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1. Introduction

Let K be a number field and let X/K be a nice1 curve of genus g > 1 whose Jacobian has
rank r := rank JacX(K).

Date: March 16, 2020.
1smooth, projective, and geometrically integral
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The Method of Chabauty–Coleman (alternatively: “Chabauty’s method”, “Abelian
Chabauty”, or just plain, vanilla, “Chabauty”) is among the most successful and widely
applicable techniques for analyzing (either theoretically or explicitly) the set X(K) of K-
points of a low rank (r < g) curve X, and is an essential part of the “explicit approaches to
rational points” toolbox. In particular, with some luck, Chabauty’s method allows one to

• explicitly determine, with proof, the set X(K), or
• determine an upper bound on #X(K).

Mordell conjectured in the 20’s that the set X(K) of K-points of X was finite. This was
famously proved in the 80’s by Faltings [Fal86] (for which he was awarded a Fields medal),
with subsequent independent proofs by Vojta and Bombieri [Voj91,Bom90].

Chabauty [Cha41], building on a idea of Skolem [Sko34], gave the first substantial progress
toward Mordell’s conjecture. Chabauty’s method, which used p-adic techniques to produce
p-adic “locally analytic” functions, relies on the hypothesis that r < g. This technique sat
somewhat dormant until the 80’s, when Coleman’s seminal paper [Col85] resurrected and
improved Chabauty’s idea.

Machine Computation. Computer aided computational tools took some time to catch
up. The first big bottleneck was to improve the techniques for compute ranks of Jacobians
of curves. To execute Chabauty’s method for a particular, explicit curve, one needs to know
the rank r of its Jacobian (to check the r < g condition), and a basis for the Mordell–Weil
group of Jac(K) (or at least a finite index subgroup). An early highlight is due to Gordon
and Grant [GG93]; building on work of Cassels and Flynn [Fly90, Cas89, Cas83] they work
out the special case of two-descent on the Jacobian of a genus 2 hyperelliptic curve with
rational Weierstrass points, and (with the help of a SUN Sparcstation) provably compute
the rank of a couple examples.

This ushered in a golden era of computer assisted approaches to rational points on
curves (and higher dimensional varieties). Even today there are substantial conceptual and
practical improvements; one recent highlight is [BPS16], which greatly expands our abilities
to compute ranks of Jacobians of non-hyperelliptic curves.

Applications. It is worth highlighting a few of the numerous applications of Chabauty’s
method.

• McCallum made substantial progress towards a proof of Fermat’s Last Theorem, via
a careful study of certain quotients of the Fermat curve xp + yp = zp; for instance,
[McC94] proves the “second case” of Fermats Last Theorem for regular primes;
• arithmetic statistics: Poonen and Stoll use Chabauty’s method to prove that 100%

of odd degree hyperelliptic curves have only one rational point [PS14];
• analysis of rational points on modular curves, and Mazur’s “Program B” [RZB15];
• resolution of various generalized Fermat equations [PSS07].

1.1. A roadmap to Chabuauty.

If you’re literally starting from scratch. McCallum–Poonen, Magma exercise, Cole-
man’s proof (and maybe original paper).

2



Uniform Bounds. KRZB,KZB, Stoll, LT, Stoll (earlier). Gunther–Morrow, Park, REU
paper

Uniformity conjecture. Mazur’s question; original papers; surveys.

Applications of Chabauty. Applications: Numerous papers by Bruin, Stoll, Stoll et
al (4 authored iwasaw theory) etc.. 2,3,7. Poonen–Stoll; Program B; Generalized Fermat;
McCallum

More on explicit approaches to rational points. Surveys: Poonen, more Poonen,
Stoll, others? Books? Applications: Numerous papers by Bruin, Stoll, Stoll et al (4 authored
iwasaw theory) etc.. 2,3,7. Technology: Siksek, box, elliptic Chabauty. Bruin and étale
descent Higher dimensional starting point.

Do I want to separate Chabauty like techniques from non-Chabauty? E.g.,
étale descent vs symmetric power chabauty.

Ranks and Selmer groups. Surveys: Stoll? Silverman’s book; old papers by e.g.
Swinnerton–Dyer. Poonen, Stoll, Schaefer, 237 paper, developed into BPS.

p-adic integration. Papers by Coleman. Besser, Balakrishnan. Dig for others, see my
own papers. KRZB, and Utah survey. Digress on

Nonabelian Chabauty: foundations. Kim’s papers. Besser, Balakrishnan, Dogra,
others. Ishai, Francis Brown, Noam Kantor, David Corwin.

Nonabelian Chabauty: Applications . Cursed curve, Samir, and Dogra S; other
papers by Jen et al.

Non Chabauty. Bas, Lawrence–Venkatesh, heights (Habegger)

1.2. Course outline, and how to read these notes. There is already an excellent survey
by McCallum and Poonen [MP12]. This is short (16 pages) and a great entry point. I
recommend my survey with Katz and Rabinoff [KRZB16] for the connections between p-adic
and tropical techniques, and the survey [BJ15] by Baker and Jensen for a more geometric
and combinatorial perspective. I also recommend attempting the computational Exercise
2.3 below (even if one is ultimately most interested in theory).

