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3.1 Keeping the ball rolling

Last time, gave a new definition Qp, as the completion of Q with respect to the absolute
value | · |p. So Qp was the set of equivalence classes of Cauchy sequences (xn)n∈N of rational
numbers, where two Cauchy sequences are equivalent if their difference converges to 0 in
norm.

The completion Qp is equipped with addition and multiplication where the sum and prod-
uct of two elements is given by the elementwise sum and product of Cauchy sequences
representing them (you can check that the sum or product of Cauchy sequences is again a
Cauchy sequence, and that replacing a Cauchy sequence by an equivalent one would not
change the sum and product). These operations extend addition and multiplication on Q.
Note that, with this definition of Qp, it is much quicker to show that Qp is a field, simply
by taking elementwise differences and quotients of Cauchy sequences. We can further equip
Qp with a norm.

The absolute value of an element of the completion, so an absolute value of a Cauchy
sequence, is defined as

|(xn)n∈N| := lim
n→∞

|xn|

When completing Q with respect to | · |∞, we obtain the norm on R. When completing Q
with respect to | · |p, we obtain a norm on Qp that extends the p-adic norm on Q and is
again nonarchemidean.

For example, for | · |∞, −
√

2 can be defined as the limit of the sequence

−1,−1.4,−1.41,−1.414,−1.4142, ...

so | −
√

2|∞ is the limit of the sequence

| − 1|∞, | − 1.4|∞, | − 1.41|∞, | − 1.414|∞, | − 1.4142|∞, ...

which is the real number
√

2.

In lecture 1, we computed a square root of 2 in Q7 with a 3 in the “ones” position. We
calculate its absolute value:

|3 + 1 · 7 + 2 · 72 + 6 · 73 + ...|7 = lim(|3|7, |3 + 1 · 7|7, |3 + 1 · 7 + 2 · 72 + 6 · 73|7, ...)
= lim(1, 1, 1, ...)

= 1.

We have only seen a limited type of number occur as p-adic absolute values. Indeed, the
way we defined | · |p on Q, the only possible absolute values of rational numbers were 0
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or pn for n ∈ Z. And if r ∈ R>0 is not a power of p, then there exists i ∈ Z such that
pi < r < pi+1 and hence r cannot occur as a limit of p-adic absolute values of elements of
Q. This can be summed up as follows:

Proposition 3.1

{|x|p : x ∈ Qp} = {pn : n ∈ Z} ∪ {0}

This immediately gives a result in the case of Qp that we noted more generally for nonar-
chemidean fields in the previous lecture, which is that open balls are closed sets and
closed balls are open sets. It even shows that, in Qp, open balls are closed balls, since
B(x, pn) = Bcl(x, p

n−1) for all n ∈ Z.
For example, as in the picture from last lecture, the elements we identified as being in a
closed ball of radius 1/9 around 1 are in an open ball of radius 1/3 around 1.

We’ll begin exploring algebraic characterizations of these balls. To begin with, we’ll give
a new definition of Zp, as a ball. We recall that since | · |p is nonarchimedean, |n|p ≤ 1 for
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all n ∈ Z. We extend this as follows:

Definition 3.2

Zp = {x ∈ Qp : |x|p ≤ 1}

Here are some examples of elements of Zp under this definition: n for all n ∈ Z,
√

2 when
p = 7, 1/3 when p = 5,

√
−1 when p = 7 (these follow from calculations in lecture 1).

Something which is not in Zp is 1/p, which has absolute value p > 1.

3.2 Wearing many hats

We will now unveil Qp (defined as the completion of Q with respect to | · |p) as the very
same field we defined in lecture 1!

First we will prove some interesting topological facts about about Qp, which will lead to
our result.

Theorem 3.3

i) Q is dense in Qp

ii) Z is dense in Zp

iii) Every element in Zp can be written uniquely in the form

b0 + b1p+ b2p
2 + ...

with bi ∈ {0, 1, ..., p − 1} , and every such series b0 + b1p + b2p
2 + ... with

bi ∈ {0, 1, ..., p− 1} represents an element of Zp.

iv) Every element in Qp can be written uniquely in the form

bn0p
n0 + bn0+1p

n0+1 + ...

for some n0 ∈ Z and bi ∈ {0, 1, ..., p − 1}, and every such series bn0p
n0 +

bn0+1p
n0+1 + ... for some n0 ∈ Z and bi ∈ {0, 1, ..., p− 1} represents an element

of Qp.

