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1. LECTURE 1: INTRODUCTION AND AN ARITHMETIC COUNT OF THE LINES ON A
SMOOTH CUBIC SURFACE

Enumerative geometry counts algebro-geometric objects satisfying certain conditions.
Classically, such counts are performed over an algebraically closed field to obtain “in-
variance of number” results. For example, the number of solutions in C of a degree n

polynomial is always n, but this is no longer true over Q. We use A1-homotopy theory to
give enumerative results over general fields, including number fields, local fields, finite
fields etc. As the number of objects is not itself invariant, we do not obtain formulas for
these numbers; rather, information about the fields of definition will be recorded with a
bilinear form, and the sum will satisfy an “invariance of bilinear form” principle.

We start with an example from joint work with Jesse Leo Kass [KW17]. A cubic surface
X over C is the space of solutions to a cubic polynomial in three variables. Namely,

X = {(x, y, z) 2 C3 : f(x, y, z) = 0}

where f 2 C[x, y, z] is a degree 3 polynomial. X is smooth if the partials of X do not
simultaneously vanish on X, which is equivalent to X being a manifold. We can substitute
an arbitrary field k for C, and view X as a variety or scheme over k. When k = R, the real
points of a cubic surface can be naturally embedded as a 2-dimensional surface in our
3-dimensional room, and there are pretty models and pictures, for example, the model
photographed in Figure 1. For the invariance of number principle invoked above, it is
better to compactify, viewing X as the subscheme of P3 determined by a homogeneous
degree 3 polynomial f in k[w, x, y, z].

It is a lovely theorem of Salmon and Cayley proven in 1849 [Cay49] that there are ex-
actly 27 lines on a smooth cubic surface over C.

Theorem 1. [Salmon, Cayley] Let X be a smooth cubic surface over C. Then X contains exactly
27 lines.

See [Dol05] for interesting historical remarks.

Example 2. The polynomial

f(w, x, y, z) = w

3 + x

3 + y

3 + z

3

determines the Fermat Cubic Surface, whose lines can be described as follows. Let [S, T ] denote
homogeneous coordinates on P1 = ProjC[S, T ]. The line

{[S,-S, T,-T ] : [S, T ] 2 P1}

is on the Fermat Cubic Surface by inspection. Moreover, for any �, ! such that �3 = !

3 = -1,
the line

{[S, �S, T,!T ] : [S, T ] 2 P1}

is also on the Fermat Cubic Surface by the same principle. Permuting the coordinates produces

more lines, giving a total of (42)
2

· 3 · 3 = 27 lines. It can be checked in an elementary man-
ner that these are the only lines; see for instance https: // www. mathematik. uni-kl. de/

~

gathmann/ class/ alggeom-2014/ alggeom-2014-c11. pdf .
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Here is a modern proof of Salmon and Cayley’s theorem [EH16, Chapter 6, especially
6.2 and 6.4].

Proof. Let Gr(1, 3) denote the Grassmannian parametrizing lines in P3 or equivalently 2-
dimensional subspaces W of a 4-dimensional vector space. The tautological bundle (not
to be confused with the canonical bundle) is the vector bundle S ! Gr(1, 3) whose fiber
over a W is W itself. The third symmetric power of the dual of S is the vector bundle
Sym3 S⇤ ! Gr(1, 3), whose fiber over the point corresponding to W of the Grassmannian
is the space of cubic polynomials on W, i.e., Sym3

W

⇤. The cubic surface X is defined by
a cubic polynomial f on the entire 4 dimensional vector space. f therefore determines an
element of Sym3

W

⇤ for every subspace W by restriction. In other words, f determines a
section �

f

of Sym3 S⇤ ! Gr(1, 3) by
�

f

(W) = f|
W

.

A line PW is contained in X exactly when the polynomial f vanishes on W. In other
words, the zeros of the section �

f

are in bijection with the lines in X.

Aside on the Euler Class 3. There is a tool for counting the zeros of a section of a vector bundle.
This tool is the Euler Class and we use it in the case when generically there are a finite number of
zeros, or equivalently, we use it on a (relatively oriented) vector bundle V of rank r on a dimension
r (real, respectively) complex manifold M. Choose such a V ! M, and then choose a section � so
that all the zeros of � are isolated in the sense that there for every p in M with �(p) = 0, there is
an open neighborhood U of p such that the only zero of � in U is p.

The Euler Class can be defined using the degree of a map S

d ! S

d between oriented topological
spheres of the same dimension. The degree only depends on the homotopy class of the map, namely
we have a map

deg : [Sd

, S

d] ! Z.

