
The geometry of algebra and the algebra of geometry: model

categories, infinity categories and spectra

The problems in this problem set are aimed at students who have seen the definitions of the objects
under discussion, but may not have worked with them extensively. In the interest of getting students to the
point where they can work on the problems, I recomment the following resources.

Category Theory and Model categories Dwyer and Spalinski, “Homotopy Theories and Model Cate-
gories,” particularly sections 3 and 5. This also includes a quick introduction to category theory in
section 2.

Simplicial sets Riehl, “A Liesurely Introduction to Simplicial Sets.”

Spectra Schwede, Symmetric Spectra. Chapter 1, Sections 1, 4, 5.

These resources are chosen for their ease of reading and introductory nature. I have also tried to make sure
that they are relatively short and allow students access to the problems as quickly as possible. They are
definitely not comprehensive introductions to the subjects at hand.

Pedantic note

All categories are assumed to be locally small. Any category whose nerve we are taking is assumed to be
small. Students attempting the problems should be careful to note where set-theoretic issues may arise, and
discuss how they should be resolved.

The category Top of topological space is actually the category of compactly-generated Hausdorff spaces.
(The category of all topological spaces is not cartesian-closed, and is therefore not well-behaved for the
purposes of doing homotopy theory.)

1 Simplicial sets and nerves of categories

1.1. There exist two distinct maps f, g∆0 ∆1. Show that there exists a simplicial homotopy between
these maps in one direction, but not the other. (In other words, there exists a simplicial homotopy
from f to g, but not from g to f , or vice versa.)

1.2. Let I be the category 0 1.

(a) Check that NI ∼= ∆1.

(b) Let F,G: C D be a pair of functors, and suppose that α:F G is a natural transformation
between them. Use the data of α to construct a simplicial homotopy from NF to NG.

(c) Conclude that if F : C D :G is a pair of adjoint functors then NC is homotopy equivalent to
ND.

1.3. Let On be the full subcategory of ∆ containing the objects [0], . . . , [n]. Given any simplicial set

X: ∆op Set we then have its n-th truncation X̃:Oop
n Set given by precomposition. We define

the category sSetn
def
= Func(Oop

n ,Set), with natural transformations as the morphisms.

(a) Check that the n-th truncation is a functor τn: sSet sSetn.
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(b) Describe the left and right adjoints to the n-th truncation functor.

(c) Look up the definition of a monad/comonad.1 Describe the monad and comonad constructed on
sSet by these adjunctions. These are called the n-skeleton and n-coskeleton functors. Which is
which?

(d) A simplicial set is said to be n-skeletal if its n-skeleton is equal to itself, and n-coskeletal if its
n-coskeleton is equal to itself. Give an example of a simplicial set which is neither n-skeletal nor
n-coskeletal.

(e) Let C be a category. Show that NC is 2-coskeletal.

1.4. Show that the functor N : Cat sSet is full and faithful. Can you give a condition for identifying
objects contained in its essential image?2

1.5. For which categories C is NC a Kan complex?

1.6. Show that a filtered preorder is contractible.

1.7. Let X be a simplicial set which is k-coskeletal and for which, for all n < k, the lift

Λn` X

∆n

∃

exists for all 0 ≤ ` ≤ k. Prove that X is a Kan complex.

1.8. Let E be a cocomplete category, and let D: ∆ E be any functor. and

(a) Let y: ∆ sSet be the Yoneda embedding. Describe y geometrically.

(b) Define L: sSet E to be the left Kan extension of D along y. Describe L in terms of coequalizers.

(c) When E = Top and D([n]) = ∆n, describe L.

(d) Prove that L has a right adjoint R, and desribe R in the above situation.

(e) Now consider the case when E = Cat and D([n]) = 0 · · · n. Describe L and R; what are
these usually called?

(f) Now suppose that E = sSet and D([n]) = N(P (n)), where P (n) is the partial order of subsets of
{0, . . . , n}. Describe L and R in this case; what are these usually called?

(g) Look up the definition of the homotopy coherent nerve. Can you construct a functor D that
produces it?

1.9. Let K, L be two simplicial sets. We define (K × L)n = Kn × Ln. Check that |I × I| ∼= I2 explicitly.
Prove that |K × L| ∼= |K| × |L|.

