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1.1 Getting real

Quote 1.1

“God made the integers; all else is the work of man”–Leopold Kronecker

Let’s begin by appreciating how far we have come, not just as individuals who have learned
volumes of mathematics, but as a society which has collectively developed mathematical
theory over millennia.

We will recall an old and subtle question: what is a real number? For now, we’ll content
ourselves with some examples, and complete this discussion later.

Examples:

(a) 3.14159...(= π)

(b) 0.33333...(= 1/3)

(c) 1.41213...(=
√

2)

As familiar and natural as these numbers may seem to us now, it’s worth remembering
that they were once quite controversial. This is illustrated by the colorful (likely apoc-
ryphal) tale of the Pythagorean who made the mistake of demonstrating to his fellow cult
members that

√
2 was irrational while on a boat, for which they rewarded him with an

all-expenses-paid trip to the bottom of the ocean.

As much as you may miss in-person conferences, a distinct advantage of Zoom is that you
can’t be thrown off a boat. Let’s look, in the safety of our homes, at the infamous square
root of two. The notation above is shorthand for:

√
2 = 1 ·

(
1

10

)0

+ 4 ·
(

1

10

)1

+ 1 ·
(

1

10

)2

+ 2 ·
(

1

10

)3

+ 1 ·
(

1

10

)4

+ 3 ·
(

1

10

)5

+ ...

Why have we come to accept this? It’s an infinite sum, after all. Humans (including me,
and maybe even including you!) were not always comfortable with those. Consider the
following version of Zeno’s paradox.

Suppose Greek track-and-field legend Atalanta has to run a mile. In order to do that,
she must first run half a mile. Then, she must run an additional quarter mile. Then an
additional sixteenth of a mile. This is an infinite number of distances to run: an apparent
“paradox.”
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And yet, we have come to understand that these distances add up to 1. In general, we
think of the infinite sum

∞∑
i=n0

ci

(
1

10

)i

with n0 ∈ Z and ci ∈ {0, ..., 9}

as just another real number since the sum converges. Indeed, the course run by Atalanta
is an example of a geometric series:

1

2

∞∑
i=0

(
1

2

)i

Which we can evaluate using the classic formula

∞∑
i=0

pi =
1

1− p

which we have learned converges as long as |p| < 1.

Along similar lines, the decimal expansion
∑∞

i=n0
ci
(

1
10

)i
as above converges because the

“tails”
∑∞

i=N ci
(

1
10

)i
can be bounded above by

(
1
10

)N
times the convergent geometric series

9
∑∞

i=0

(
1
10

)i
. The Nth tail is thus

(
1
10

)N
times a bounded quantity, which goes to 0 since

lim
N→∞

(
1

10

)N

= 0.

1.2 Zeno’s p-aradox

Let’s look again at the geometric series

1 + p+ p2 + p3 + · · ·

this time we take p to be a prime number. In particular, p > 1, so this series seemingly
fails to converge.
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Enter p-atalanta. Runner p-atalanta runs a race, starting at 0, running first to point 4, then
running 20 miles to point 4+4 ·51, then running another 100 miles to point 4+4 ·51+4 ·52,
etc, culminating in the series

4 · 50 + 4 · 51 + 4 · 52 + 4 · 53 + 4 · 54 + 4 · 55 + 4 · 56 + ...

Seemingly this does not converge because p-atalanta takes bigger and bigger steps. Yet we
can approach this from a new, arithmetic perspective, where we view these steps as smaller
and smaller.

1.3 A New Perspective

We first recall some definitions.

Definition 1.1

For two integers a, b with a 6= 0, we say that a divides b, and write a|b, if there
exists n ∈ Z such that b = na. Examples: 2 | −6, 25 | 625, and m | 0 for all integers
m 6= 0.

Definition 1.2

For two integers a, b and a natural number n, we say that a is congruent to b
mod n, and write a ≡ b (mod n), if n|(b − a). Examples: 4 ≡ −1 (mod 5), 3 ≡
10 (mod 7), 10 ≡ 108 (mod 72)

Consider the following arithmetic criterion for deciding two rational numbers are equal:
Let p be a prime number. Two rational numbers α and β are equal if and only if for all
k ∈ Z>0, p

k divides the numerator of the reduced form of α− β.

Indeed, 0 is the only integer divisible by pk for all k. However, we can relax this condi-
tion to obtain a criterion for an arithmetic type of “closeness”: Two rational numbers α, β
are “p-adically close” if pk divides the numerator of the reduced form of α−β for “many” k.

Along these lines, we can start thinking of a rational number γ as “similar to” zero, or “close
to” zero, or “small p-adically,” if γ is highly divisible by p. To give an example when p = 5,
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625 is divisible by 51, 52, 53, and 54, 625 “almost” satisfies equality to 0–it’s 5-adically small.