Now for the Euler class of V , computed using �. Let p be a point of M such that �(p) = 0. By
assumption, p is an isolated zero of �, so we may choose local coordinates around p and a local
trivialization of V (compatible with the relative orientation) and identify � with a function, which
by an abuse of notation we denote � : Cn ! Cn (respectively � : Rn ! Rn) in such a way that
the point p corresponds to the origin in the domain. Then we may choose a small ball B around the
origin such that p is the only zero of � in B. We thus obtain a function between oriented spheres

� : @B ! @{x 2 Cn : kxk = 1}

(respectively � : @B ! @{x 2 Rn : kxk = 1}) given by

�(x) =
�(x)

k�(x)k .
Then set the local degree or index of � at p to be

deg
p

� = deg(�).

Then define the Euler class e(V) by

(1) e(V) =
X

p:�(p)=0

deg
p

�,

and one can show that this is independent of the choice of �.
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Now return to the lines on a smooth cubic surface X. We saw above that the lines
L = PW on X are in bijection with the zeros L of �

f

. Now, some multivariate calculus
and the smoothness of X implies that every zero L of �

f

is isolated and the local index
deg

L

�

f

= 1 is one [EH16, Section 2.4.2, Corollary 6.17] [KW17, Corollary 52]. We therefore
conclude that the number of lines on X is e(Sym3 S⇤), and in particular, this number is
independent of surface! The example of the Fermat Cubic Surface then completes the
proof, or alternatively one can use tools from algebraic topology such as the Splitting
Principle, cohomology of Grassmannians, etc.

⇤

We now consider cubic surfaces over R. This is also a classical topic with many beauti-
ful results, among the first of which are those of Schläfli [Sch58] in 1858. For our purposes,
it is useful to say that he showed that the number of real lines depends on the chosen cubic
surface: there can be 3,7,15, or 27 real lines.

Segre distinguished between two types of real lines: hyperbolic and elliptic lines [Seg42].
Given a physical model of a real cubic surface, such as the one pictured if Figure 1, one
can feel if the line is hyperbolic or elliptic using (s)pin structures as follows. Place your
index finger so it lies on the line and let your palm rest on the tangent plane to the surface.
Then move your hand along the line. If your hand becomes “twisted” the line is elliptic
and if it remains “untwisted” the line is hyperbolic. More precisely, the line is a copy of
RP1 which is topologically a circle. At every point on the line, your index finger, thumb
and a perpendicular through your palm give a frame of the tangent space to P3. This
data describes a loop in SO

3

which is either trivial or non-trivial. Alternatively, this data
describes a loop in the frame bundle which can either lift or not lift to its double cover
corresponding to the nontrivial loop in SO

3

.

Example 4. The three real lines on the Fermat Cubic Surface are hyperbolic. You can check this
with the above procedure and Diagram 2, which consists of two views of the real points of Fermat
Cubic Surface. The three real lines lie in a plane and the regions of the surface surrounded by the
lines are either entirely above the plane (these are marked with a +) or entirely below the plane
(these are marked with a -).

A more algebraic approach to define elliptic and hyperbolic lines uses two Segre points
of the line over the algebraic closure where the tangent space “pauses.” More explicitly,
suppose L is a real line on X. We define an involution I : L ! L as follows. Suppose x is
a point of L. The tangent space T

x

X is a 2-dimensional plane, and the intersection T

x

X \ X

of the tangent space and the cubic surface is a degree 3 plane curve by Bézout’s theorem.
This intersection contains L, and therefore must also contain a degree 2 curve C, i.e.,

T

x

X \ X = L [ C.

By Bézout’s theorem, the intersection L \ C consists of two points, counted with multi-
plicity. Note that the tangent space to X at any point of L \ C contains T

x

X, and therefore
equals T

x

X because X is smooth. The same reasoning works backwards, showing that
L \ C consists of those points p of L such that T

p

X = T

x

X. Thus L \ C = {x, y} for some
well-defined point y of L. Define I by I(x) = y. Choosing a coordinate on L gives an
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FIGURE 1. R-points of Clebsch Cubic Surface. Model in the collec-
tion of mathematical models and instruments, Georg-August-Universität
Göttingen. By Oliver Zauzig. Published under CC BY-SA 3.0 on universi-
taetssammlungen.de
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FIGURE 2. R-points of Fermat Cubic Surface

isomorphism AutL = PGL
2

R, so I can be represented as a matrix

(2) I =


a b

c d

�
,

5



or as the Möbius transformation z 7! az+b

cz+d

. I has two fixed points, namely the roots of the
equation cz

2+(d-a)z-b = 0 with real coefficients. These roots are thus either both real
or a complex conjugate pair of points. In the first case, the line L is hyperbolic and in the
second case the line is elliptic.

Remark 5. For future reference, note that this procedure generalizes to fields other than R. Let X
be a smooth cubic surface over a field k, of characteristic not 2. Let L be a line on X defined over a
field extension k(L) of k. Then there is an associated involution I in AutL ⇠= PGL

2

k(L).