1.10. Consider Quillen’s Theorem A:

Theorem 1.1 (Quillen’s Theorem A). Let F : C D be a functor, and suppose that for all D ∈ D,
F/D is contractible. Then F is a homotopy equivalence.

(a) Use Theorem A to show that if a category has an initial (resp. terminal) object then it is
contractible.

(b) Use Theorem A to show that if F : C D has a left (resp. right) adjoint then it is a homotopy
equivalence.

(c) Use Theorem A to prove that BN BZ is a weak equivalence.
1I recommend Section 5.1 in Riehl’s Category Theory in Context.
2This problem implies that it is completely natural to think of categories as spaces, as long as we are willing to consider

simplicial sets as our model of spaces. Thus it is perfectly reasonable to state that “C is contractible” or “F : C D is a
homotopy equivalence” in a non-ambiguous manner.
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2 Model categories and simplicial categories

2.1. Let ChR be the category of bounded below chain complexes over a commutative ring R. (Here we
grade chain complexes homologically, so differentials go down; you are of course welcome to do this
problem with cohomologically graded chain complexes, and look at bounded-above chain complexes
instead.) Define a model structure on ChR with

cofibrations injections with projective cokernel

fibrations surjections above degree 0

weak equivalences quasi-isomorphisms.

(a) Prove (without using the small object argument) that this gives a model structure on ChR. Prove
that there exists an analogous model structure where the cofibrations are injections. (These are
called, respectively, the projective and injective model structures.)

(b) Let M be an R-module. When is M cofibrant? What does the cofibrant replacement of M [0]
look like?

(c) Suppose we are given a Quillen pair F : C D :G. The left derived functor of F is given by
composing F with a cofibrant replacement functor. Similarly, the right derived functor of G is
given by composing G with a fibrant replacement functor. Let M be an R-module. Check that
·⊗M can be thought of a left Quillen functor3 ChR ChZ and describe its left derived functor.
Can you do a similar construction for Hom(M, ·)?

(d) Now modify this to produce a model structure on unbounded chain complexes Ch≥0
R .

2.2. Prove that a left Quillen functor preserves weak equivalences between cofibrant objects.

2.3. Let C be the following category, with W the marked subcategory:

B

∅ A D ∗

C

∼ ∼

∼ ∼

Find all model structures on C with W as the weak equivalences.

2.4. Let C be a finite preorder closed under all limits and colimits; let W be a subcategory of C. Prove that
there exists a model structure on C with W as the weak equivalences if and only if the following two
conditions hold:

• W satisfies 1-of-3: if f and g are composable morphisms such that gf ∈ W then f, g ∈ W.

• Let Wc be those weak equivalences such that all pushouts are also weak equivalences, and let Wf

be those weak equivalences such that all pullbacks are also weak equivalences. Every morphism
in W factors as a morphism in Wc followed by a morphism in Wf .

2.5. Show that all model structures on partial orders are Quillen equivalent to a model structure where all
morphisms are fibrations and cofibrations and the weak equivalences are isomorphisms. Why doesn’t
this work for a general category?

2.6. (a) Show that in a model category C, if there exists a zigzag of weak equivalences between two objects,
then there exists a zigzag of length at most 4 between these two objects.

3How do you need to specify the model structures?
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(b) Suppose that C is a partial order such that Ho C is essentially large (not equivalent to a small
category). Prove that the model structure on C is not cofibrantly generated.

2.7. Let C be a category. A weak factorzation system is a pair (L,R) of classes of morphisms in C such that

• �R = L
• L� = R
• For every morphism f :A B in C there exists fL:A X and fR:X B with fL ∈ L and
fR ∈ R such that fRfL = f .

(a) Show that in a weak factorization system (L,R), L is closed under retracts and pushouts and R
is closed under retracts and pullbacks.

(b) Show that a model structure on C is given by a subcategory W of weak equivalences satisfying
2-of-3 together with two weak factorization systems (L,R) and (L′,R′) such that L = L′ ∩ W
and R′ = R∩W.

(c) Classify all weak factorization systems on Set.

(d) Classify all model structures on Set.

2.8. A category C is a simplicially enriched category4 if there exists a functor

Hom: C × Cop sSet

such that

• Hom(A,B)0 = Hom(A,B) for all A,B ∈ C.
• Hom(A,−) has a left adjoint, generally denoted · ⊗A: sSet C such that for all K,L ∈ sSet,

(K × L)⊗A ∼= K ⊗ (L⊗A).

