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Disclaimer

These lecture slides come with a bibliography at the end. However,
there has been no attempt at accurate attribution of mathematical
results. Rather, the list mostly contains works the lecturer has
consulted during preparation, which he hopes will be helpful for
users.



I. De Rham fundamental groups



De Rham fundamental groups

F : a finite extension of Qp.

X : a smooth curve over F

X̄ : the basechange of X to F̄ .

b, x ∈ X (F ) viewed sometimes as geometric points:

Spec(K̄ ) - X̄ - X .

X : a smooth scheme over OF , the valuation ring of F , with good
compactification and generic fiber X .

Y :special fiber of X over k = OF/mF .



De Rham fundamental groups
The De Rham version is similar to the etale case
[Hain, AIK, Kim3]. The relevant category is

UnDR(X ) ⊂ LocDR(X )

the category of unipotent vector bundles with (flat) connections, a
full subcategory of all bundles with flat connections.

There are fibre functors

Fb : UnDR(X ) - VectF ,

(V ,∇) 7→ Vx

and the objects of interest are

UDR = UDR(X , b) = Aut⊗(Fb)

and
PDR(x) = PDR(X ; b, x) = Isom⊗(Fb,Fx)



De Rham fundamental groups
They can be constructed using universal objects which in turn
admit a tautological construction [AIK] using

ExtiLocDR
(X )

((V ,∇), (V ′,∇′)) ' H i
DR(X , (V ,∇)∗ ⊗ (W ,∇)),

where

H i
DR(X , (V ,∇)) = H i (XZar ,V - V ⊗OX

ΩX )

In particular, it is a projective system

(EDR
n ,∇n),

which fit together as

0 - TDR
n ⊗OX

- EDR
n

- EDR
n−1

- 0.

Here, TDR
n is a quotient of (HDR

1 )⊗n as in the étale case.



De Rham fundamental groups

After choosing an element 1 ∈ EDR
b we get the universal property:

Given any object (V ,∇V ) in UnDR(X ) together with an
element v ∈ Vb (the fiber at b), there exists a unique
morphism φ : (EDR ,∇)→(V ,∇V ) such that
1 ∈ EDR

b 7→ v .

Corollary

End(Fb) ∼= EDR
b .



De Rham fundamental groups

Theorem
The pro-algebraic group UDR(X , b) is isomorphic to the group-like
elements in Eb, while PDR(X ; b, x) is isomorphic to the group-like
elements in Ex .

The universal property gives rise to a map in Un(X ):

∆ : (EDR ,∇) - (EDR ,∇)⊗̂(EDR ,∇)

that takes 1 to 1⊗ 1.

Let ADR = EDR be the dual (ind-)bundle. Then ∆∗ gives

ADR
x = Hom(EDR

x ,K )

the structure of a commutative algebra, and

PDR(x) = Spec(ADR
x ).



De Rham fundamental groups: Hodge filtration

[Hain, Wojtkowiak, Vologodsky, Hadian, Kim3]

There is a unique decreasing filtration F i , i ≤ 0, of EDR satisfying
the following conditions.

(1) Griffiths transversality ∇(F i ) ⊂ F i−1 ⊗ ΩX ;

(2) The induced filtration on Tn coincides with the constant one
coming from (co)homology;

(3) 1 ∈ F 0EDR
b .

This is the Hodge filtration on EDR .

There is an induced Hodge filtration with non-negative degrees on
ADR and F 1ADR is an an ideal. F 0PDR(x) is the defined to be the
zero set of F 1ADR

x . It is a torsor for F 0UDR , which is a subgroup
of UDR .



De Rham fundamental groups: Hodge filtration

This is an aspect of the fact that the action of UDR on PDR(x) is
compatible with the Hodge filtration. The action map

PDR(x)× UDR - PDR(x)

corresponds to a co-action map

ADR
x

- ADR
x ⊗ADR

b

This is compatible with the Hodge filtration.

The choice of a point p ∈ F 0PDR(x) gives an algebra
homomorphism ADR

x
- F which kills F 1ADR

x , which is hence a
map of Hodge structures.