Although the number of lines on a real cubic surface depends on the surface, a certain
signed count does not:

Theorem 6. [Segre, Benedetti–Silhol, Okonek–Teleman, Finashin–Kharlamov, Horev–Solomon ]
Let X be a smooth cubic surface over R. Let h denote the number of hyperbolic lines. Let e denote
the number of elliptic lines. Then

h- e = 3.

Interestingly, although Theorem 6 follows from the work of Segre, it does not seem to
have been noticed by him [OT14]. The proofs in [OT14] and [FK13] are along similar
lines to the proof given above for the complex case (but harder). They replace the com-
plex Grassmannian with the real one, and again compute the Euler class of Sym3 S⇤ !
Gr(1, 3)(R). The local index deg

L

�

f

is shown to be +1 (respectively -1) when L is hy-
perbolic (respectively elliptic), and then the Euler class is computed to be 3. They obtain
an analogous result for hypersurfaces of degree 2n - 3 in Pn. Note that the Euler class
computation of 3 for Sym3 S⇤ ! Gr(1, 3)(R) follows from Example 4. The proof in [BS95]
uses (s)pin structures, and that of [HS12] uses Gromov–Witten theory.

There is a general principle that a result which is true over C and R may be a result in
A1-homotopy theory. A1-homotopy theory was developed by Morel and Voevodsky in
the late 1990’s [MV99], and it allows us to treat smooth schemes like manifolds in certain
respects. In some sense, there are small spheres equivalent to Pn

/Pn-1 around any point
of a smooth scheme. Morel defined a degree homomorphism

(3) deg : [Pn

/Pn-1

,Pn

/Pn-1] ! GW(k),

whose target is the Grothendieck–Witt group of bilinear forms over a field. Elements of
GW(k) are formal differences of symmetric, non-degenerate, k-valued bilinear forms on
finite dimensional vector spaces. We will discuss GW(k) in detail in Section 2.3, but we
claim that this group is both interesting and computable. Since such forms can be (stably)
diagonalized, GW(k) is generated by elements hai for a in k

⇤
/(k⇤)2, which correspond to

the isomorphism classes of the rank one bilinear forms k⇥ k ! k defined (x, y) 7! axy.

Example 7. GW(C) ⇠= Z. An isomorphism is given by the rank homomorphism, taking a
bilinear form on a vector space V to the dimension of V .

Example 8. A bilinear form over R can be diagonalized so only 1’s and -1’s appear on the diag-
onal. The signature is the number of 1’s minus the number of -1’s.

GW(R) ⇠= Z⇥ Z.

An isomorphism is induced by the rank and signature.
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Example 9.
GW(F

q

) ⇠= Z⇥ F⇤
q

/(F⇤
q

)2.

An isomorphism is given by the rank and discriminant, where the discriminant takes a bilinear
form � : V ⇥ V ! k to the determinant of a Gram matrix

�
�(v

i

, v

j

)
�
i.j

representing �, where
{v

1

, . . . , v

r

} is a basis of V .

GW also admits transfer maps

Tr
E/k

: GW(E) ! GW(k)

for finite degree field extensions k ✓ E. When k ⇢ E is a separable extension, these can be
described using the trace map Tr

E/k

: E ! k from Galois theory which takes an element
of E to the sum of its Galois conjugates in k. Namely, for a bilinear form � : V ⇥ V ! E

on an E-vector space V , the image Tr
E/k

(�) of the isomorphism class of � under Tr
E/k

is
represented by the bilinear form

V ⇥ V

��! E

TrE/k�! k

where V is now viewed as a k-vector space.

Morel’s degree and Equation (1) can be used to define an Euler class in this context,
which we will discuss in detail in Section 4. Then one can repeat the previous proof to
count lines on a smooth cubic surface over a field k. A line L in P3 is determined by two
linear equations aw + bx + cy + dz = 0 and a

0
w + b

0
x + c

0
y + d

0
z = 0. We will allow

a, b, c, d, a

0
, b

0
, c

0
, d

0 to be elements of an algebraic extension of k, so a line determines
a closed subscheme of P3

k(L) isomorphic to P1

k(L), where k(L) = k[a, b, c, d, a 0
, b

0
, c

0
, d

0].
Equivalently, a line L is a closed point of the Grassmannian. A line L of X determines
an involution I n AutL ⇠= PGL

2

k(L) as above. The two fixed points of I are either two
k(L)-points or a conjugate pair of points defined over some quadratic extension k(L)[

p
D]

of k(L) for a unique D in k(L)⇤/(k(L)⇤)2.

Definition 10. The type of L is Type(L) = hDi in GW(k(L))

It can be shown that
Type(L) = h-1i deg I

and
Type(L) = had- bdi

when I is represented as the matrix in Equation (2).

The main theorem of [KW17] is:

Theorem 11. [Kass – W.] Let k be a field of characteristic not 2. Let X be a smooth cubic surface
over k. Then X

lines L on X

Tr
k(L)/kType(L) = 15h1i+ 12h-1i.