• The functor Hom(−, B) has a left adjoint B·: sSet Cop.

(a) Prove that sSet is a simplicially enriched category with Hom(K,L)n = Hom(K ×∆n, L).

(b) More generally, prove that for any simplicially enriched category C, Hom(A,B)n ∼= Hom(∆n ⊗
A,B).

(c) Prove that Top is a simplicially enriched category. What do the n-simplices in Hom(X,Y )
represent?

(d) Prove that for fixed K ∈ sSet, for any simplicially enriched category C, there exists an adjuction
(K ⊗ ·) a ·K .

(e) Prove that for all K,L ∈ sSet, BK×L ∼= (BL)K .

2.9. Which objects in the category sCat (of simplicial objects in Cat) arise from simplicially enriched
categories?

2.10. (a) Show that a simplicially enriched category can be encoded as a functor ∆op Cat.

(b) Which functors ∆op Cat can be obtained from simplicial categories?

2.11. Suppose that C is a simplicially enriched category and X ∈ sC. We define

|X| = coeq

 ∐
f :[n] [m]

∆n ⊗Xm

∐
[n]

∆n ⊗Xn

 .

4Often, by a horrible abuse of terminology, called a “simplicial category.” You should be careful with this, however, since the
term “simplicial category” can refer to the category ∆, a simplicially enriched category, or a simplicial object in the category
of categories, three completely distinct concepts.
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(a) Suppose that C = sSet. Prove that |X| ∼= diagX.

(b) Suppose that C = Top, and suppose that X: ∆op Top has Xn discrete for all n. Thus we can

factor X: ∆op X′
Set Top, where the inclusion takes a set to a discrete topological space.

Prove that |X| ∼= |X ′|.
(c) Suppose that X is constant. Prove that |X| ∼= X.

(d) (*) Suppose that X Y is a map of bisimplicial sets such that Xn
∼ Yn is a weak equivalence

for all n. Prove that the map |X| |Y | is a weak equivalence.5

2.12. We will now use the results of the previous problem to prove Quillen’s Theorem A.

Let F : C D be a functor. We define the category D/F to have

objects
⋃
D∈D obD/F .

morphisms A morphism (D, f :D F (C)) (D′, f ′:D′ F (C ′) is a pair of morphisms
g:C C ′ ∈ C and g′:D′ D ∈ D such that the square

D D′

F (C) F (C ′)

F (g)

f f ′

g′

commutes.

(a) Let X be the bisimplicial set where Xp,q is the set of pairs

(Dq · · · D0 F (C0), C0 · · · Cp).

The horizontal and vertical faces are induced from the nerves of C and D, respectively. Use X to
show that D/F is weakly equivalent to C.

(b) Consider the diagram

C D/F Dop

D D/1D Dop

F

where the middle vertical functor is induced by F . Use this and the result of part (a) to prove
Quillen’s Theorem A.

3 Spectra

For these problems, we use the category of symmetric spectra. Analogous results exist in most models of
spectra.

3.1. Let f :A X be an inclusion of spaces. Prove that the sequence

A X X ∪A CA
5This is a special case of a much more general phenomenon; however, to explore it in more detail we would need to discuss

Reedy model category structures, which would take us far afield.
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is a homotopy cofiber sequence by showing that any map X Y such that the precomposition
A Y is null-homotopic factors through X ∪A CA. Show that

X X ∪A CA ΣA

is also a homotopy cofiber sequence. Use this to produce a long exact sequence in the cohomology
represented by a spectrum E.

3.2. Show that the category of spectra is simplicial using the definition

Hom(X,Y )n = Hom(X ∧∆[n]+, Y ),

where for any pointed simplicial set K and spectrum E, (E ∧K)n = En ∧K.

3.3. (a) Show that the category of chain complexes has a symmetric monoidal structure with unit given
by Z[0] defined by

(C• ⊗D•)n = ⊕i+j=nCi ⊗Dj .

Show that this product distributes over the direct sum of chain complexes, in the sense that

(C ⊕D)⊗ E ∼= (C ⊗ E)⊕ (D ⊗ E).

(b) Show that ∧ gives a symmetric monoidal structure to the category of pointed spaces and distributes
over ∨.

(c) Consider the category of spectra as defined in Bousfield–Friedlander. We wish to construct a
symmetric monoidal structure on this category with the smash product ∧ as the symmetric
monoidal structure. We can try to define such a smash product structure analogously to the
tensor product on chain complexes by defining

(X ∧ Y )n =
∨

i+j=n

Xi ∧ Yj .