Proof: i) Q embeds inside Qp by mapping a ∈ Q to the constant Cauchy sequence
(a, a, a, a, . . . ). Different elements of Q map to different elements of Qp since the distance
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between them is a positive constant.
Now suppose x ∈ Qp. Let (xn) be a Cauchy sequence in Q representing x and let ε > 0.
We wish to exhibit some a ∈ Q such that |x− a|p < ε. Recall that |x− a|p is the limit of
|xn − a|p. Since (xn) is Cauchy, we can choose N such that |xn − xm|p < ε for n,m ≥ N .
Then a = xN does the job.

ii) Exercise.

iii) Let x ∈ Zp and let n ≥ 0. By ii), there exists a ∈ Z such that |x − a|p ≤ p−(n+1). In
fact, we claim that there is a unique such choice of a mod pn. Indeed, given b ∈ Z we note
that |x − a + b|p ≤ p−n if and only if |b|p ≤ p−(n+1) if and only if p(n + 1)|b, using the
nonarchemidean property. So we let an be the unique integer such that |x−an|p ≤ p−(n+1)

and 0 ≤ an < pn+1.

Then limn→∞an = x, and the decompositions an =
∑n

i=0 bip
i are coherent, thus represent-

ing in the limit the infinite series
∑∞

i=0 bip
i for some sequence bi ∈ {0, . . . , p− 1}.

iv) Let x ∈ Qp. As we’ve noted |x|p = pn for some n ∈ Z, so p−nx ∈ Zp, and the result
follows from iii).

We note some interesting differences with the reals here: Z is not dense in any open subset
of the reals, and some real numbers have multiple decimal representations (1 = .9999.. for
example), which doesn’t happen for the p-adics.

We can make a connection between the series expansion for a p-adic number and its abso-
lute value:

Proposition 3.4

For x ∈ Qp of the form x =
∑∞

i=n0
bip

i with bn0 6= 0 (so n0 is the lowest power of p
with a nonzero coefficient), |x|p = p−n0 .

Proof: we use induction and the “all triangles are isosceles” equality from last lecture.

|bn0p
n0 + bn0+1p

n0+1 + ...+ bkp
k|p = max{|bn0p

n0 |p, |bn0+1p
n0+1 + ...+ bkp

k|p}
= max{p−n0 , p−n0−1}
= p−n0 .

So
|x|p = lim

k
|bn0p

n0 + bn0+1p
n0+1 + ...+ bkp

k|p = p−n0 .
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Examples: |2 · 3−2 + 3−1 + 0 + 1 · 31 + ...|3 = 32, |4 · 53 + 2 · 54 + 3 · 55 + ...|5 = 5−3.

3.3 A more algebraic viewpoint

We now explore the links between the algebra and topology of Zp and Qp.

For n ∈ Z, let pnZp := {x ∈ Qp : x = pn · y for some y ∈ Zp}. Note that when n ∈ N, this
is a subset of Zp; indeed, it is an ideal of Zp: that is, it’s closed under addition as well as
multiplication by elements of Zp.

By Proposition 3.2, we see that pnZp is the closed ball around 0 of radius p−n. In fact, every
ideal of Zp is of this form, so ideals are balls! (this is an exercise in this week’s problem set).

Similarly, we can conclude that an element x ∈ Zp is in the same closed ball of radius pn

as an element y if and only if x − y ∈ pZp. So this gives an algebraic criterion for when
two elements of Qp are within a specified distance of each other, which we sum up as follows:

Proposition 3.5

For x, y ∈ Qp, |x− y| ≤ p−n if and only if x− y ∈ pnZp.

For example, in Q7, we found a square root of 2 in lecture 1: 3 + 1 · 7 + 2 · 72 + 6 · 73 + ...,
and this is in (3 + 1 · 7 + 2 · 72) + 73Zp.

Our proof of Theorem 3.3.iii) showed the following:
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Proposition 3.6 Balls are cosets

Let n ∈ N. Then

Zp =

pn−1⊔
a=0

Bcl(a, p
−n) =

pn−1⊔
a=0

(a+ pnZp)

This gives us a map πn : Zp → Z/pnZ sending

∞∑
i=0

bip
i 7→

n−1∑
i=0

bipi.

This map is surjective; for ā ∈ Z/pnZ, the preimage of ā under πn is the closed ball of
radius p−n, or a+ pnZp.

It is an exercise to check that that πn respects addition and multiplication, that it is a
homomorphism of rings.

Of course, πn is not injective for any n, since kerπn = pnZp. However, any distinct elements
of Zp map to different elements under πn for n large enough. So if we piece together
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compatible elements of Z/pnZ as n ranges over N>0, we can “recover” all of Zp. We state
this precisely by introducing a definition.

Definition 3.7

The inverse limit of the system (Z/pnZ)n>0 is the ring

lim←−Z/pnZ := {(ai)i>0 : ai ∈ Z/pZi+1 and ai ≡ ai+1 (mod pi+1)}

where
(ai)i>0 + (αi)i>0 := (ai + αi)i>0

and
(ai)i>0 · (αi)i>0 := (ai · αi)i>0

You can check that the addition and multiplication operations defined above indeed make
the inverse limit into a ring.

Note: an analogous definition realizes power series k[[x]] as the “inverse limit” of the sys-
tem k[x]/x, k[x]/x2, k[x]/x3, ... You can formalize this for yourself!