Applying invariants of bilinear forms to Theorem 11 gives more traditional counts,
such as the following.
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• When k is C, or an algebraically closed field, applying Rank shows Theorem 1, i.e.,
that there are exactly 27 lines on a smooth cubic surface over C.

• When k = R, applying the signature shows Theorem 6. In more detail: a line L on
a real cubic surface X is either defined over R or C. If k(L) = C, then Type(L) =
h1i. Then Tr

k(L)/kType(L) = h1i + h-1i. If k(L) = R, then Type(L) = h1i if L is
hyperbolic and Type(L) = h-1i if L is elliptic.

Over a finite field k = F
q

, a line on a smooth cubic surface is defined over some finite
field extension k(L) = F

q

d . Since k(L)⇤/(k(L)⇤)2 ⇠= Z/2 consists of two elements, it again
makes sense to use Segre’s elliptic/hyperbolic terminology, i.e., if Type(L) = h1i, then L

is hyperbolic and if Type(L) = hui, where u is the non-identity element of k(L)⇤/(k(L)⇤)2,
then L is elliptic. Applying the discriminant to Theorem 11 gives the following corollary.

Corollary 12. Let X be a smooth cubic surface over the finite field F
q

, with q odd. Then
|{elliptic lines defined over F

q

d : d is odd}|+|{hyperbolic lines defined over F
q

d : d is even}| ⌘ 0 mod 2

Many enumerative problems over C can be solved using degrees, characteristic classes,
and intersection theory. A lot of wonderful examples are in [EH16] and [Ful98]. Such
tools can be defined using homotopy theory. In the classical case, the homotopy the-
ory topological spaces suffices, and to include the desired arithmetic information, we
will use A1-homotopy theory. These notes will introduce enough A1-homotopy theory
to do some first enumerative applications, and then give these applications, followed by
project suggestions. This is a new direction of study, including contributions from Can-
dace Bethea [BKW18], Marc Hoyois [Hoy14], Jesse Kass [KW16] [KW17], Marc Levine
[Lev17b] [Lev17a] [Lev18a] [Lev18b], Padmavathi Srinivasan [SW18], Matthias Wendt
[Wen18], and the lecturer.

1.1. Acknowledgements. Kirsten Wickelgren was partially supported by National Sci-
ence Foundation Award DMS-1552730.

I wish to thank Jesse Leo Kass, Tom Bachmann, Thomas Brazelton, Candace Bethea,
Mike Hopkins, Marc Hoyois, Marc Levine, Stephen McKean, Sabrina Pauli, Arpon Raksit,
Jake Solomon, Padma Srinivasan, and Matthias Wendt for discussing these ideas with me!

2. LECTURE 2: USER’S GUIDE TO A1-HOMOTOPY THEORY FOR A1-ENUMERATIVE
GEOMETRY

2.1. Spaces. We will use Morel–Voevodsky’s A1-homotopy theory of schemes. In this
theory, we allow certain topological operations to be performed on schemes such as
gluing, collapsing sub complexes, and finding small spheres around points of smooth
schemes. The first two of these is accomplished by adding colimits into schemes. The
last is the Purity Theorem of Morel–Voevodsky. It’s proof requires properties of the étale
or Nisnevich topology, as well as forcing A1 to be contractible, so it plays the role of the
interval [0, 1] in classical homotopy theory. Thus, we will add colimits to schemes in such
a way that existing colimits coming from open covers remain colimits, and we will then
force A1 to be contractible. These steps are all that is required to form the A1-homotopy
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theory of schemes. For the present purposes, it will mostly suffice to view the existence of
this theory as a license to treat schemes like topological spaces and smooth schemes like
manifolds. In more detail and fairness, we have the following.

The étale topology is the Grothendieck topology on smooth k-schemes where a map U =`
↵

U

↵

! X is an étale cover if U ! X is étale (meaning for every u in U mapping to x in
X the induced map on tangent spaces T

u

U ! T

x

X is an isomorphism), and surjective on
points.

The Nisnevich topology is defined so that covers are étale covers satisfying the additional
property that for every x in X there is a u in U mapping to x such that the induced map
on residue fields k(x) ! k(u) is an isomorphism.

A homotopy theory could mean a simplicial model category. Such a category is en-
riched in simplicial sets, and has morphisms distinguished as weak equivalences, cofi-
brations, and fibrations. The category of simplicial sets will be denoted by sSet and can
be thought of as the category of topological spaces. A homotopy theory could alterna-
tively mean an infinity category or quasi-category, which is a simplicial set satisfying an
inner horn filling condition. In both contexts there is an associated homotopy category,
but one can do more things with the homotopy theory.