These notes will focus on the ideas from [KZB13] and [KRZB], and the papers [LT02,Sto06,
Sto19, Bak08] which inspired our work. In particular, my discussion of the foundations of
Abelian Chabauty, and discussion of tropical techniques, will be abridged, and these notes
are somewhat of an advertisement for [MP12] and [KRZB16].

Additionally, while reading these notes, we also recommend attempting Exercise 2.3
from Subsection 2.2, which will help to quickly come up wtih speed with how to perform
Chabauty’s method in Magma.

Abelian Chabauty. We will start with a ‘black box’ discussion of the method of
Chabauty and Coleman, addressing various points of view; this section is mostly an abridged
version of [MP12], and it is recommended to read their survey alongside this section and
before reading future sections.

Exhibiting Abelian Chabauty as a special case of Nonabelian Chabauty is not completely
straightforward. These notes do not address this, and we instead recommend Poonen’s
excellent set of notes available at

http://www-math.mit.edu/~poonen/papers/p-adic_approach.pdf.
3
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Bad reduction. One avenue to improve on Coleman’s bound is to generalize the
framework of Chabauty and Coleman’ arguments to the case of bad reduction. We will
discuss the advantage of working at bad primes and the difficulties and tradeoffs that arise,
starting with the work of Lorenzini–Tucker [LT02].

Rank favorable bounds. When the rank is strictly smaller than g − 1, there are
more “inputs” to Chabauty’s method and one expects this extra flexibility to lead to
improvements to the method, giving rise to “rank favorable” bounds. We’ll discuss the
setup, and the translation to the notion of a “rank” of a divisor (due to Stoll [Sto06]). For
a curve with good reduction, this notion of rank will be the classical one, and the improved
bounds will follow from Clifford’s Theorem [Har77, Theorem IV.5.4]. In the case of bad
reduction, reducible reduction, ranks are no longer as well behaved; instead, we introduce
Baker’s notion of “numerical rank” [Bak08] and explain how to repair Stoll’s argument in
the special case of a curve with totally degenerate reduction.

Tropical Geometry and Berkovich spaces. For a curve with bad reduction at a
prime p, it had been well understood that “monodromy” and “analytic continuation” of
p-adic integrals was an issue. Coleman proved that in the case of good reduction, there is no
“monodromy” and the various ways of analytically continuing p-adic integrals all coincide.
In the case of bad reduction, they generally do not coincide (we will discuss a simple example
which illustrates this).

Stoll [Sto19] discovered that, while choices of analytic continuation genuinely do differ,
they do so in a fairly controlled manner (linear, even), and was able to exploit this to prove
a uniformity result for hyperelliptic curves of small rank.

These results all argue in the framework of rigid geometry (in the sense of Tate). Great
clarification arose from the systematic reformulation via Berkovich spaces, which fill in the
“missing” points of rigid spaces and which, at least in the case of curves, are fairly concrete
and manageable topological spaces (they’re even Hausdorff). I’ll discuss Chabauty in the
setting of Berkovich and tropical geometry and explain how modern tools (e.g., Berkovich’s
contraction theorem and Thuillier’s slope formula, exposited in [BPR13]) give a clean ex-
planation of Coleman’s “good reduction” theorem, and will discuss my work with Katz and
Rabinoff [KRZB] which give uniform bounds for arbitrary (but still small rank) curves.

1.3. Acknowledgements. The author would like to thank Enis Kaya, Jackson Morrow,
Dino Lorenzini, and John Voight for useful comments and/or discussions. The author was
supported by National Science Foundation CAREER award DMS-1555048.

2. Abelian Chabauty

We give here a quick “black box” version of Chabauty’s method, broken into 3 parts:
setup, local analysis, and global coordination. We refer the reader to the excellent survey
[MP12] for a more detailed introduction.

As before, let K be a number field with ring of integers OK and let X/K be a nice curve
of genus g > 1. Let r := rank JacX(K) be the rank of the Jacobian of X. Fix a prime p and
a prime p of OK above p.
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Setup. Under the assumption r < g, there exist locally analytic functions fω on X(Kp)
(arising as a p-adic integral of a differential ω) which vanish on X(K), but not on X(Kp).
More precisely, there exists a subspace V ⊂ H0(XKp ,Ω

1
X) such that dimKp V ≥ g − r, and

with the property that the p-adic integral ∫ Q

P

ω

vanishes for all P,Q ∈ X(K) and for all ω ∈ V . We will frequently refer to V as Vchab.
This is (more or less) enough to conclude finiteness (and is roughly the original argument of
Chabauty [Cha41]). See [MP12, Section 4 and Subsection 5.4] for proofs of these statements
(culminating in [MP12, Theorem 4.4]).

Local analysis. On (residue) discs, the integrals fω are “locally analytic”: they have
(p-adic) power series expansions, a discrete set of zeroes, and are amenable to fairly explicit
study via tools from p-adic analysis (Newton polygons, or in more complicated situations,
tropical geometry). In Coleman’s original analysis ([Col85, Lemma 3] or [MP12, Lemma
5.1]), one can bound the number zeros of fω in a residue disc in terms of the zeroes of its
“derivative”, which we summarize as a ‘p-adic Rolle’s theorem’ (in the sense of freshman
calculus). In the simplest case one gets Rolle’s theorem on the nose: for K = Q and p > 2,
Coleman proves [MP12, Theorem 5.3(1)] that the number of zeroes of fω in a residue disc
DP is at most 1 + nP , where

nP = # (divω ∩DP ) . (2.0.1)

See [MP12, Section 5] for proofs of these statements (culminating in [MP12, Theorem 5.5]).