We rephrase the above discussion in the following theorem:

Theorem 3.8

The map π : Zp → lim←−Z/pnZ defined by π(x) = (πn(x))n is an isomorphism of rings.

3.4 The Incarnations of x ∈ Zp
We have seen three equivalent ways of looking at Zp, a creature wearing many hats: as
series expansions, Cauchy sequences (“increasingly accurate approximations”), and inverse
systems of residues mod pn.
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Here are some examples:
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We note that, from the perspective of Cauchy sequences as well as from the perspective of
inverse limits, addition and multiplication are performed componentwise. However, from
the perspective of series expansions, addition and multiplication are not performed com-
ponentwise, but with carrying.
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3.5 Hensel’s Lemma

Theorem 3.9 Hensel’s Lemma

Let F (x) = c0 + c1x+ c2x
2 + ...+ cmx

m be a polynomial with ci ∈ Zp for all i. Let
F ′(x) = c1 + 2c2x + 3c3x

2 + ... + mcmx
m−1 be the derivative of F (x). Let α0 be a

p-adic integer such that F (α0) ≡ 0 (mod pZp) and F ′(α0) 6≡ 0 (mod pZp). Then
there exists a unique α ∈ Zp such that

F (α) = 0 and α ≡ α0 (mod pZp).

That is, if we find a root of F mod p which is not a root of F ′ mod p, we can “lift” it to a
root of F in Zp.

Proof: we will generalize the method we used in the very first lecture to find a square root
of 2 in Z7 (we found better and better approximations of

√
2 as a sequence of integers,

adding more and more terms to a sum).

We will show that there is a unique sequence of integers a0, a1, a2, ... such that a0 ≡ α0

mod pZp and for all n ≥ 0

1. F (an) ≡ 0 (mod pn+1)

2. an+1 ≡ an (mod pn+1)

3. 0 ≤ an < pn+1.

We will denote by (bn)n∈N the sequence of integers in {0, 1, 2, ..., p − 1} such that an =∑n
i=0 bip

i.

We proceed by induction on n.

For the base case n = 0, we define a0 to be the constant term of the p-adic expansion of
α0; so a0 is the unique integer in 0, 1, 2, ..., p− 1 which is congruent to α0 (mod pZp), and
as a result, F (a0) ≡ 0 (mod pZp).

Now suppose that an =
∑n

i=0 bip
i satisfies the criteria 1,2,3. We will find bn+1 ∈ {0, 1, ..., p−

1} such that the integer an+1 := an + bn+1p
n+1 satisfies the criteria 1,2,3.
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Expanding out the criterion 1 for n+ 1:

F (an+1) = F (an + bn+1p
n+1)

=

m∑
i=0

ci(an + bn+1p
n+1)i

=

m∑
i=0

ci(a
i
n + iai−1n bn+1p

n+1 + terms divisible by pn+2)

= F (an) + bn+1F
′(an)pn+1 + terms divisible by pn+2).

By the inductive hypothesis, there exists k ∈ Z such that F (an) = kpn+1, so we want to
find bn+1 such that

0 ≡ kpn+1 + bn+1F
′(an)pn+1 (mod pn+2).

This is equivalent to finding bn+1 ∈ Z such that −k ≡ bn+1F
′(an) (mod p). And since

F ′(an) ≡ F ′(an) 6≡ 0 (mod p) by induction, so there is an integer which we call (F ′(an))−1

such that (F ′(an)) · (F ′(an))−1 ≡ 1 (mod p). We can then define bn+1 to be the unique
integer in {0, 1, ..., p− 1} such that bn+1 ≡ −k · (F ′(an))−1 (mod p).

We are now equipped to answer a very interesting question: when does an integer n have
a square root in Zp? We saw the answer even in lecture 1 for a couple of n’s and p’s, but
now we can address it more completely.

Let p be an odd prime and let n ∈ Z such that p - n. Is
√
n ∈ Zp?

We let F (X) = X2 − n, and suppose that there exists α0 ∈ Z such that α2
0 ≡ n (mod p),

so F (α0) ≡ 0 (mod p). We see that F ′(α0) = 2α 6≡ 0 (mod p). Then by Hensel’s Lemma,
there exists α ∈ Zp such that α2 = n, so there is a root! This means that

√
n ∈ Zp if and

only if “n is a quadratic residue mod p.”

Theorem 3.10 Hensel’s Corollary

let F (X) be a polynomial with coefficients in Zp and f(X) the corresponding polyno-
mial over Z/pZ. Suppose that f = gh, where the polynomials g and h are relatively
prime. Then there are polynomials G and H with coefficients in Zp such that g is
the reduction of G mod p and deg g = degG, h is the reduction of H mod p and
deg h = degH, and F = GH.

Proof: this is an exercise on your problem sheet for this week.
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