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2.1 Absolute values

We’ll begin this lecture by formalizing many of our thoughts from last lecture, in particular,
how we think of notions of “size.”

Definition 2.1

For a field k, an absolute value on k is a function

| · | : k → R≥0

such that

i) |x| = 0 if and only if x = 0

ii) |xy| = |x||y| for all x, y ∈ k

iii) |x+ y| ≤ |x|+ |y|, the “triangle inequality”

We say that an absolute value | · | is nonarchimedean if in addition

iv) |x+ y| ≤ max{|x|, |y|}

Note that iv implies iii.

Example 0: k = C. For z ∈ C (with a = Re(z), b = Im(z)), the magnitude function
|z| =

√
zz̄ =

√
a2 + b2 is an absolute value. Here is the picture of the triangle inequality

for this example:

Example 1: k = Q. We will denote the “usual” absolute value by | · |∞, defined as:

|x|∞ =

{
x if x ≥ 0

−x if x < 0
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2.1.1 Example p: the p-adic absolute value

Again let k = Q. Let p be a prime. Last lecture, we thought of numbers highly divisible
by p as “small.” We measure divisibility by p via a valuation

vp : Z− {0} → R

defined as follows. For each n ∈ Z− {0}, let vp(n) be the unique integer satisfying

n = pvp(n)n′ with p - n′

For example, since
200 = 52 · 8 = 30 · 200 = 23 · 25

we have
v5(200) = 2, v3(200) = 0, v2(200) = 3

We extend vp to Q× via

vp

(a
b

)
:= vp(a)− vp(b)

and we can also set vp(0) := +∞.

You should check that this is well-defined and does not depend on the representative a/b
of a rational number. You can also check the following convenient way of calculating val-
uations: if x = pk a

′

b′ and a′, b′ are integers not divisible by p, then vp(x) = k.

For example, since

3/200 = 5−2 · 3

8
= 31 · 1

200
= 2−3 · 3

25

we have
v5(3/200) = −2, v3(3/200) = 1, v2(3/200) = −3

Theorem 2.2

This valuation satisfies the properties

1. vp(xy) = vp(x) + vp(y)

2. vp(x+ y) ≥ min{vp(x), vp(y)}

Proof sketch: 1. We show this for x ∈ N>0. We write x = pvp(x)nx and y = pvp(y)ny with
p - nx, p - ny. Then xy = pvp(x)+vp(y)nxny, and p - nxny since p is prime. This relies on the
primality of p and would be false for, say, the 10-adics.
2. WLOG, vp(x) ≥ vp(y). So

x+ y = pvp(y)(pvp(x)−vp(y)nx + ny).
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The green quantity is an integer, so vp(x+ y) ≥ vp(y).

We bring this together to make things highly divisible by p small in an absolute value that
also records the number p; for x ∈ Q× we set

|x|p := p−vp(x) and |0|p = 0

Examples: |1003 |3 = 31 = 3, |1003 |5 = 5−2 = 1
25 . We also note that in p-atalanta’s course,

the steps were of 5-adic size |4 · 5i|5 = 1
5i

.

Atalanta, on the other hand, stepped in intervals of 1/2i. And 1/210 for example is very
small with respect to the | · |∞ absolute value, but when p− 2, the p-adic absolute value is
|1/210|2 = 1024. So 1/210 is...

Theorem 2.3

| · |p is a non-archimedean absolute value.

Proof sketch: p−Theorem 2.1.1.

2.2 Nonarchimedean Strangeness

Let’s explore the concept of nonarchimedean a little more, since it’s really a new type of
metric.
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Firstly

Theorem 2.4 “All triangles are isoceles”

For a nonarchimedean metric | · |, if |x| 6= |y|, then |x+ y| = max{|x|, |y|}

Proof: WLOG, suppose |x| > |y|. Then

|x+ y| ≤ |x| = |x+ y − y| ≤ max{|x+ y|, |y|}

so |x| = |x+ y|

This makes the absolute value of a sum easy to calculate if the summands have different
absolute values. For example, |4 · 5 + 25k|5 = |4 · 5|5 = 1/5.

It also has some strange consequences. Suppose that p-atalanta (with p = 5) starts at 0,
and strides forth one meter at a time. After 2 strides, she is at distance |2|5 = 1 from
0. Even more surprising, after 5 strides, she is at distance 1/5 from 0, closer than her
first step! We can generalize this phenomenon into a characterization of nonarchimedean
metrics:

Theorem 2.5

Let k be a field, and let φ be the unique nonzero ring homomorphism φ : Z → k,
which sends n to

∑n
i=1 1. Then an absolute value | · | is nonarchimedean if and only

if |φ(n)| ≤ 1 for all n ∈ Z.

Note: we will abuse notation by writing n in lieu of φ(n) in k.
Proof: ⇒: we induct on n. From the nonarchimedean property, |n± 1| ≤ max{|n|, 1} ≤ 1.