Remark 2.1. An exciting “modern” version of this argument is [BD19, Section 4], where they
compare the divisor of a locally analytic function F to the divisor of D(F ), where D is a
“nice” differential operator D.

Global coordination. One needs some way to coordinate the different, a priori inde-
pendent, local bounds (as in Equation 2.0.1), and typically exploits some type of “global”
theorem from the geometry of curves. In Coleman’s proof, Riemann–Roch [Har77, Theorem
IV.1.3] suffices; the local bounds (under the K = Q and p > 2 hypotheses) are 1 + nP ; by
Equation 2.0.1 we have that∑

P∈X(Fp)

nP =
∑

P∈X(Fp)

# (divω ∩DP ) ≤ deg divω = 2g − 2,

which suffices to prove Coleman’s theorem:

#X(Q) ≤
∑

P∈X(Fp)

(1 + nP ) =
∑

P∈X(Fp)

1 +
∑

P∈X(Fp)

nP ≤ X(Fp) + 2g − 2.

In the “improvements” to this theorem that we discuss in these notes, one instead needs
some other global theorem, e.g., Clifford’s theorem (or Riemann–Roch and Clifford’s theo-
rem for graphs, or for arithmetic curves, or for other refined rank functions). In [KRZB],
which uses (in a sense) the full power of the tools from tropical geometry, this step relies
global information about sections of the “tropical canonical bundle” (see [KRZB, Lemma
4.15]).
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Again, please see [MP12] (especially the detailed examples in Section 8) for a survey and a
more thorough introduction. It is also very useful to attempt the Magma exercise (Exercise
2.3) described in the “Computational aspects” part of Subsection 1.2.

2.2. Computational aspects: an exercise. While reading these notes, we also recom-
mend attempting Exercise 2.3 below, which will help to quickly come up wtih speed with
how to perform Chabauty’s method in Magma.

Magma has a free, limited use online calculator here

http://magma.maths.usyd.edu.au/calc/,

and a thoroughly documented implementation of Chabauty’s method

http://magma.maths.usyd.edu.au/magma/handbook/text/1533.

Even better is to obtain a copy for your laptop, or ssh access to a departmental server with
a copy of Magma. The Simons Foundation has graciously made Magma freely available to
mathematicians working in the US

http://magma.maths.usyd.edu.au/magma/ordering/;

your department’s tech staff should be able to help you obtain a copy of Magma through
this agreement.

Exercise 2.3. Take Smart’s list (from [Sma97]) of the 427 genus 2 curves with good re-
duction away from 2, and provably find all of the rational points on them. A temporary
folder containing several references, and containing a subfolder titled “preparatory-Magma-
exercise” with instructions for this exercise, is available at

http://www.math.emory.edu/~dzb/AWS2020.

As an entry point to some of the additional computational techniques one might need
(such as étale descent), we recommend Poonen’s surveys [Poo96] and [Poo02].

3. The uniformity conjecture

The uniformity conjecture is one of the outstanding open conjectures in arithmetic and
diophantine geometry. Initially, Mazur asked whether one can bound #X(K) purely in
terms of the rank of the Jacobian of X (see [Maz00, Page 223] [Maz86, Page 234]). This was
later promoted to the following stronger conjecture.

Conjecture 3.1 ([CHM97]). Let K be a number field and let g ≥ 2 be an integer. There
exists a constant Bg(K) such that for every smooth curve X over K of genus g, the number
#X(K) of K-rational points is at most Bg(K).

The uniformity conjecture famously follows [CHM97, Theorem 1.1] from the Weak Lang
conjecture (a higher dimension analogue of the Mordell conjecture), which is the following.

Conjecture 3.2 ([Lan74], 1.3; see also [Lan86]). Let X be a smooth proper variety of
general type over a number field K. Then there exists a proper closed subscheme Z of X
such that X(K) = Z(K).

Alternatively, there are the following stronger pair of conjectures.
6
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Conjecture 3.3 (Generic Uniform Boundedness [CHM97]). Let g ≥ 2 be an integer. There
exists a constant Bg such that for number field K, there exist only finitely many isomorphism
classes of curves of genus g and over K such that #X(K) > Bg.

This follows from the Strong Lang Conjecture.

Conjecture 3.4 ([Lan74], 1.3; see also [Lan86]). Let X be a smooth proper variety of
general type over a number field K. Then there exists a proper closed subscheme Z of X
such that for every finite extension K ⊂ L, the complement X(L)− Z(L) is finite.

In [CHM97], one applies the Weak (or Strong) Lang Conjecture to symmetric powers
of the universal curve C → Mg,n. A major aspect of their proof is to show that large
enough symmetric powers of C are of general type (or at least dominate a variety of general
type); this is a special case of their “correlation” theorem [CHM97, Theorem 1.2]. See the
papers [Pac97,Pac99,Abr97,Abr95,Cap95,CHM95] for improvements, variants and a lot of
additional discussion, and the slides

http://www-math.mit.edu/~poonen/slides/uniformboundedness.pdf

for a fairly recent discussion and some additional motivation.

