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4.1 Hensel’s Analogy: Prime and Space

Hensel conceived of an analogy in which integers could be viewed as “functions” on the
“space” of prime numbers (this would be much much more broadly generalized in modern
algebraic geometry). To understand this analogy, we compare Z to the ring of polynomials
C[x], which is a ring of functions on the affine line A1

C (this is an algebro-geometric notation
for the space of complex numbers C, thought of as a one-dimensional “line” since it has
dimension 1 over C). We detail the facets of this analogy in the following table:

Hensel’s analogy

C[x], as functions on A1
C Z, as functions on {p ∈ N : p is prime}

Evaluation: given f ∈ C[x] and c ∈ C,
f(c) can be identified with the image of x
under the quotient C[x]→ C[x]/(x−c) ∼=
C.

The “evaluation” of n ∈ Z at the
“point” p is its image under the quo-
tient Z→ Z/p

C(x) = {fg : f, g ∈ C[x]}, as rational

functions on A1
C.

Q = { n
m : n,m ∈ Z}, as “rational func-

tions” on {p ∈ N : p is prime}

Laurent series expansion of a rational
function h = f

g around a point c ∈ C,

of the form
∑∞

i=n0
bi(x− c)i.

p-adic expansion of a rational number
a = n

m around a “point” p prime, of the
form

∑∞
i=n0

bip
i ∈ Qp

The nth partial sums of the Laurent se-
ries of h is the best approximation of h
around c by a rational function of degree
n.

The nth partial sum of the p-adic ex-
pansion of a is congruent to a mod pn.

If
∑∞

i=n0
bi(x−c)i is the Taylor expansion

of h, with bn0 6= 0, then h vanishes at c
with order n0.

If
∑∞

i=n0
bip

i is the p-adic expansion of
a with bn0 6= 0, then a vanishes at p
with order n0.

To add to this analogy, we think of ∞ as another place on which elements of Q can be
evaluated, and of the embedding Q → R as the expansion around infinity. We use p to
refer to either a prime number or infinity.

4.2 Local-to-global

Along these lines, we can think of the natural map

loc : Q→
∏
p≤∞

Qp
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as recording the “local behavior” of “functions” a ∈ Q at all “points” p, including p =∞.

Similarly, if f ∈ Q[X1, ..., Xn] and there is some v = (x1, ..., xn) ∈ Qn such that f(v) = 0,
then f(vp) = 0 for all p ≤ ∞, where vp is the image of v in Qn

p . So a “global” root of f gives
“local” roots of f for all p. But can we go the other way around? This is the philosophy
of the Local-Global Principle:

Principle 4.1 Local-Global Principle

The existence of solutions in Q of f ∈ Q[X1, ..., Xn] can be determined by studying
solutions of f in Qp∀p ≤ ∞.

Can we always piece together the p-atalantas into a Q-atalanta?
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There are many reasons we would like to be able to do this, aside from just drawing fun
pictures. We now have many tools to determine if there are solutions over R or over Qp.
Over R, we can look at things like discriminant of a quadratic equation, degree, sign, etc.
And over Qp, we can scale so that the coefficients are in Zp and use Hensel’s lemma to
reduce to studying roots over Z/pZ.

Unfortunately, as you will see in the problem set, the local-global principle does not hold
in general...

4.3 Salvaging Local-Global

We start by introducing a useful tool that relates Q and Qp for p ≤ ∞.

3



AWS Local-to-Global: Expanding our Horizons Lecture Notes 4

Theorem 4.2 (Weak) Approximation Theorem

Let V ∈ {p ∈ Z : p prime }∪{∞} and let S be a finite subset of V . Then the image
of Q in

locS : Q→
∏
p∈S

Qp

is dense.
That is, for any (xp)p∈S : xp ∈ Qp and any (εp)p∈S : εp ∈ R>0, there exists x ∈ Q :
|xxp|p < εp for all p ∈ S.

Proof: Suppose S = {∞, p1, ..., pn} with pi distinct, and let (x∞, x1, ..., xn) ∈ R × Qp1 ×
...×Qpn . By scaling by an appropriate integer (product of powers of pis) we may assume
that xi ∈ Zpi for all 1 ≤ i ≤ n.

We want to show that for all ε > 0 and ∈ N there exists x ∈ Q such that

|x− x∞|∞ ≤ ε and vpi(x− xi) ≥ N ∀1 ≤ i ≤ n.

By Sun Tzu Remainder Theorem (commonly referred to as Chinese Remainder Theorem),
there exists x̃ ∈ Z such that x̃ ≡ x̄i (mod pNi ) for all 1 ≤ i ≤ n. This x̃ is sufficiently close
to the elements xi for the finite primes, but we need to adjust it so it is sufficiently close
to x∞ in the archimedean metric.

Let q ∈ Z>0 such that pi - q for any i. Choose a,m ∈ Z such that

|x̃− x∞ +
a

qm
pN1 · · · pNn | ≤ ε

and let x = x̃+ a
qm p

N
1 · · · pNn .

Now for some great news!