Let Sm
k

denote the full subcategory of schemes over k with objects the smooth schemes
over k. Then Yoneda embedding gives a functor Sm

k

! Fun(Smop

k

,Set) ! Fun(Smop

k

, sSet)
to the category of presheaves of simplicial sets on smooth schemes over k. The category
Fun(Smop

k

, sSet) can be equipped with the structure of a simplicial model category of in-
finity category. The passage from Sm

k

to Fun(Smop

k

, sSet) can be thought of as freely
adjoining colimits to Sm

k

.

There is a formal process called Bousfield localization that allows us to force a chosen
class of morphisms in a homotopy theory to be weak equivalences. We use this to make
the colimits (or gluings) in Sm

k

resulting from open (Nisnevich) covers remain colimits
in the localization of Fun(Smop

k

, sSet). Given an open cover U =
`

↵

U

↵

! X, we obtain
a map Cosk0

X

U ! X in Fun(Smop

k

, sSet) where Cosk0
X

U is the Čech nerve of the cover.
Bousfield localizing at these morphisms produces a new homotopy theory that we will
denote Sh

k

for “sheaves” and a localization functor

L
Nis

: Fun(Smop

k

, sSet) ! Sh
k

.

We Bousfield localize one more so that the maps X⇥A1 ! X are weak equivalences for all
smooth k-schemes X. We obtain the desired A1 homotopy theory, which we will denote
Spc

k

for “spaces” and a localization functor

LA1 : Shk

! Spc
k

.

In summary, we construct A1-homotopy theory by

Sm
k

Yoneda�! Fun(Smop

k

, sSet)
LNis�! Sh

k

LA1�! Spc
k

.

2.2. Spheres, Thom spaces, and Purity. Will follow [WW19, 2.3 and 2.4].
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2.3. Grothendieck–Witt group GW(k) and Milnor–Witt K-theory. Will follow [WW19,
4.1 and 4.3].

2.4. Degree.

2.5. Oriented Chow Groups or Chow–Witt Groups. One can also define generalized
cohomology theories and spectra in A1-homotopy theory. Motivic cohomology recovers
the Chow group CHi of a smooth scheme X by the formula H2i(X,Z(i)) ⇠= CHi(X). As
Chow groups are useful in classical intersection theory and enumerative geometry, we
first say a word about them.

Let X be a smooth scheme over k of dimension d. Let X(i) denote the set of subvarieties
of X of codimension i, i.e. reduced irreducible subschemes of dimension d- i. The group
of cycles on X is the free abelian group generated by X

(i). Rational equivalence is the
equivalence relation generated by declaring V \ (X ⇥ {0}) equivalent to V \ (X ⇥ {1}) for
any subvariety V of X ⇥ P1, and the Chow group CHi(X) is the quotient of the group of
cycles of codimension i by rational equivalence. More information on Chow groups is
available in, for example, [EH16].

Intersection theory over C is simplified by the existence of canonical orientations. Ori-
ented Chow groups fCH

i

input information about orientations to produce a more refined
theory. They are also called Chow–Witt groups. They were introduced by Barge and
Morel in [BM00] and further developed by Fasel [Fas08]. Elements of fCH

i

can be rep-
resented by certain formal sums of subvarieties Z of codimenison i equipped with an
element � of GW(k(Z)).

In analogy with Bloch’s formula CHi ⇠= Hi(X,KM

i

), oriented Chow groups can be de-
fined by

fCH
i

(X) = Hi(X,KMW

i

).

For example, fCH
0

(Spec k) ⇠= GW(k). This cohomology can be computed by the Rost–
Schmidt complex described in [Mor12, 5]. Let E be a field extension of k. For a 1-
dimensional E-vector space ⇤, let

KMW

n

(E;⇤) := KMW

n

(E)⌦Z[E⇤] Z[⇤
⇤].

The Rost–Schmidt complex gives Hi(X,KMW

i

) as the kernel mod the image of a sequence
(4)
! �

z2X(i-1)KMW

1

(k(z), det
k(z)

T

z

X) ! �
z2X(i)GW(k(z), det

k(z)
T

z

X) ! �
z2X(i+1)KMW

-1

(k(z), det
k(z)

T

z

X) !

For a line bundle L on X, there is a sheaf KMW

n

(L) on X constructed from the groups
KMW

n

(E;L(E)), where E is the function field of a smooth scheme mapping to X. Using this
sheaf, we define the oriented Chow groups fCH

i

(X, L) twisted by a line bundle L by

fCH
i

(X, L) = Hi(X,KMW

i

(L)).
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The Rost–Schmidt complex becomes

! �
z2X(i-1)KMW

1

(k(z), det
k(z)

T

z

X⌦
k(z) L(k(z))) ! �

z2X(i)GW(k(z), det
k(z)

T

z

X⌦
k(z) L(k(z))) !

�
z2X(i+1)KMW

-1

(k(z), det
k(z)

T

z

X⌦
k(z) L(k(z))) !