With this perspective, p-atalanta’s steps 4, 4 · 5, 4 · 53, . . . are actually getting smaller as
they are divisible by increasing powers of p, so that the series run by p-atalanta might
reasonably converge to a number under our new notion of closeness.

To make this concrete, we make the following definition.

Definition 1.3

We define the set of p-adic numbers Qp to be the set

Qp =

{ ∞∑
i=n0

bip
i | n0 ∈ Z and bi ∈ {0, 1, 2, ..., p− 1}

}

Similarly, define the p-adic integers Zp to be the set

Zp =

{ ∞∑
i=0

bip
i | n0 ∈ Z and bi ∈ {0, 1, 2, ..., p− 1}

}

Another fact that you have likely learned early on in your mathematical career is that
the real numbers are uncountable, likely via Cantor’s Diagonalization argument. Cantor’s
work was rather controversial at the time; some claimed it was tantamount to polytheism
and Kronecker called him a “corrupter of youth.”

Exercise 1.1

Continue the tradition of corrupting the youth by showing Qp is uncountable.

1.4 Arithmetic in Qp

For any prime p, we can write any natural number in base p by expanding it as a sum
of powers of p with coefficients between 0 and p − 1, inclusive, analogously to its decimal
expansion.

We thus have a natural map

: N→ Qp

n 7→ the base p expansion of n
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(this is called since we can think of it as expansion into pigits, the p-adic analogue of
digits).

The base p expansion of a natural number n can be calculated by a recursive procedure.
Carrying out division with remainder, we can write n = r+p ·m, where r is the remainder.
Then the 0th pigit of n is the remainder, r, and the rest of the pigits are the pigits of m,
shifted over.

Examples for p = 7:
77 7→ 0 · 70 + 4 · 71 + 1 · 72 + 0 · 73 + · · ·

37 7→ 2 · 70 + 5 · 71 + 0 · 72 + 0 · 73 + · · ·

113 7→ 1 · 70 + 2 · 71 + 2 · 72 + 0 · 73 + · · ·

The p-adic integers which have a finite expansion of the form a =
∑N

i=0 bip
i are precisely

those which come from natural numbers. Similarly, p-adic numbers which have a finite
expansion a =

∑N
i=n0

bip
i, with potentially negative n0, can be identified with the set of

non-negative rational numbers whose denominator is a power of p.

Given a p-adic number a =
∑∞

i=n0
bip

i, we will let an denote the nth approximation

an =
∑n

i=n0
bip

i, which we think of as getting closer and closer to a.

The set Qp of p-adics is not just a set; we can define addition and multiplication of p-adic

numbers, in a way that extends addition and multiplication in N (making a homo-
morphism).

To define addition and multiplication of p-adics, consider p-adic numbers a =
∑∞

i=n0
bip

i

and a′ =
∑∞

i=m0
b′ip

i. We can approximate them by finite expansions an =
∑n

i=n0
bip

i and

a′m =
∑m

i=m0
b′ip

i and take the sum of these approximations. Importantly, the sum of the
approximations an + a′m, taken in the usual rational numbers, has the same coefficient of
pi as long as n,m ≥ i (think about why). Similarly, an · a′m will have the same coefficient
of pi as long as n ≥ i−m0 and m ≥ i−n0. Since these pigits of the partial approximations
to the sum and product stabilize, we can reasonably define them to be the pigits of a+ a′

and a · a′.
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Definition 1.4

We define the sum of two p-adic numbers

a =

∞∑
i=n0

bip
i, a′ =

∞∑
i=m0

b′ip
i

to be the p-adic number, denoted a+ a′, whose nth pigit is the nth pigit of

an + a′n =

n∑
i=n0

bip
i +

n∑
i=m0

b′ip
i

where we add an and a′n as rational numbers.

Similarly, the product a · a′ is the p-adic number whose nth pigit is the nth pigit of
an−m0 · a′n−n0

, multiplied as rational numbers.

We need only examine the numbers up to a finite position in order to compute any partic-
ular pigit of their sum or product.

Addition and multiplication obey the usual properties of commutativity, associativity and
distributivity. This can be seen by checking each property up to the nth pigit, where it
boils down to the analogous properties that we know are true for the rational numbers.

In practice, the algorithms for computing the decimal expansion of the sum and product
of two p-adic numbers are directly analogous to the procedure for decimal expansions, and
are done “column by column” with “carrying” for quantities that exceed the limit of p− 1.
For example, for p = 7, we have

0 · 70 + 4 · 71 + 1 · 72 + 0 · 73 + · · · = 77

+ 2 · 70 + 5 · 71 + 0 · 72 + 0 · 73 + · · · = 37

+ 1 · 72

= 2 · 70 + 2 · 71 + 1 · 72 + 0 · 73 + · · · = 114

= 2 · 70 + 2 · 71 + 2 · 72 + 0 · 73 + · · · = 114

and so (77) + (37) = (77+37), as we would expect!