Theorem 4.3 Hasse–Minkowski Theorem

Let F (X1, ..., Xn) ∈ Q[X1, ..., Xn] be a quadratic form. Then

F (X1, ..., Xn) = 0

has nontrivial solutions in Q if and only if it has nontrivial solutions in Qp for all
p ≤ ∞.

Before we get into the proof, we present an application:
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Question 4.4

For which a, b, c,∈ Q does
aX2 + bY 2 + cZ2 = 0

have a nontrivial solution?

By Hasse–Minkowski, it suffices to determine for which a, b, c the form has nontrivial roots
locally for all p.

To start putting some constraints on a, b, c, we simplify the polynomial. Let

f(X,Y, Z) = aX2 + bY 2 + cZ2

Then if d 6= 0, f(x, y, z) = 0 if and only if d ·f(x, y, z) = 0 so we can assume a, b, c ∈ Z with
no common factors. We can even assume that a, b, c are pairwise relatively prime–check
this! The proof has some elements in common with irrationality of root 2, so don’t try this
on a boat!

Next, if a = a1a
2
2, then (x, y, z) is a root of f if and only if (a2x, y, z) is a root of

a1X
2 + bY 2 + cZ2, so we can assume a, b, c are squarefree.

So now lets consider some local cases. Since negative numbers don’t have square roots in
R, there is a root of f if and only if a, b, c do not all have the same sign.

Now suppose p is an odd prime not dividing a, b, or c. We look at this equation mod p
and use Hensel’s lemma.

Lemma 4.5

If p is an odd prime not dividing a, b, or c, there exist integers x0, y0, z0 not all
divisible by p such that

ax20 + by20 + cz20 ≡ 0 (mod p).

Proof of lemma: in fact, we will find a solution with z0 = 1, so a solution to

ax0 + by20 + c ≡ 0 (mod p).

This is equivalent to solving

ax0 = −by20 − c ≡ 0 (mod p).

Since there are (p+ 1)/2 squares mod p and a, b are invertible mod p, there are (p+ 1)/2
possible congruence classes for the left side of the above equation as x0 ranges over elements
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of Z/pZ and (p + 1)/2 congruence classes that can occur on the right. Hence there must
be some overlap, proving the lemma

Now I claim we can lift this to a root of f in Zp. We can use Hensel’s Lemma, but that’s
only for single variable polynomials, so we suppose WLOG that x0 6= 0 (mod p) and define

g(X) = aX2 + by20 + cz20 .

Then Hensel’s lemma applied to g (check the conditions for this!!) implies there exists
x ∈ Zp such that g(x) = 0, so (x, y0, z0) is a root of f in Qp.

Now let’s find sufficient conditions for existence of a root in Q2, and suppose we are in the
case where a, b, c are all odd.

If we have a root (x, y, z) ∈ Q3
2 of f , we can suppose x, y, z,∈ Zp and one of x, y, z has

absolute value 1, scaling by the appropriate power of 2 if necessary. So we may now look
at f mod 2; we see that

0 ≡ ax2 + by2 + cz2 ≡ x2 + y2 + z2 (mod 2).

WLOG, suppose y ≡ z ≡ 1 (mod 2) and x ≡ 0 (mod 2). Then y2 ≡ z2 ≡ 1 (mod 4) and
x2 ≡ 0 (mod 4). So

b+ c ≡ 0 (mod 4).

Hence, if there is a root of f over Q2, two of a, b, c sum to 0 mod 4.

The rest of the classification can be stated as follows, and its completion is an exercise in
this week’s problem set:

Theorem 4.6

Suppose a, b, c ∈ Z are relatively prime and squarefree. Then

aX2 + bY 2 + cZ2 = 0

has a nontrivial solution in Q if and only if all of the following hold:

1. a, b, c do not all have the same sign

2. if p | a and p 6= 2, there exists r ∈ Z such that b+ r2c ≡ 0 (mod p) (similarly
for b, c)

3. if 2 - abc, then two of a, b, c sum to 0 mod 4

4. if 2 | a then 8 | b+ c or 8 | a+ b+ c (similarly for b, c)
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4.4 Proof of Hasse–Minkowski

Quadratic forms of rank 2 and 4 were covered in Professor Chan’s lecture. We begin by
proving the theorem for rank 3 quadratic forms, following a proof due to Legendre.

Arizona Winter School is all about acquainting students with cutting-edge research; in
the spirit of this, here is a result from 2005. For centuries it was conjectured (actually
assumed!) that the mathematician Adrien-Marie Legendre was this guy:

You may see his picture in many textbooks! In 2005, this conjecture was shown to be false
(the above guy is just an unrelated French politician whose last name is Legendre); the
only known depiction left of our very own Legendre is the following:
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by caricature artist Julien-Léopold Boilly, whose other delightful caricatures you should
defintely check out.

Back to the proof for when n = 3 : suppose that f is of the form aX2 + bY 2 + cZ2 with
a, b, c ∈ Q×, and suppose that for each p ≤ ∞, there exists vp := (xp, yp, zp) ∈ (Qp)

3 such
that fp(xp, yp, zp) = 0.

