linear function l(x, y) = vp(α) ·x+ y over our set S. As
it is minimized at the two points (i, vp(i)) and (j, vp(j)), the edge between these two points
is an extremal edge of NPp(f), whose slope is −vp(α), the slope of the line l(x, y) = c.

One corollary is Eisenstein’s classic criterion for irreducibility. Eisenstein’s criterion states
that, given a monic polynomial f(x) = a0 + a1X + · · · + an−1X

n−1 + Xn ∈ Z[X], where
n > 1, such that p divides ai for every i but p2 does not divide a0, then f is irreducible
over Q. To see this using Newton polygons, note that NPp(f) will have a boundary edge
from (0, 1) to (n, 0), whose slope is − 1

n , so all roots of f have valuation 1
n .
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Now let α be a root of f . If its minimal polynomial over Q has degree d, then vp(α) ∈ 1
dZ.

But 1
n /∈ 1

dZ, so d = n. Thus f is irreducible.

5.4 Connecting the dots (another way)

We will now step back and talk about how to construct p-adic functions via interpolation.
We will be interested in functions that are uniformly continuous. Recall:

Definition 5.14

Given a field K with absolute value, and a set S ⊂ K, a function f : S → K is
uniformly continuous if for every ε > 0 there exists δ > 0 such that for all x, y ∈ S,

|x− y| < δ implies |f(x)− f(y)| < ε

Importantly, the same δ works for a given ε, regardless of the choice of x, y. The following
Theorem explains the importance of uniform continuity.

Theorem 5.15

Let S be a dense subset of Zp and f : S → Qp be a function. Then there exists a
continuous function f̃ : Zp → Qp such that f̃(s) = f(x) for all x ∈ S if and only
if f is bounded and uniformly continuous. If such an extension f̃ exists, then it is
unique.

Proof: Uniqueness of the extension follows from S being dense in Zp. Now suppose that
a continuous extension f̃ exists. Then it is bounded and uniformly continuous since Zp is
compact.

Conversely, suppose f is bounded and uniformly continuous. Let x ∈ Zp. Since S is dense
in Zp, we can write x = limxn for xn ∈ S. Since f is bounded and uniformly continuous,
you can show that the sequence f(xn) is Cauchy, hence converges to a limit f̃ := limf(xn).

For example, we can take S = Z or even S = N.

Note that in the p-adic setting, we can rephrase uniform continuity as follows.
A function f is uniformly continuous if for all m ∈ N there exists some N ∈ N such that if

a ≡ b (mod pN )

then
f(a) ≡ f(b) (mod pm)
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