3.5. Evidence and records. The following table (taken from [Cap95, Section 4] gives the
best known lower bounds on the constant Bg(Q).

g 2 3 4 5 10 45 g

Bg(Q) ≥ 642 112 126 132 192 781 16(g + 1)

The record so far is due to Michael Stoll, who found (searching systematically through
several families of curves constructed by Noam Elkies) the following:

y2 = 82342800x6−470135160x5+52485681x4+2396040466x3+567207969x2−985905640x+247747600

It has at least 642 rational points, and rank at most 22. See

http://www.mathe2.uni-bayreuth.de/stoll/recordcurve.html

for a full list of the known points.
The families constructed by Elkies arise in the following way: he studied K3 surfaces of

the form

y2 = S(t, u, v)

with lots of rational lines, such that S restricted to such a line is a perfect square.

3.6. Chabauty–Coleman bounds. The proofs of Mordell due to Faltings, Vojta, and
Bombieri [Fal97, Voj91, Bom90] give upper bounds on #X(K). These bounds tend to be
astronomical, and are not explicit in their original proofs; moreover, it is unclear (to me)
how they depend on X and K.

One application of Chabauty’s method is to give uniform bounds on small rank curves.
Coleman’s original theorem is the following.

Theorem 3.7 (Coleman, [Col85]). Let X/Q be a curve of genus g and let r = rankZ JacX(Q).
Suppose p > 2g is a prime of good reduction. Suppose r < g. Then

#X(Q) ≤ #X(Fp) + 2g − 2.
7
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See [Col85, Lemma 3] or [MP12, Theorem 5.3] for a proof.

Various authors have worked to weaken Coleman’s hypotheses and to improve the bound;
see Theorems 4.1, 5.1, 5.2, 6.1, and 6.2 below and the surrounding discussion.

3.8. A new hope. The recent work of Dimitrov, Gao and Habegger [DGH19,DGH20] give
bounds on #X(K) which only depend on g(X), degK, and rank JacX(K). Combined with
the conjectural boundedness of ranks of Jacobians of curves of fixed genus over a fixed number
field (as predicted by [PPVW19] and [Poo18, Section 4.2]) this would prove uniformity. Their
approach is in the spirit of Vojta’s original proof [Voj91], and relies on their recent other
work on improved height bounds.

4. Bad Reduction

One avenue to improve on Coleman’s bound is to generalize the Chabauty framework and
Coleman’s arguments to the case of bad reduction. We will discuss the advantage of working
at bad primes and the difficulties that arise, starting with the work of Lorenzini–Tucker
[LT02].

Coleman’s original bound (3.7) relies on an initial choice of a prime of good reduc-
tion. The first such prime could be arbitrarily large (e.g., consider a hyperelliptic curve
y2 = f(x), and twist it by d, where d is the product of the first million primes; or, pick
singular curves Xp over Fp, for the first million primes p, and use the Chinese Remainder
Theorem to construct a curve X over Q that XFp

∼= Xp for each such prime p). The
problem with this is that the Hasse bound only provides that #X(Fp) ≤ 2g

√
p + p + 1; so

as p increases, Coleman’s bound becomes increasingly worse, and in particular is not uniform.

Whence the appeal of the following theorem of Lorenzini and Tucker.

Theorem 4.1 (Lorenzini, Tucker, [LT02], Corollary 1.11). Suppose p > 2g and let X be a
proper regular model of X over Zp. Suppose r < g. Then

#X(Q) ≤ #X sm
Fp

(Fp) + 2g − 2

where X sm
Fp

is the smooth locus of the special fiber X sm
Fp

.

Recall that a scheme X is regular if for every point x ∈ X, with corresponding maximal
ideal m and residue field k(x),

dimk(x) m/m
2 = dimX.

If R is a DVR with uniformizer π and residue field k and X → SpecR is a relative curve,
then a point x ∈ Xk is regular if and only if the local equation at x is yz = π. (By “local
equation” we mean the equation for the completion of the étale local ring OX,x.) See the
examples in Subsection 4.2, and see [Sil94, Chapter IV] for a leisurely treatment.

The utility of the proper regular model X of X is that the reduction map

r : X (Q)→X (Fp)
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takes values in the smooth locus X sm(Fp). In Chabauty’s method, one thus only needs to
consider residue classes r−1(Q) of points Q ∈X sm(Fp). Such residue classes are (p-adically
analytically) isomorphic to discs; this makes the setup of Chabauty easier, and makes the
“local analysis” much easier.

The “2g − 2” term in Coleman’s bound (3.7) is derived from Riemann–Roch on XFp ,
and is the rationale for the “good reduction” hypothesis. Lorenzini and Tucker recover the
2g − 2 term via Riemann–Roch on XQp and a more involved p-adic analytic argument. A
later, alternative proof [MP12, Theorem A.5] instead recovers the 2g−2 term via arithmetic
intersection theory on X and adjunction.