Explain why this does not give a symmetric monoidal structure on spectra with S as the unit.

3.4. Let G be a finite group, considered as a category (i.e. the category has one object, G is the morphisms,
and composition is multiplication). For any category C, a G-representation in C is a functor G C.

(a) Let α:H G be a homomorphism of groups. There is an induced functor

ResGH : Rep(G, C) Rep(H, C).

Show that this functor has a left adjoint; this is denoted IndGH .

(b) Suppose that C is a symmetric monoidal category such that ⊗ commutes with coproducts. A
symmetric sequence is a sequence

X0, X1, X2, . . .

such that Xi ∈ Rep(Σi, C). Show that the category of symmetric sequences in C has a symmetric
monoidal structure with

(X ⊗ Y )n =
∐

i+j=n

IndΣn

Σi×Σj
(Xi ⊗ Yj).

(c) How does this definition relate to the smash product of symmetric spectra? (Hint: consider
S-modules.)

3.5. An Ω-spectrum is a spectrum each of whose structure maps induces a weak equivalence Xn ΩXn+1.
Look up the axioms of a generalized cohomology theory. Let E be an Ω-spectruc. Prove that the
sequence of functors hn:Y [Y,En] is a generalized cohomology theory.6

6Brown’s Representability Theorem gives the converse to this statement: every generalized cohomology theory is represented
by a spectrum. However, the categories of cohomology theories and of spectra are not equivalent: the category of spectra is
richer, and thus usually a more fruitful category to work with.
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3.6. Let X: FinSet∗ Top be a functor from the category of finite pointed sets to Top. Write S1 ∼=
∆1/∂∆1, and define Sn = S1 ∧ · · · ∧ S1. Note that this is a simplicial set which factors through the
forgetful functor FinSet∗ Set; we can thus think of Sn as a functor ∆op FinSet∗. Define

Yn = |X ◦ Sn|.

Note that Σn acts on Yn by permuting the S1-coordinates of Sn. Prove that Y is a symmetric spectrum.

3.7. Let R be a commutative ring spectrum. Let M be a right R-module spectrum and N a left R-module
spectrum. We define

M ∧R N = coeq(M ∧R ∧N M ∧N).

There is a spectral sequence

E2
s,t
∼= Torπ∗Rs,t (π∗M,π∗N) π∗(M ∧R N).

Now let k be a field and R a k-module. Prove that HR ∧Hk HR ∼= H(R ⊗k R), but HR ∧ HR 6∼=
H(R⊗Z R).

4 Replacing algebra with geometry

4.1. Check that the definition of group homology of G with coefficients in a left G-module M agrees with
the homology of the bar construction B(∗, G,M) (considered as a simplicial set).

4.2. Let V be a closed symmetric monoidal category. A category C enriched in V is

• a collection of objects ob C,
• for every A,B ∈ ob C, an object C(A,B) ∈ V,

• a composition law
◦: C(B,C)⊗ C(A,B) C(A,C)

for every triple A,B,C ∈ ob C, and

• a morphim I C(A,A) called the identity for every A ∈ ob C. Here, I is the unit of the monoidal
structure in V.

(a) Write down associativity and unitality laws for composition.

(b) Check that an ordinary category is a category enriched over Set, where ⊗ = ×.

(c) Check that an abelian category is a category enriched over AbGp, with ⊗ being the tensor
product of abelian groups. Why ’t it work if we take the monoidal structure (AbGp,⊕) instead
of (AbGp,⊗)?

(d) Check that a simplicially enriched category is a category enriched over sSet.

4.3. Let X• be a simplcial abelian group. Define

Cn =

n⋂
i=1

ker di.

Prove that X• C• gives a functor sSet ChZ. Construct an inverse functor and show that this
gives an equivalence of categories.

4.4. Let R be a ring, and consider its Hochschild complex. Write down a simplicial set which has the
Hochschild complex as its homology. Now use this simplicial set to produce an analogous spectrum
whose geometric realization we can call THH(R). (You’ll need to replace R with HR.) Explain why
π∗THH(R) 6∼= HH∗(R).

4.5. Use the simplicial structure on the category of spectra to explain why we can define THH(R)
def
=

S1 ⊗HR.
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