⇐: let x, y ∈ k. We want to show that |x+ y| ≤ max{|x|, |y|}. This is trivial if |y| = 0, so
further assume that y 6= 0. Then, by multiplicativity, what we want to show is equivalent
to showing that |x/y+1| ≤ max{|x/y|, 1}, so we need only show that |x+1| ≤ max{|x|, 1}.

To show this, we take powers and use the binomial coefficent theorem. For n ≥ 2, we
consider
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|x+ 1|n =

∣∣∣∣∣
n∑
i=0

(
n

i

)
xi

∣∣∣∣∣ (2.1)

≤
n∑
i=0

∣∣∣∣(ni
)
xi
∣∣∣∣ (2.2)

≤
n∑
i=0

|x|i (2.3)

≤ (n+ 1) max{1, |x|n} (2.4)

where line 2.2 follows from the triangle inequality for absolute values, line 2.3 follows from
the assumption on the absoute value of integers, and line 2.4 follows from the fact that
|x|n > 1 if and only if |x| > 1.

Taking nth roots,
|x+ 1| ≤ (n+ 1)1/n max{1, |x|}.

Taking the limit as n goes to +∞ yields the result.

Conversely, for archimedean absolute values, integers can be arbitrarily large. Another
characterization of archimedean absolute values is that for any nonzero s ∈ k, and any real
number B, there exists n ∈ N such that |ns| > B. That is, for a bathtub with any volume
B of water, and a spoon which can hold volume s, you can eventually empty the bathtub
spoonful by spoonful, as depicted in the figure below provided by Joanne Beckford:
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2.3 Having a Ball

Definition 2.6

1. For x, y ∈ k and an absolute value | · | on k, we define the distance between
x and y as d(x, y) = |x− y|

2. Let r > 0. The open ball centered at x with radius r is B(x, r) := {z ∈
k : |z − x| < r}

3. Let r > 0. The closed ball centered at x with radius r is Bcl(x, r) :=
{z ∈ k : |z − x| ≤ r}

Nonarchimedean balls are very different from archimedean balls!

Theorem 2.7

1. Every point of a ball is “the center” of the ball

2. Every open ball is closed

3. Every closed ball is open

4. Two balls can only intersect if one is contained within the other.

Proof: exercise.

2.4 Common Values

This topology looks very different from what we are used to in our physical world. We
may ask ourselves if these absolute values are just strange outliers.
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Definition 2.8

We say that two absolute values | · | and | · |′ are equivalent if and only if there
exists α ∈ R+ such that for all x ∈ k,

|x|′ = |x|α

We could also define absolute values as being equivalent if they induce the same topology.
The equivalence of these definitions is an exercise.

Theorem 2.9 Ostrowski’s Theorem

Every nontrivial absolute value | · | on Q is either equivalent to | · |p for some prime
p (if | · | is nonarchimedean), or | · |∞ (if | · | is archimedean).

Proof: First, suppose that | · | is archimedean. Let n0 be the least element of N such that
|n0| > 1, and let α ∈ R such that |n0| =α

0 . We’ll show that |n| = nα for all n ∈ N, and the
result for Q follows by multiplicativity.
We write

n = b0 + b1n0 + b2n
2
0 + ...+ bkn

k
0

for some bi ∈ {0, 1, ..., n− 1} and k ∈ N. So

|n| = |b0 + b1n0 + b2n
2
0 + ...+ bkn

k
0| (2.5)

≤ |b0|+ |b1|nα0 + |b2|n2α0 + ...+ |bk|nkα0 (2.6)

≤ 1 + nα0 + n2α0 + ...+ nkα0 (2.7)

≤ nkα0
nα0

nα0 − 1
(2.8)

by the minimality of n0 and comparison with the geometric series. Let C :=
nα0
nα0−1

, noting

that it is constant and does not depend on k. Then for all N ∈ N, nN ≤ CnNα, so taking
Nth roots and taking limits, |n| ≤ nα.
The other inequality is similar: bound terms and take limit.
Next, suppose that | · | is nonarchimedean. By Theorem 2.2, |n| ≤ 1 for all n ∈ Z. Let
k be the least nonzero natural number such that |k| < 1. If k were not prime, so if there
were a nontrivial factorization in Z as k = ab, we would have |a||b| < 1, so WLOG |a| < 1,
a contradiction. We will now denote by p the least nonzero natural number with absolute
value less than 1.
Let n ∈ N such that p - n. Then, by the division algorithm, ∃k ∈ Z : n = kp + r with
0 < r < p. Since r < p, by the definition of p, |r| = 1. So by the “all triangles are isoceles”
proposition,

|n| = |kp+ r| = max{|kp|, |r|} = 1
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Then if n is an arbitrary nonzero natural number, it can be written as pkn′ with p - n′. By
multiplicativity, |n| = |p|k and the result follows.

Not only do we know all the absolute values on Q, but they also fit together beautifully in
the following formula!