The drawback is that XFp could contain an arbitrarily long chain of P1’s. (For example, if
X is an elliptic curve with semistable reduction at p and vp(j(X)) = −n, then XFp is an n-
gon of P1’s.) Once again, the size of X sm(Fp) could be arbitrarily large, giving non-uniform
bounds.

Stoll [Sto19] had the bold idea to work with a non-regular, minimal model: one contacts
each chain of P1’s into a single node. Such a model is no longer regular, but the number
of components is bounded, and the genus of each component is bounded (exercise: verify
this). Since the model is no longer regular, rational points no longer reduce to smooth
points (exercise: give an example), and might reduce to a node. The residue class of a node
is now an annulus (explain in an example). This creates multiple problems: an annulus
admits “monodromy” and integrals no longer admit a unique analytic continuation, and
local expansions are now laurent, rather than power, series. See Theorem 6.1 below and the
surrounding discussion.

4.2. A few examples.

Example 4.3 (A regular model). The relative curve

y2 = (x(x− 1)(x− 2))3 − 5
= (x(x− 1)(x− 2))3 mod 5.

is regular at the point (0, 0). The local equation at (0,0) analytically looks like xy = 5. Once
can see by elementary number theory that no rational point can reduce to (0, 0).

Example 4.4 (Resolving a semistable, but not regular, model).

y2 = (x(x− 1)(x− 2))3 − 54

= (x(x− 1)(x− 2))3 mod 5

9



Now, the local equation at (0,0) looks like xy = 54, and (0, 52) reduces to (0, 0). Blowing up
along the ideal (x, y, 5) gives

and the local equations now look like xy = 53 and xy = 5. One of the 2 points is still not
regular. After 2 more blowups we get

and now all of the local equations look like xy = 5, giving a regular model.

5. Rank Favorable bounds

Lorenzini and Tucker [LT02] ask if one can refine Coleman’s bound (Theorem 3.7) when
the rank r is small (i.e., r ≤ g − 2). This was subsequently answered by Stoll.

Theorem 5.1 (Stoll, [Sto06], Corollary 6.7). With the hypothesis of Theorem 3.7,

#X(Q) ≤ #X(Fp) + 2r.

The space of differentials “suitable” for Chabauty’s method has dimension at least g − r.
When r < g−1, there are thus more “inputs” to Chabauty’s method and this extra flexibility
can be exploited to improve the p-adic analysis. Indeed, Stoll’s idea is: instead of using a
single integral, to taylor the choice of integral to each residue class. The additional “global
geometric input” is the (classical) notion of “rank of a divisor”, and after translating his
setup into this language, improved bounds follow from Clifford’s Theorem.

The application of Clifford’s theorem is also the source of the “good reduction” hypothesis.
Using ideas from the “discrete case” of tropical geometry (in particular “chip-firing”), Eric
Katz and I generalized Stoll’s theorem to arbitrary reduction types.

Theorem 5.2 (Katz, Zureick-Brown, [KZB13]). Let X/Q be a curve of genus g and let
r = rank JacX(Q). Suppose p > 2r+ 2 is a prime, that r < g, and let X be a proper regular
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model of X over Zp. Then

#X(Q) ≤ #X sm
Fp

(Fp) + 2r.

Unlike Lorenzini and Tucker’s generalization of Coleman’s theorem, where they replace
Coleman’s use of Riemann–Roch on XFp with Riemann–Roch on XQp , it does not seem
possible to replace Stoll’s use of Clifford’s theorem on XFp with Clifford’s theorem on XQp .
Matt Baker suggested that it might be possible to generalize Stoll’s theorem to curves with
bad, totally degenerate reduction (i.e., XFp is a union of rational curves meeting transversely)
using ideas from tropical geometry (see the recent survey [BJ15] on tropical geometry and ap-
plications), in particular the notion of “chip firing”, Baker’s combinatorial definition of rank,
and Baker–Norine’s [BN07] combinatorial Riemann–Roch and Clifford theorems. Baker was
correct, and in fact an enrichment of his theory led to the following common generalization
of Stoll’s and Lorenzini and Tucker’s theorems.

Baker’s recent work [Bak08] clarifies the relationship between linear systems on curves and
on finite graphs. Highlights include a semicontinuity theorem for ranks of linear systems (as
one passes from the curve to its dual graph), and graph theoretic analogues of Riemann–Roch
and Clifford’s theorem. Baker’s theory works best with totally degenerate curves (i.e. each
component is a P1). Theorem 5.2 requires an enrichment of Baker’s theory if the irreducible
components of the reduction have higher genus.

5.3. Stoll’s proof of Theorem 5.1. Let p > 2. Denote by Vchab the vector space of all

ω ∈ H0
(
XQp ,Ω

1
XQp/Qp

)
such that

∫ P2

P1
ω = 0 for all P1, P2 ∈ X(Q). Then dimVchab ≥ g − r.

For each ω ∈ Vchab, scale ω by a power of p so that the reduction ω̃ of ω is non zero, and

denote by Ṽchab the set of all such reductions; we note that dimFp Ṽchab = dimQp Vchab.