Since squares act trivially on KMW

n

, there is a canonical isomorphism

fCH
i

(X,M⌦ L

⌦2) ⇠= fCH
i

(X,M)

for line bundles M and L.

There are pullback and proper pushfoward maps on oriented Chow groups. For a map
f : X ! Y in Sm

k

we have a pullback map f

⇤ : fCH
i

(Y, L) ! fCH
i

(X, f⇤L). The canonical line
bundle !

X/k

on a smooth scheme X is !
X/k

= det T ⇤
X the determinant of the cotangent

bundle. When f is proper of relative dimension r = dimX - dim Y, there is a pushfoward
map f⇤ : fCH

i

(X,!
X/k

⌦ f

⇤
L) ! fCH

i-r

(Y,!
Y/k

⌦ L).

There is a (non-commutative to pick up on orientations!) ring structure on oriented
Chow groups �

i

fCH
i

(X, L⌦i) [Fas07], giving an oriented intersection theory.

3. LECTURE 3: LOCAL DEGREE

3.1. Local degree.

3.2. Eisenbud–Khimshiashvili–Levine signature formula.

3.3. A1-Milnor numbers.

4. LECTURE 4: EULER CLASS

Let X be a connected R-manifold of dimension d and let V ! X be a rank r vector
bundle on X.

V is oriented by the choice of a Thom class u in Hr(Th(V),Z) such that for each x in X the
pullback of u to the Thom space Th(V

x

) of the fiber V
x

of V at x generates Hr(Th(V
x

),Z) ⇠=
Z. The manifold X is oriented if its tangent bundle TX is.

Given an oriented vector bundle V ! X, the Euler class e(V) in Hr(X,Z) is the pullback
of u by any section s : X ! V , for example, s could be the zero section,

e(V) = S

⇤
u.

When X is oriented of dimension d = r equal to the rank of V , Poincaré duality provides
an isomorphism Hr(X,Z) ⇠= Z, and we may view e(V) as an integer.
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More generally, one can view e(V) as an integer when V ! X is relatively oriented, which
we will define to mean that there is a line bundle L and an isomorphism Hom(det TX, detV) ⇠=
L

⌦2. Okonek and Teleman introduced this notation in [OT14]. To see why such a general-
ization should exist, here are a few general remarks.

The Thom space Th(V) is locally an r-fold suspension of the base, so Th(V) can be
viewed as a twisted shift of of X itself. Among the manifestations of this viewpoint is the
Thom isomorphism between the cohomology of the Thom space and a twisted shift of
the cohomology of the base: the Serre Spectral Sequence gives a natural isomorphism

H⇤(X,O(V)) ⇠= eH
⇤+r

(Th(V),Z),

where O(V) is the local system whose fiber at x is Hr(V
x

, V

x

- {0}), called the orientation
sheaf of V .

Some formal properties of orientation sheaves are as follows. Let detV denote the high-
est wedge power of the vector bundle V , so detV = ^r

V because V is rank r. For a linear
map A : Rr ! Rr, the degree of the induced map of spheres Rr - {0} ! Rr - {0} is the
sign of the determinant of A. It follows that there is a natural isomorphism

O(V) ⇠= O(detV).

Because determinants multiply under tensor product, we obtain a natural isomorphism
O(V

1

⌦ V

2

) ⇠= O(V
1

) ⌦ O(V
2

). Because the square of any integer is positive, we obtain
a natural isomorphism O(V

1

) ⌦ O(V
1

) ⇠= Z between the tensor square of the orientation
sheaf O(V

1

) and the constant local system. Combining the above, we have a natural
isomorphism O(V) ⇠= O(detV ⌦ L

⌦2) for any line bundle L ! X. It follows that a relative
orientation of V induces an isomorphism O(V) ⇠= O(TX).

A virtual vector bundle is a formal difference of vector bundles, and one can define
the Thom spectrum of a virtual vector bundle, with similar properties to a Thom space,
for instance there is a Thom isomorphism in this context. Furthermore, for virtual vector
bundles Y,W over X, there is a canonical map Th(Y) ! Th(Y �W). We therefore have a
map

Th(-V) ! Th(-V � V) ' X

which induces a map on cohomology H0(X,Z) ! H0(Th(-V),Z). Composing with the
Thom isomorphism H-(-r)(X,O(-V)) ⇠= H0(Th(-V),Z), we obtain a map

(5) H0(X,Z) ! Hr(X,O(-V)).

Define the image of 1 in H0(X,Z) under this map to be the Euler class e(V) in Hr(X,O(-V)).