De Rham fundamental groups: Hodge filtration

Thus, we get an isomorphism

ADR
x
∼= ADR

b

that is compatible with the Hodge filtration. A dimension count
then shows that

F 1ADR
x
∼= F 1ADR

b ,

and hence,

ADR
x /F 1ADR

x
∼= ADR

b /F 1ADR
b ,

giving us
F 0UDR ∼= F 0PDR(x).



De Rham fundamental groups: crystalline structures

In the local case, the (k−linear) Frobenius φ of the special fibre Y
acts on the category UnDR(X ) [Deligne, Besser].

Write X = ∪iUi so that Ui is a smooth lift of Ui ⊗ k . Choose local
lifts φi on Ui of the Frobenius on Ui ⊗ k .

Then given a bundle with connection (V ,∇), we consider the local
pull-backs (φ∗i (V |Ui

), φ∗I (∇)). The connection allows us to patch
these together canonically to give us φ∗(V ,∇).

In particular,

(EDR ,∇, 1) - (φ∗EDR , φ∗∇, φ∗1),

Get compatible actions on UDR(V , b) and PDR(X ; b, x).



De Rham fundamental groups: crystalline structures

On Tn, agrees with the action induced by the isomorphism

H1
DR(X ) ∼= H1

crys(Y ).

Hence, the eigenvalues are the same as the ones coming from étale
cohomology.

Theorem
There is a unique Frobenius invariant element pcrb,x in PDR(X , b, x).



De Rham fundamental groups: crystalline structures

Lemma
The Lang map L(φ) : UDR - UDR that sends u to uφ−1(u) is a
bijection.
In particular, the identity is the only element fixed by φ.

Proof.
The eigenvalues of φ on TDR

n = UDR,n/UDR.n+1 are all different
from 1.

Proof of theorem.
Choose p ∈ PDR . Then there is a unique u ∈ UDR such that
φ(p) = pu. Write u = vφ(v−1). Then

φ(pv) = pv .

Uniqueness comes from the fact that if p is fixed, no pu will be
fixed for u 6= e.



De Rham fundamental groups: crystalline structures

Better to think in terms of crystalline fundamental groups: Given a
point y ∈ Y (k), define on Un(X )DR the fibre functor

(V ,∇) 7→ V (]y [)∇=0,

the flat sections of V over the tube ]y [ of y , the analytic space of
points that reduce to y .

Then for x , x ′ ∈]y [, pcrx ,x ′ is given by the diagram

V (]y [)∇=0

Vx

�

∼=

Vx ′

∼=

-



De Rham fundamental groups: crystalline structures

This is supplemented by an isomorphism

pcryy ′ : V (]y [)∇=0 ∼= V (]y ′[)∇=0

for y , y ′ ∈ Y (k) called Coleman integration [Besser]. The
computation of this is Kedlaya’s theory.



De Rham moduli spaces

The space of torsors for UDR that have compatible Frobenius and
Hodge filtration are classified by

UDR/F 0.

Given a torsor T , choose elements tcr ∈ T and tH ∈ F 0T . Then

tH = tcrucrT .

The element ucrT is independent of the choice of tH up to
multiplication by F 0UDR on the right, giving us a well-defined
element

[ucrT ] ∈ UDR/F 0.



De Rham fundamental groups

We will give an explicit description for X affine [Kim3].

We first choose
α1, α2, · · · , αm,

global algebraic differential forms representing a basis of H1
DR(X ).

Thus, m = 2g + s − 1, where s is the number of missing points.



De Rham fundamental groups

Consider the algebra
F 〈A1, . . . ,Am〉

generated by the symbols A1,A2, . . . ,Am. Thus, it is the tensor
algebra of the F -vector space generated by the Ai . Let I be the
augmentation ideal.

The algebra F 〈A1, . . . ,Am〉 has a natural comultiplication map ∆
with values ∆(Ai ) = Ai ⊗ 1 + 1⊗ Ai .

Now let
En = F 〈A1, . . . ,Am〉/I n+1

and take the completion

E := lim←−F 〈A1, . . . ,Am〉/I n

∆ extends naturally to a comultiplication E→E ⊗̂E .