For each Q ∈ X(Fp) and ω ∈ Ṽchab, set

nQ(ω) := deg
(
divω|]Q[

)
and nQ := min

ω∈Vchab
nQ(ω)

(where we recall that ]Q[ denotes the tube or residue class of Q, that is, the set of all points
of X(Qp) which reduce to Q). Since div is compatible with reduction mod p, nQ(ω) is equal
to the valuation vQ(ω̃) (i.e., the order of vanishing of ω̃ at Q).

By the “p-adic Rolle’s theorem”, the number of zeroes of
∫
ω in ]Q[ is at most 1 + nQ(ω),

so

X(Q) ≤
∑

Q∈X(Fp)

(1 + nQ) =
∑

Q∈X(Fp)

1 +
∑

Q∈X(Fp)

nQ = X(Fp) + deg (Dchab) ,

where we define Dchab to be the divisor

Dchab :=
∑

Q∈X(Fp)

nQQ ∈ DivXFp .

By Riemann–Roch, degDchab ≤ 2g − 2, recovering the bound

X(Q) ≤ X(Fp) + 2g − 2.

We claim that, in fact, degD ≤ 2r, which suffices to prove Theorem 5.1. (When r = g − 1,
2r = 2g − 2.) Stoll’s main observation is that

Ṽchab ⊂ H0
(
XFp ,Ω

1
XFp

(−Dchab)
)
, (5.3.1)
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and in particular,

dimH0
(
XFp ,Ω

1
XFp

(−Dchab)
)
≥ dim Ṽchab ≥ g − r. (5.3.2)

To justify Equation 5.3.1, given an effective divisor E =
∑
nPP and a line bundle L on

a curve X, recall that H0(X,L(−E)) is the subspace of sections of H0(X,L) that have at

least a zero of order np at P . A differential ω̃ ∈ Ṽchab thus satisfies vP (ω) ≥ nP by definition
of np!

On the other hand, Clifford’s Theorem [Har77, Theorem IV.5.4] implies that

dimH0
(
XFp ,Ω

1
XFp

(−Dchab)
)
≤ 1

2
deg

(
Ω1
XFp

(−Dchab)
)

+ 1. (5.3.3)

Combining equations 5.3.2 and 5.3.3 gives

g − r ≤ 1

2
deg

(
Ω1
XFp/Qp

(−Dchab)
)

+ 1 = g − 1− 1

2
degDchab + 1

and simplifying gives
degDchab ≤ 2r.

To justify Equation 5.3.3, we switch to the language of divisors. Recall that a divisor is
special if dimH0(X,K −D) > 0, where K is a canonical divisor. (Equivalently, D is special
if and only if it is a subdivisor of some canonical divisor.) For context: Riemann–Roch reads:

H0(X,D) = dimH0(X,K −D) + degD + 1− g.
This gives a formula for H0(X,D) when the degree of D is large; indeed when degD >
degK = 2g − 2, degK − D < 0, therefore dimH0(X,K − D) = 0 and H0(X,D) =
degD + 1 − g. At the other extreme: if degD ≤ 2g − 2, then it is still possible that
dimH0(X,K−D) = 0, in which case, again, H0(X,D) = degD+ 1− g. If D is special, i.e.,
dimH0(X,K − D) > 0, then by Riemann–Roch, H0(X,D) < degD + 1 − g; in this case,
Clifford’s Theorem gives the much stronger bound

H0(X,D) ≤ 1

2
(degD) + 1.

Let K = div ω̃. Then, by definition of nQ, Dchab is a subdivisor of the canonical divisor
K (since vQ(Dchab) := vQ(ω̃) = nQ(ω) ≥ nQ); in particular, Dchab is special.

5.4. The rank of a divisor. In the proof of Stoll’s theorem, we implicitly used the notion
of rank of a line bundle (or divisor). One can simply define the rank r(L) of a divisor
L ∈ Pic(X) to be

r(L) := dimH0(X,L)− 1.

This has the following alternative interpretation over an algebraically closed field: r(L) is
the largest number of independent and generic “vanishing conditions” one can impose on
sections of L. Recall that for a closed point P , H0(X,L(−P )) is the subspace of sections of
H0(X,L) that have at least a simple zero at the point P . More generally, for an effective
divisor E =

∑
nPP , H0(X,L(−E)) is the subspace of sections of H0(X,L) that have at

least a zero of order np at P . By [Har77, Proof of Theorem IV.1.3],

dimH0(X,L(−P )) ≥ dimH0(X,L)− 1,

and in particular,
dimH0(X,L(−E)) ≥ dimH0(X,L)− degE. (5.4.1)
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Similarly, one can define the rank r(D) of a divisor D ∈ Div(X) to be

r(D) := dimH0(X,D)− 1.

This has the following alternative interpretation over an algebraically closed field: r(D) is
the largest number of points of Xk (allowing for multiplicity) one can remove from D before
D is no longer equivalent to some effective divisor. Equivalently, the rank is the largest
number of points (allowing for multiplicity) that you can demand occurs as a subdivisor of
some effective divisor D′ equivalent to D.

More formally, we make the following definitions.