Poincaré duality is roughly the statement that a compact manifold is self-dual, or more
precisely, that the dual of a manifold X is a twisted shift of X: Precisely, the dual of X+ is
Th(-TX), where X+ denotes X with a disjoint base point. This induces a Poincaré duality
isomorphism eH

d

(X,O(-TX)) ⇠= H
0

(X,Z) ⇠= Z. Therefore, if the orientation sheaves O(-V)
and O(-TX) are isomorphic, which follows from the existence of a relative orientation (we
saw this above provided we note that the above also implies O(-V) ⇠= O(V)), we may
define view e(V) as an integer.
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This integer can be calculated with some calculus and a section � of V such that all
zeros of � are isolated. Let p in X be such that �(p) = 0. Choosing local coordinates of X
near p and a local trivialization of V near p allows us to locally identify �with a function

� : Rd ! Rr

.

When d = r, we may take the local degree of this function at the coordinates of p, obtain-
ing an integer deg

p

�. However, if we change the local trivialization by a linear function
with negative determinant, we will change the sign of deg

p

�. Therefore we must choose
coordinates and a trivialization which are compatible with a relative orientation in the
following sense.

Local coordinates around p give a distinguished local trivialization of TX. Taking the
wedge product of a basis of vector fields, we obtain a distinguished section in det TX(U)
for some neighborhood U of p. Similarly, a choice of local trivialization of V gives a distin-
guished section in detV(U), by possibly shrinking U. This in turn gives a distinguished
section of Hom(det TX, detV)(U)

Definition 13. Local coordinates and a trivialization of V on an open neighborhood U of p are
compatible with the relative orientation if the distinguished section of Hom(det TX, detV)(U)
is the tensor square of a section in L(U).

When deg
p

� is computed with a choice of local coordinates and trivialization of V

which is compatible with a fixed relative orientation the result is independent of the
choices, an can be called the local degree or index of � at p. The Euler class is the sum
of the local terms

e(V) =
X

p:�(p)=0

deg
p

�

This discussion can be transported to A1-homotopy theory. The first Euler class in the
context of A1-homotopy theory is due to Barge and Morel [BM00], and the technology has
benefited from contributions of Morel, Jean Fasel, Aravind Asok, Marc Levine, Frédéric
Déglise, Fangzhou Jin, and Adeel A. Khan, and Arpon Raksit. There will be further dis-
cussion in Section 4.3. The following point of view is from joint work with Jesse Kass
[KW17, Section 4].

4.1. Orientations. Let X be a smooth scheme over k of dimension d = r. Let V ! X be a
rank r algebraic vector bundle.

Definition 14. V ! X is oriented by the data of a line bundle L on X and an isomorphism
detV ⇠= L

⌦2

.

Some authors use the terminology weakly oriented for this concept, reserving the term
oriented for isomorphisms detV ⇠= O.

Definition 15. V ! X is relatively oriented Hom(det TX, detV) is oriented.

Example 16. Let X = P1. Let O(-1) denote the tautological bundle on P1. Then det TX ⇠= TX

⇠=
O(2). Therefore a line bundles O(n) is relatively orientable if and only if n is even.

13



4.2. Local indices and definition of the Euler class. Let V ! X be a relatively oriented
rank r vector bundle on a smooth scheme over k of dimension d = r.

Suppose that � is a section of V and that p is an isolated zero of �, meaning that p is
point of X such that �(p) = 0, and such that there is an open set U containing p such that
the only zero of � in U is p.

We will define the local index or degree deg
p

� in GW(k) as follows.

Definition 17. An étale map � : U ! Ad from a Zariski open neighborhood of p to Ad will be
called Nisnevich local coordinates around p if the induced map of residue fields k(�(p)) !
k(p) is an isomorphism.

Nisnevich coordinates are guaranteed to exist if d = 1 [BKW18, Proposition 6] or if
k(p) is a separable extension of k and d � 1 [KW17, Lemma 18]. Let � be Nisnevich
coordinates around U. Let  : V |

U

! Or

U

be a local trivialization of V .

Definition 18. � and  are compatible with the relative orientation if the distinguished
section in Hom(det TX, detV)(U) is the image of the tensor square of a section in L(U) under the
isomorphism Hom(det TX, detV) ⇠= L

⇥2 coming from the relative orientation.

Choose Nisnevich local coordinates � : U ! Ad. After possibly shrinking U, it is
possible to choose a trivialization  : V |

U

! Or

U

which is compatible with the relative
orientation (multiplying the first coordinate by some element in O⇤

U

will suffice).

 � �|
U

is then an element of O(U)r. As above, we wish to identify � with a function
Ad ! Ar, i.e., we wish for each of the r components of  � � to be in the image of
�

⇤ : OAd ! O
U

. When X is covered by opens of the form Ad, as is the case when X

is a Grassmannian, we can choose � to be an isomorphism on local rings, and this is
immediate. The general case can be made to work as well, however. We can add an
element G = (g

1

, . . . , g

r

) of Or

U

to  � � so that G +  � � =  ⇤(F), with F : Ad ! Ar, and
so that each g

i

vanishes to a sufficiently high order at p. Then define

deg
p

� = deg
�(p) F

and this is independent of the choice of �,  , and G [KW17, Corollary 29].