First, a couple simplifications: since fp(vp) = 0 if and only if a−1fp(vp) = 0, we may assume
a = 1, that is, f = X2 − bY 2 − cZ2 Also, if b = b1b

2
2 for some b1, b2 ∈ Q, then

fp(vp) = (xp)
2 + b(yp)

2 + c(zp)
2 = (xp)

2 + b1(b2yp)
2 + c(zp)

2

so we may replace b by b1 and thus assume b, and similarly c, are squarefree integers.
Without loss of generality, assume also that |b| ≤ |c|.

We now induct on m = |b|+ |c|. The base case is m = 2, meaning f = X2 ± Y 2 ± Z2.

We can ignore the case f = X2 + Y 2 + Z2 since it has no nonzero root over R = Q∞. We
are left with two cases up to symmetry: f = X2 + Y 2 − Z2 and f = X2 − Y 2 − Z2, both
of which have a zero at (X,Y, Z) = (1, 0, 1) over any field.

Now suppose m > 2. We will reduce the problem to one with a smaller value of m. First
note that, since m > 2 and |b| ≤ |c|, we must have |c| ≥ 2. Let p be a prime dividing c. We
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will show that b is a square mod p. Indeed, suppose we have a nontrivial zero (xp, yp, zp)
of fp in Qp. We can assume that b is not 0 mod p, otherwise it is trivially a square mod p.
We can further assume by scaling (xp, yp, zp) by an appropriate scalar that xp, yp, zp ∈ Zp

and that one of these numbers has absolute value 1 in Qp. We now consider the equation
f(xp, yp, zp) = 0 mod pZp, which gives us

x2p − by2p ≡ 0 (mod p)

We note that yp is not divisible by p. If it were, then xp would be divisible by p, hence
cz2p must be divisible by p2. Since c is squarefree, zp would need to be divisible by p, con-
tradicting our assumption that one of xp, yp, zp has absolute value 1. Thus yp is invertible
mod p and we have

b ≡ (
xp
yp

)2 (mod p)

showing that b is indeed a square mod p.

Now, since c is squarefree, it follows from the Sun Tzu Remainder Theorem that Z/cZ ∼=
Πi(Z/piZ), where this product ranges over all prime factors pi of c. Since b is a square
mod each of these primes, it must therefore be a square mod c.

So we can write b = t2 − cc̃ for some t, c̃ with |t| ≤ |c|2 . So c̃c = t2 − b. Let k denote a field
which is either Q or Qp, for p ≤ ∞. Using the Hilbert symbol notation from (Chan 3.4),
we see that (b, c̃c) = 1 in k, since (t, 1, 1) is a zero of f . By the bimultiplicative property
of the Hilbert symbol, (b, c̃)(b, c) = 1. By definition of the Hilbert symbol, this means that
the original quadratic form f has a nontrivial zero in k if and only if the modified quadratic
form

h = X2 − bY 2 − c̃Z2

has a nontrivial zero in k.

Note that |c̃| = t2−b
c ≤ |c|4 + 1 < |c| since |c| ≥ 2.

Finally, we let c̃ = γu2 with γ square-free. Then the quadratic form

g = X2 − bY 2 − γZ2

has a nontrivial root in k if and only if g does if and only if f does, for k = Q or Qp for
any p ≤ ∞.
Thus, by assumption g has nontrivial roots over Qp for any p, and so by induction it has
a nontrivial root over Q, so that f has a nontrivial root over Q, as desired.

Now suppose that the rank of f is greater than or equal to 5. We now proceed by induction
on the rank.
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We write f = h − g, where h = a1X
2
1 + a2X

2
2 and g = −(a3X

2
3 + · · · + anX

2
n). Let S be

the set of places S = {∞} ∪ {2} ∪ {p prime : |ai|p 6= 1 for some i ≥ 3}. Importantly, S is
finite.

Let p be a prime or ∞. By our hypothesis there exists some choice x1,p, . . . , xn,p ∈ Qp and
some cp ∈ Qp such that

h(x1,p, x2,p) = cp = g(x3,p, . . . , xn,p)

Let Q×p
2

denote {y2 : y ∈ Q×p }. It is an exercise to check that Q×p
2

is open in Qp (Hint:
Hensel’s lemma). Thus, the weak approximation Theorem, together with the continuity of

h, guarantees that there exist some (x1, x2) ∈ Q such that h(x1,x2)
cp

∈ Q×p
2

for all p ∈ S.

Given such a choice of x1, x2, let c = h(x1, x2). Then h = c has a nontrivial solution in Qp

for all p ∈ S.

Let f1 := cZ2 − g. Then f1 = 0 has a nontrivial root in Qp for p ∈ S. And if p 6∈ S, the
coefficients of the discriminant dp(g) are units, so εp(g) = 1 (See Chan for definitions of
the discriminant and Hasse invariant ε)

Hence f1 has a nontrivial zero in Qp for ALL p ≤ ∞ !

By induction, f1 has a nontrivial 0 in Q so g = c has a nontrivial solution in Q, so f = 0
has a nontrivial solution in Q.
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