Theorem 2.10 Product formula

For any x ∈ Q×, we have

|x|∞
∏

p prime

|x|p = 1

2.5 Completing Our Discussion

You may have seen the construction of the real numbers as Cauchy sequences of rational
numbers up to some equivalence. The sequences were Cauchy with respect to the absolute
value | · |∞; we will now go through this process with respect to the absolute values | · |p.
We recall some definitions:

Definition 2.11 A

sequence of elements xn is called a Cauchy sequence if for every ε ∈ R+ there
exists M ∈ N such that for all m,n > M , |xn − xm| < ε.

Examples: for | · |∞, we said that 3, 3.1, 3.14, 3.141, 3.1415, ... was a Cauchy sequence. We
can also see that the sequence we constructed earlier for p-atalanta, xn :=

∑n
i=0 4 · 5i, for

m > n we have that

xm − xn =
m∑

i=n+1

4 · 5i

which has valuation less than 1/5n. Hence, (xn) is a Cauchy sequence with respect to | · |5!
Definition 2.12

A field k is complete with respect to an absolute value | · | if every Cauchy sequence
has a limit in k.

We note that Q is not complete with respect to ||∞, since you can find a sequence (xn)
such that limn→∞ x

2
n = 2, but there is no square root of 2 in Q.

Similarly, in the last lecture, we found a sequence of natural numbers (bi)i∈N with bi ∈
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{0, 1, ..., 6} such that for

xn :=
n∑
i=0

bi7
i

we had 7n+1 | (x2n − 2). Hence, |x2n − 2|7 ≤ 1
7n+1 so limn→∞ x

2
n = 2, but again, x2 = 2 has

no solution in Q.

Suppose we want to “add in” the “limits” of these sequences. This is likely how you met
R in your analysis class; it was constructed as the completion of Q with respect to ||∞.

Definition 2.13

R := {(xn)n∈nn : xn ∈ Q, (xn) Cauchy with respect to | · |∞}/ ∼ where (xn) ∼ (x′n)
iff limn→∞ |xn − x′n|∞ = 0.

We now give a new definition of Qp as the completion of Q with respect to | · |p.

Definition 2.14

Qp := {(xn)n∈nn : xn ∈ Q, (xn) Cauchy with respect to | · |p}/ ∼ where (xn) ∼ (x′n)
iff limn→∞ |xn − x′n|p = 0.

2.6 Old Qp vs New Qp?

We’ll begin discussing the relationship of the two objects we’ve defined as Qp with an
analysis of Cauchy series in nonarchimedean metrics.

Theorem 2.15

If | · | is a nonarchimedean metric on a field k, a sequence (xn) is Cauchy if and only
if

lim
n→∞

|xn+1 − xn| = 0

Proof: if m > n are elements of N, write m = n+ r. Then by the nonarchimedean triangle
inequality,

|xm − xn| = |xn+r − xn+r−1 + xn+r−1 − xn+r−2 + ...+ xn+1 − xn|
≤ max{|xn+r − xn+r−1|, ..., |xn+1 − xn|}

We note that this is not true for archimedean absolute values, since, for example, the
sequence for the harmonic series xn =

∑n
i=1 1/i does not converge. In fact, series converges

for nonarchimedean absolute values is quite nice in this sense!
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Theorem 2.16

Let | · | is a nonarchimedean metric on a field k. Let (si)i∈N be a sequence of elements
of k, and let

σn =

n∑
i=0

si

be a sequence of partial sums. If limn→∞ |sn| = 0, then (σn)n is a Cauchy sequence.

Proof: we note that |σn+1 − σn| = |sn| and apply Theorem 2.6.
Let’s now connect these concepts with some definitions and sequences we saw last lecture.
Recall:

Definition 2.17

A sequence of integers an such that 0 ≤ an ≤ pn − 1 is coherent if for all n ≥ 1,

an ≡ an+1 (mod pn)

This is a number theoretic condition, but we can see that such a sequence also satisfies an
analytic condition!

Theorem 2.18

Let p be a prime. If (an)n∈N is a coherent sequence of integers, then (an)n∈N is
Cauchy with respect to | · |p.

Proof: pn | (an+1−an), and so |an+1−an|p ≤ 1/pn, so limn→∞ |an+1−an|p = 0. Theorem 2.6
then gives the result.
Lastly, we will see that the series we defined last lecture are actually limits of Cauchy
sequences, so they are elements of the completion!

Theorem 2.19

Let n0 ∈ Z and (bi)
∞
i=n0

be a sequence with bi ∈ {0, ..., p− 1} for all i. Let

an =

n∑
i=n0

bip
i.

Then (an)n∈N is Cauchy with respect to | · |p.

Proof: |an+1 − an|p = |bn+1p
n+1|p = 1/pn+1. Theorem 2.6 then gives the result.

Next time, we’ll view our new Qp from yet another angle and complete the connection with
our first definition.
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