Definition 5.5. Let D ∈ DivX be a divisor. The linear system associated to D is the
collection |D| of effective divisors linearly equivalent to D. We define the rank r(D) of D to
be -1 if |D| is empty (i.e., if D is not equivalent to an effective divisor). Otherwise, we define

r(D) := max{n ∈ Z≥0 : |D − E| 6= ∅, ∀E ∈ Divn≥0(Xk)},
where Divn≥0(Xk) is the subset of Div(Xk) of effective divisors of degree n.

The linear system |D| is naturally isomorphic to the projective space ProjH0(X,D) ∼=
Pr − 1, where r = dimH0(X,D).

By Equation 5.4.1,
r(D) ≥ dimH0(X,D)− 1.

The converse follows from the observation (exercise!) that if r(D) = n, then there exists P ∈
Xk such that r(D−P ) = n−1. Note that one must take k in the definition of rank. Indeed,
consider a non hyperelliptic curve X with X(k) = ∅, but X(k′) 6= ∅ for some quadratic
extension k′ of k. Then for P ∈ X(k′) with conjugate point Q, D := P +Q ∈ Div2X. Then
r(D) = 1; but, Div1

≥0X is empty, so

max{n ∈ Z≥0 : |D − E| 6= ∅, ∀E ∈ Divn≥0(X)} = 1

5.6. Chip firing and the rank of a divisor on a graph. I recommend taking a quick
look at Matt Baker’s short expository article available at

http://people.math.gatech.edu/~mbaker/pdf/g4g9.pdf.

For a short selection of other references: the papers [Bak08,BN07] by Baker and collaborators
are my preferred starting point; [BJ15] is also a great survey.

Let Γ be a connected graph, with vertex set V (Γ) and edge set E(Γ). We define Div Γ
to be the set of maps from the verticies of V (Γ) to Z; this is isomorhpic to the free group
Z[V (Γ)] generated by the set of vertices of Γ, and will sometimes write D =

∑
v nv(v) for

the function that has value nv at v. The degree of D is degD =
∑

vD(v). We’ll refer to an
element D ∈ Div Γ as a divisor or configuration, and will typically represent them visually as
in Figure 5.6, and refer to D(v) as the “number of chips” or “dollars” at the vertex v.

The goal of the “dollar game” or “chip firing” is to get a divisor out of debt. We say that
a divisor D is effective, and write D ≥ 0, if D(v) ≥ 0 for all verticies v of Γ.

One formalizes lending and borrowing as follows: given f ∈ Div Γ, we define the principal
divisor associated to f to be

div f =
∑
v∈Γ

D(v) ·

(
−(deg v)(v) +

∑
w 6=v

#{edges between w and v}(w)

)
.
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Figure 1. The effect of firing once at v4

In particular, div δv is

−(deg v)(v) +
∑
w 6=v

#{edges between w and v}(w)

which has the effect of the vertex v “lending” one chip to each adjacent vertex (see Figure
5.6). We say that two divisors D and D′ are equivalent if there is a sequences of lends and
borrows which transforms D into D′, and we define the Jacobian or Picard group Pic Γ to be
the abelian group of equivalence classes of divisors on Γ. more formally, there is an exact
sequence

0→ Z → Div Γ
div−→ Div Γ→ Pic Γ→ 0,

where the first map sends 1 to the function
∑

v δv (i.e., every vertex lends, which has no
effect).

The vector space H0(Γ, D) doesn’t make sense for a graph. Baker’s insight from [Bak08]
is that the “practical” definition of rank (Definition 5.5) does generalize nicely to divisors
on graphs.

Definition 5.7. Let D ∈ Div Γ be a divisor. The linear system associated to D is the
collection |D| of effective divisors linearly equivalent to D. We define the rank r(D) of D to
be -1 if |D| is empty (i.e., if D is not equivalent to an effective divisor). Otherwise, we define

r(D) := max{n ∈ Z≥0 : |D − E| 6= ∅, ∀E ∈ Divn≥0(Γ)},

where Divn≥0(Xk) is the subset of Div(Xk) of effective divisors of degree n.

Equivalently, the rank is the largest number of points (allowing for multiplicity) that you
can demand occurs as a subdivisor of some effective divisor D′ equivalent to D. In other
words, the rank of a divisor D is the “amount of damage” necessary to make the chip firing
game unwinnable.

Definition 5.8. Let Γ be a graph. We define the canonical divisor on K to be the divisor

KΓ :=
∑

v∈V (Γ)

(deg v − 2)(v).

The genus g(Γ) (alternatively first Betti number h1(Γ)) of Γ is the number of edges minus
the number of vertices; note that degKΓ = 2g(Γ)− 2. We say that a divisor D is special if
D is effective and |K −D| is non empty.

This definition is motivated by adjunction.
14



Theorem 5.9 ([BN07], Theorem 1.12 and Corollary 3.5). Let D ∈ Div Γ. Then the following
are true.

(1) Riemann–Roch: r(D)− r(K −D) = degD + 1− g.
(2) Clifford’s Theorem: if D is special, then r(D) ≤ 1

2
degD.

Corollary 5.10 ([BN07], Theorem 1.9). The chip firing game is winnable for the configu-
ration D if degD ≥ g.

Remark 5.11. It is unknown whether one can deduce these from the analogous theorems
from the geometry of curves.