Note, when adding 4+5 we get 9, which is not a proper pigit; so we write it as 9 = 2·70+1·7
and carry the 1.
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Now let’s look at an example of addition with a p-adic number which does not come from
a natural number.

Returning to the course run by p-atalanta, let p = 5 and a = 4 · 50 + 4 · 51 + 4 · 52 + 4 · 53 +
4 · 54 + 4 · 55 + 4 · 56 + ...
Let us add a to 1:

4 · 50 + 4 · 51 + 4 · 52 + 4 · 53 + · · · = a

+ 1 · 50 + 0 · 51 + 0 · 52 + 0 · 53 + · · · = 1

+ 1 · 51

= 0 · 50 + 4 · 51 + 4 · 52 + 4 · 53 + · · ·

since 1 + 4 = 5 = 0 · 50 + 1 · 51, so we carry the one. We continue calculating the next pigit:

+ 1 · 52

= 0 · 50 + 0 · 51 + 4 · 52 + 4 · 53 + · · ·

We can continue in this way ad infinitum, computing each pigit in turn to be 0, so that we
can only conclude that

4 · 50 + 4 · 51 + 4 · 52 + 4 · 53 + · · · = a

+ 1 · 50 + 0 · 51 + 0 · 52 + 0 · 53 + · · · = 1

= 0 · 50 + 0 · 51 + 0 · 52 + 0 · 53 + · · · = 0

Since a + 1 = 0, a must equal −1, the additive inverse of 1. After running her course,
p-atalanta finally finds herself at her destination, −1.

Exercise 1.2

Show that every p-adic number a ∈ Qp has an additive inverse. What are the pigits
of the additive inverse −a?
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What about division? Let’s think about what the 5-adic expansion of 1/3 would be, if such
a thing exists. It must be a number of the form b0 · 50 + b1 · 51 + b2 · 52 + b3 · 53 + ... that,
when multiplied by 3, gives 1:

3(b0 · 50 + b15
1 + b2 · 52 + b3 · 53 + ...) = 1 · 50 + 0 · 51 + 0 · 52 + 0 · 53 + ...

The 0th pigit of the product is the 0th pigit of 3b0 · 50, which is precisely the remainder
when 3b0 is divided by 5. Thus we have

3b0 ≡ 1 mod 5

there is a unique value of b0 ∈ {0, . . . , 4} that satisfies this linear equation, b0 = 2. Having
found b0, we can subtract 3b0 · 50 = 1 · 50 + 1 · 51 from both sides of the equation:

3(b0 · 50 + b15
1 + b2 · 52 + b3 · 53 + ...)− 3b0 · 50 = 0 · 50 − 1 · 51 + 0 · 52 + 0 · 53 + ...

3(b15
1 + b2 · 52 + b3 · 53 + ...) = 0 · 50 + 4 · 51 + 4 · 52 + 4 · 53 + ...

where we use our knowledge of the p-adic expansion of −1. Now we can repeat this
procedure to find b1, b2, and so on. Each time we find the pigit that, when multiplied by
3 mod 5, matches the desired pigit, then carry out the multiplication by that pigit and
subtract.
We can present this process with long-division shorthand:

2 3 1 3 · · ·

3 1 0 0 0 0 · · ·

− 1 1

4 4 4 4 · · ·

− 4 1

3 4 4 · · ·

− 3 0 0

4 4 · · ·

This algorithm can always be carried out to find the multiplicative inverse of any nonzero
p-adic number.

Theorem 1.5

Qp is a field.
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Proof: We have already defined addition and multiplication, and noted that they have the
desired properties of commutativity, associativity and distributivity. You will show that
every p-adic number has an additive inverse. It remains to show that every nonzero p-adic
number has a multiplicative inverse.

It suffices to show that every nonzero p-adic integer has a multiplicative inverse. Indeed,
any p-adic number a can be written in the form a = pn0a′ where a′ ∈ Zp. If we can find
a multiplicative inverse (a′)−1, then p−n0(a′)−1 will be a multiplicative inverse of a. For
similar reasoning we can also assume, by factoring out an appropriate power of p, that
a =

∑∞
i=0 bip

i, with b0 6= 0. We now formalize the algorithm discussed above.

We describe an algorithm to find the pigits of a number x =
∑∞

j=0 cjp
j which we claim is

a−1. Define c0 to be the multiplicative inverse of b0 mod p (the existence of this inverse
relies crucially on the fact that p is prime and b0 6≡ 0 (mod p). Then use the Euclidean
algorithm). Note that this ensures that a · c0 can be written as 1 + pa′ for some p-adic
integer a′ ∈ Zp. Thus the difference d0 := 1− a · (c−n0p

−n0) = −pa′, a number whose first
nonzero digit is no earlier than in position p1.