De Rham fundamental groups

E : pro-unipotent pro-vector bundle E ⊗OX with the connection ∇
determined by

∇E f = df − ΣiAi f αi

for sections f : X - E .

There is an element 1 ∈ Eb = E .

Theorem
There is a unique isomorphism

(E ,∇E , 1) ∼= (EDR ,∇, 1)

It is compatible with the comultiplication on either side.



De Rham fundamental groups

The theorem is an easy consequence of

Lemma
Let (V ,∇) be a unipotent bundle with flat connection on X of rank
r . Then there exist strictly upper-triangular matrices Ni such that

(V ,∇) ' (Or
X , d + ΣiαiNi )



De Rham fundamental groups
The isomorphism

EDR(]y [)∇=0

EDR
b

�

∼=

EDR
x

∼=

-

can be constructed locally by solving differential equations.

Let
f =

∑
w

fw [w ]

be a section of E , where the [w ] are words in the Ai , and f (b) = 1.

Then the flatness condition is

df =
∑
w

∑
i

fwαi [Aiw ],



De Rham fundamental groups

This is
dfAiw = fwαi

for all w and i .

We solve this iteratively:

fAi
(z) =

∫ z

b
αi .

This can be constructed as a power series with initial condition
fAi

(x) = 0.

We continue
fAjAi

(z) =

∫ z

b
fAi
αj ,

and so on. Thus, the components of f become iterated integrals.



De Rham fundamental groups

Having solved the equation with initial condition 1, get pcrbx for
v ∈ EDR

b by
pcrbx(v) = f (x)v .

For general x , the components of pcrbx give the definition of iterated
integrals.

The shuffle identities for iterated integrals∫ z

b
α1α2 · · ·αk

∫ z

b
αk+1αk+2 · · ·αn =

∑
σ

∫ z

b
ασ(1)ασ(2) · · ·ασ(n)

with the sum running over (k , n− k) shuffles of {1, 2, . . . , n} follow
from the group-like nature of pcrb,z .



De Rham fundamental groups

Another way to say this is that

ADR
z = F [φw ]

the vector space generated by φw such that φw [w ′] = δww ′ . The
algebra structure is given by

φwφw ′ =
∑
σ

φσ(ww ′),

where again the σ run over shuffles. The iterated integral identity is
the fact that

pcrb,z : ADR
z

- F

is an algebra homomorphism.



De Rham fundamental groups

Theorem
The map

jDR : X (F ) - UDR/F 0

has the property that jDR(]y [) is Zariski dense for each y ∈ Y .
The idea is to show that all iterated integrals are algebraically
independent using transcendental methods.

Hence, as we increase n, the coordinates of the map

jDR : X (F ) - UDR
n /F 0

keep giving genuinely new analytic functions.
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Selmer schemes III



I. Geometry of non-abelian cohomology



Non-abelian cohomology functors

X/Q: a smooth curve and p > 2 a place of good reduction.

U = U(X̄ , b), the Qp-prounipotent étale fundamental group.

Un = U/Un+1.

G : either the group Gal(Q̄p/Qp) or GT = Gal(QT/Q), where QT

is the maximal extension of Q unramified outside a finite set T of
primes. We assume that T contains ∞, 2, p and all primes of bad
reduction.



Non-abelian cohomology functors

[Kim1]

We define a functor of Qp-algebras

R 7→ H1(G ,Un(R)) := Un(R)\Z 1(G ,Un(R)).

The H1 refers to continuous cohomology: Z 1 denotes the
continuous functions

f : G - U(R)

such that f (g1g2) = f (g1)g1(f (g2)) on which Un(R) acts via

f u(g) = uf (g)g(u−1).



Non-abelian cohomology functors

The G -action on Un(R) is defined by identifying

Un
∼=log Ln := Lie(Un).

In fact, it is often good to think of Un as being Ln with group law
defined by the BCH formula:

X ·Y = X+Y+(1/2)[X ,Y ]+(1/12)[X , [X ,Y ]]−(1/12)[Y , [Y ,X ]]+· · · .

(Formula for log(exp(X ) exp(Y )).)

Then Un(R) = Ln ⊗ R.