5.12. Semicontinuity of specialization. Let R be a complete discrete valuation ring with
maximal ideal π, residue field k, and fraction fieldK. Denote by η the generic point of SpecR,
and by b the closed point. (Most of what we say below works just as well if we replace SpecR
by an integral scheme B.) Let C → B be a relative curve of genus g (i.e., a smooth proper
morphism such that for every x ∈ SpecR, the fiber Cx is a smooth proper curve of genus g
over the residule field k(x)).

Let D =
∑
nPP ∈ DivCη. The dimension of C is 2, and we can extend D to a divisor D

on C by taking the closure of its support; in other words, D :=
∑
nPP ∈ DivCη, where P

is the closure of P . Intersecting D with the special fiber Cb thus gives a specialization map

sp: DivCη → DivCb.

Proposition 5.13. Let D ∈ DivCη. Then r(sp(D)) ≥ r(D).

The inequality can certainly be strict. Indeed, consider C with hyperelliptic special fiber
and non-hyperelliptic generic fiber, and let D = P +Q where P,Q ∈ C(K) are points whose
reductions are hyperelliptic conjugate. Then r(D) = 1 but r(sp(D)) = 2.

More generally, if L is a line bundle on Cη, there is a unique (up to isomorphism) extension
of L to a line bundle L on C (i.e., a line bundle L on C such that Lη is isomorphic to L.

(Indeed, let s ∈ L(U) be a section over some non empty open set U ⊂ Cη; then L = OC((÷s))
extends L.)

There is thus an analogous specialization map

sp: PicCη → PicCb,

and (since r(D) = r(O(D))), Proposition 5.13 equivalently implies that r(sp(L)) ≥ r(L).
Proposition 5.13 is a special case of Semicontinuity of Cohomology [Har77, Theorem

III.12.8] (taking i = 0 and F = OC(D)). Unsurprisingly, this is overkill; we sketch a
direct proof that will generalize to the “discrete” case.

Proof of Proposition 5.13. First, note that a section s ∈ H0(Cη, D) can be scaled by a power
of the uniformizer π to a section of H0(C,O(D)). There are a few ways to see this: if we
think of s as a function

Conversely, Since Cη ⊂ C is open, and since the vanishing locus of a section of a line
bundle is closed, the map

H0(C,O(D))→ H0(Cη, D)

is injective. In particular,

rankRH
0(C,O(D)) = rankK H

0(Cη, D).
15



Figure 2. A curve and its dual graph.

Alternatively, it follows directly from flatness that

H0(C,O(D))⊗R K ∼= H0(Cη, D).

One can then show that the dimension of the reduction map

H0(C,O(D))→ H0(Cb,O(Db))

is dimH0(Cη, D), so in particular

dimH0(Cb,O(Db)) ≥ dimH0(Cη, D).

�

5.14. Rank favorable bounds for curves with totally degenerate reduction. One
can associate to such a singular curve with transverse crossings its dual graph as in Figure
1. Component curves become nodes, and intersections correspond to edges.

In this lectures, I’ll discuss the special case of a “Mumford curve” (i.e., a curve with “totally
degenerate” reduction, in that the reduction is a collection of P1’s meeting transversely, and
in particular represents an isolated point on the moduli space of curves); for such curves, one
only needs Baker’s original notion of rank (which we call “numerical rank”); for a discussion
of the “abelian rank”, and a detailed proof in this case, see our paper [KZB13]. The main
point is that there is also a specialization map for the numerical (i.e., “chip firing”) rank,
and once one sets things up properly, the proof is similar to Stoll’s proof.

5.15. Refined ranks. In a certain sense, the numerical rank only “sees” the component
group of the Néron model. The enriched notion of abelian rank from [KZB13] and [AB15]
sees the abelian part of the Néron model. One can ask if there is a corresponding notion
of “toric” or “unipotent” rank. In [KZB13, Subsection 3.3], we define a “toric” rank, and
in [KZB13, Example 5.5] demonstrate that these ranks differ; we have yet to find a useful
application.

6. Tropical Geometry, Berkovich spaces, and Chabauty

A recent breakthrough [Sto19] fully removed, in the special case of hyperelliptic curves, the
dependence on a regular model and derived a uniform bound on #X(Q) for small (r ≤ g−3)
rank curves.

Theorem 6.1 (Stoll, [Sto19]). Let X be a hyperelliptic curve of genus g and let r =
rankZ JacX(Q). Suppose r ≤ g − 3. Then

#X(Q) ≤ 8(r + 4)(g − 1) + max{1, 4r} · g.
16



A main ingredient in Stoll’s proof is to understand the discrepancy between the differ-
ent flavors of integration. Eric Katz noticed that this discrepancy “factored through the
tropicalization of the torus part of the Berkovich uniformization of X”. After a thorough
reinterpretation of the method of Chabauty and Coleman via Berkovich spaces, and har-
nessing the full catalogue of tropical and non-Archimedean analytic tools, we were able to
improve Stoll’s result to arbitrary curves of small rank.

Theorem 6.2 (Katz–Rabinoff–Zureick-Brown, [KRZB]). Let X be any curve of genus g
and let r = rankZ JacX(Q). Suppose r ≤ g − 3. Then

#X(Q) ≤ 84g2 − 98g + 28.

For more details, see our survey [KRZB16].
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