Now for the recursive definition, let m ≥ 0 and assume we have defined ci for i ≤ m, in
such a way that the difference dm := 1 − a · (

∑m
j=0 cjp

j) is of the form pm+1a′ for some
a′ ∈ Zp. Let the 0th pigit of a′ be b′0. Then define cm+1 to be the unique number solving
the equation cm+1 · b0 ≡ b′0( modp), which again exists since b0 is nonzero. With this
choice, the difference dm+1 = 1 − a · (

∑m+1
j=0 cjp

j) must be of the form pm+2a′′ for some
p-adic integer a′′, allowing the recursion to continue.

Now that we have defined the p-adic expansion of x, we must show that a · x = 1. Indeed,
for any m ≥ 0 we have by construction that 1 − a · (

∑m
j=0 cjp

j) is of the form pm+1a′ for
some p-adic integer a′ ∈ Zp. But in particular, this means that 1 and a · x agree on the
pigits up to position pm. Since m is arbitrary, 1 = a · x.
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1.5 Rooting Around

Let’s see if we can find a square root of 2 in Q7. We will look for an element a =
∑∞

i=0 bi7
i

such that a2 = 2, which we represent with the following tableau.

b0 + b1 · 7 + b2 · 72 + b3 · 73 + · · ·

× b0 + b1 · 7 + b2 · 72 + b3 · 73 + · · ·

b20 + b0b1 · 7 + b0b2 · 72 + · · ·

+ b0b1 · 7 + b21 · 72 + · · ·

+ b0b2 · 72 + · · ·
...

...

= 2 + 0 · 7 + 0 · 72 + 0 · 73 + · · ·

The coefficient of 7i of the product can be calculated by adding all the columns up to the
ith.

• Step 0: From the 0th (red) column of the above sum, we can conclude that we must
have b20 ≡ 2 (mod 7). There are two choices for such a b0; we choose b0 = 3. Note
that b20 = 2 + 1 · 7, so we carry a 1.

• Step 1: Substituting in b0 = 3, the next (orange) column gives (3b1 + 3b1 + 1)7 ≡ 0
(mod 72). Equivalently, 3b1 + 3b1 + 1 ≡ 0 (mod 7). The unique pigit satisfying this
is b1 = 1. Again, we carry a 1 to the next column.

• Step 2: Substituting in b0 = 3 and b1 = 1, the the next (yellow) column gives
(3b2 + 1 + 3b2 + 1)72 ≡ 0 (mod 73). The unique solution is b2 = 2.

Try to convince yourself that we can continue in this way to successfully compute every
pigit bi, so that the resulting number a is a square root of 2.

What about
√
−1 in Q7? Anything seems possible now! Suppose a =

∑∞
i=0 bi7

i squares to
−1, which has expansion 6 + 6 · 7 + 6 · 72 + ... Then we would have b20 ≡ 6 (mod 7), but
there is no such integer b0, and hence no

√
−1.
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Undeterred, we look in Q5 for a
√
−1, which we will denote a =

∑∞
i=0 bi5

i.

b0 + b1 · 5 + b2 · 52 + b3 · 53 + · · ·

× b0 + b1 · 5 + b2 · 52 + b3 · 53 + · · ·

b20 + b0b1 · 5 + b0b2 · 52 + · · ·

+ b0b1 · 5 + b21 · 52 + · · ·

+ b0b2 · 52 + · · ·
...

...

= 4 + 4 · 5 + 4 · 52 + 4 · 53 + · · ·

• Step 0: b20 ≡ 4 (mod 5). There are two choices for such a b0; we choose b0 = 3.

• Step 1: (6b1 + 1)5 ≡ 4 (mod 52). Equivalently, b1 + 1 ≡ 4 (mod 5), so b1 = 3.

• Step 2: b2 = 2.

For which primes p do you think Qp has a square root of −1?

1.6 A Coherent Explanation

We have been doing all these calculations by computing “approximations” to solutions in
Qp.

In the example we just computed,
√
−1 in Q5, we had

a0 = 3

a1 = 3 + 3 · 5

a2 = 3 + 3 · 5 + 2 · 52

Definition 1.6

A sequence of integers an such that 0 ≤ an ≤ pn = 1 is coherent if for all n ≥ 1,

an ≡ an+1 (mod pn)

The sequence of approximations a0, a1, a2, ... is a coherent sequence of solutions to the
equation x2 = −1 mod p, p2, p3, ... In the next lecture, we will fit this into a formal frame-
work.
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