Non-abelian cohomology functors
The topology in Un(R) is defined by using

Un
∼= AN ,

which gives
Un(R) ∼= RN .

We give RN the inductive limit topology of finite-dimensional
Qp-subspaces. (This definition works also for all affine schemes.)

On the abelian pieces Un/Un+1, the same definition of H1 applies,
but we can also define H2.

Proposition

H i (G ,Un/Un+1(R)) ∼= H i (G ,Un(Qp)/Un+1(Qp))⊗ R.

That is, the functor of R can be represented by the
finite-dimensional Qp-vector space H i (G ,Un(Qp)/Un+1(Qp)).



Non-abelian cohomology functors

Theorem
The functor

R 7→ H1(G ,Un(R))

is represented by an affine Qp-scheme of finite type.
The scheme represents principal Un-bundles with continuous G
action:

The R-points are principal (Un)R bundles

P - Spec(R),

with functorial continuous action of G on P(S) for any R-algebra S .



Non-abelian cohomology functors

The proof is by induction on n using the exact sequence

0 - H1(G ,Un/Un+1(R)) - H1(G ,Un(R)) - H1(G ,Un−1(R))

δ- H2(G ,Un/Un+1(R)).

That is, once H1(G ,Un−1) is representable, δ is a map of schemes.
The exact sequence means that H1(G ,Un) defines a
H1(G ,Un/Un+1)-torsor over Ker(δ), which then must be
represented by

Ker(δ)× H1(G ,Un/Un+1).



Non-abelian cohomology functors

In the local case, define also

R 7→ H1(G ,Un(Bcris ⊗ R)),

and

H1
f (G ,Un) = Ker(H1(G ,Un) - H1(G ,Un(Bcris)),

which is a subscheme by induction on n:

0 - H1(G ,Un/Un+1) - H1(G ,Un) - H1(G ,Un−1)

0- H1(G ,Un/Un+1(Bcris))
?

- H1(G ,Un(Bcris))
?

- H1(G ,Un−1(Bcris))
?



Non-abelian cohomology functors
H1
f (Gp,Un) represents torsors that have a Gp-invariant point in

Un(Bcris).
We have the localisation

H1(GT ,Un) - H1(Gp,Un)

using which we define H1
f (GT ,Un) = loc−1

p (H1
f (Gp,Un)).

Thus, we get a diagram

X (Z) - X (Zp)

H1
f (GT ,Un)
?

- H1
f (Gp,Un)
?

The bottom arrow is a map of schemes since it represents a map of
functors. It is a computable replacement for X (Z) ⊂ X (Zp),



De Rham moduli spaces

The reason X (Zp) maps to H1
f is because of the non-abelian p-adic

Hodge theory isomorphism:

Pet
n (x)(Bcr ) ∼= PDR

n (x)(Bcr ) ∼= BN
cr .

The first isomorphism respects all structures, while the second is
Galois equivariant, showing the existence of an invariant point.



II. The fundamental diagram



The fundamental diagram

[Kim1, Kim2, Kim3]

Given T = Spec(A(T )) a crystalline torsor for U,

D(T ) := Spec([A(T )⊗ Bcr ]Gp)

is a torsor for UDR with Hodge flitration and Frobenius structure.

Lemma

T 7→ D(T )

defines an isomorphism

H1
f (Gp,Un) ∼= UDR

n /F 0.



The fundamental diagram

X (Z) - X (Zp)

H1
f (GT ,Un)
?

- H1
f (Gp,Un)
?

∼= UDR
n /F 0

-

The isomorphism on the right comes from the construction of an
inverse using the fundamental exact sequence of p-adic Hodge
ttheory:

0 - Qp
- Bφ=1

cr ⊕ B+
DR

- BDR
- 0.



The fundamental diagram

From this, we get

U(BDR)/U(B+
DR) - H1(G ,U) - H1(G ,U(Bφcr )).

For U, we get an equality between

H1
e (G ,U) = Ker[H1(G ,U) - H1(G ,U(Bφcr ))]

and
H1
f (G ,U) = Ker[H1(G ,U) - H1(G ,U(Bcr ))]
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