We then define the Euler Class e(V,�) in GW(k) of V with respect to the section � (and
the relative orientation):

Definition 19. e(V,�) =
P

p:�(p)=0

deg
p

�

e(V,�) should be independent of � in general. It is shown that e(V,�) = e(V,� 0) when
� and � 0 can be connected by a family parametrized by A1 of sections with only isolated
zeros, giving a well-defined Euler class under the hypotheses of [KW17, Corollary 36].

Example 20. Let 0 denote the origin of the distinguished copy of A1 in P1, and let n be an integer.
Let O(2n · 0) ! P1 denote the line bundle associated to the locally free sheaf of meromorphic
functions whose only poles are at 0 and these poles are of order no worse than 2n. Then the section
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1 has an isolated zero of order 2n at 0. For any chosen relative orientation,

e(O(2n · 0)) =
X

p:1(p)=0

deg
p

1 = deg
0

x

2n = n(h1i+ h-1i).

4.3. More perspectives on the Euler class. Barge and Morel defined an Euler class in the
oriented Chow groups of X [BM00]. Namely, let p : V ! X be a rank r vector bundle on a
smooth scheme X over k (X of dimension d not necessarily equal to r).

There is a canonical element h1i in fCH
0

(X). In the Rost–Schmidt complex (4), it is rep-
resented by h1i in GW(k(X)) under the inclusion of the summand corresponding to the
codimension 0 scheme X. Let � : X ! V denote the zero section. Since � is proper, there
is a pushforward map �⇤ : fCH

0

(X,!
X/k

⌦ �⇤
p

⇤
!

X/k

) ! fCH
r

(!
V/k

⌦ p

⇤
!

X/k

). Since p� = 1

and!
V/k

⇠= p

⇤
!

X/k

⌦ detV⇤, this pushforward can be identified with a map

�⇤ : fCH
0

(X) ! fCH
r

(V, detV⇤).

The Euler class e(V) in fCH
r

(X, detV⇤) is then defined by e(V) = (p⇤)-1

�⇤h1i [AF16b].
The pushforward followed by the isomorphism (p⇤)-1 is analogous to the composition
(5) defined using Thom spaces.

When V is relatively oriented, we have an isomorphism detV⇤ ⇠= !

X/k

⌦ (L⇤)⌦2, and
therefore a pushforward map

fCH
r

(X, detV⇤) ! fCH
r-d

(Spec k).

When r = d, we therefore obtain e(V) in GW(k).

Remark 21. This should be equal to the Euler class of Section 4.2.

Morel has an Euler class constructed as the principal obstruction to a nonvanishing
section [Mor12, 8.2]. This is known to agree with the Barge–Morel construction at least
up to a unit in GW(k) when V is oriented [AF16a] [Lev17b].

Déglise, Jin and Khan have a construction using 6-functor formalism [DJK18].

There is another construction using Serre Duality of coherent sheaves. I learned about
it because Mike Hopkins pulled it out of thin air after a talk I gave. Serre did something
similar to Eva Bayer-Fluckiger and A. Raksit independently produced this construction
as well. It appears in in work of M. Levine and A. Raksit [LR18] together with a proof
that it agrees with the Barge–Morel construction.

4.4. Lines meeting four lines in space. with Padma Srinivasan [SW18]. See also the
work of Matthias Wendt [Wen18].
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5. ARIZONA WINTER SCHOOL PROJECT SUGGESTIONS

There are many beautiful results in enumerative geometry, and it is not so far-fetched to
suggest turning any such result into a project, where the classical count over C becomes
an arithmetic count over a field. Some known difficulties with this perspective include
the existence of orientations (some vector bundles which occur naturally in enumerative
geometry are not relatively oriented), and obtaining enumerative descriptions of local
contributions to Euler classes. The purpose of this section is to outline projects which
(hopefully) are of a nature to be educational in the Arizona Winter School. Since these
projects are intended to be tackled in a period of six days with some success, this list is
not intended to be representative of the open problems in the field.

5.1. Configurations over k. Let S ! GW(1, n) denote the tautological bundle on the
Grassmannian of lines in Pn. In [Wen18] and [SW18] the Euler class of ^2S⇤ ! Gr(1, 3),
and more generally, �2n-2

i=1

S ! Gr(1, n) is computed. This corresponds to an arithmetic
count of the number of lines meeting 2n- 2 codimension 2 hyperplanes. However, these
hyperplanes are all defined over k. One could ask more generally for a count of lines
meeting a configuration of 2n- 2 codimension 2 hyperplanes, where the configuration is
defined over k, but where the individual codimension 2 hyperplanes are not necessarily
defined over k. In other words, we have 2n - 2 hyperplanes defined over k, which are
permuted by the Gal(k/k)-action, but where the Gal(k/k)-action is potentially non-trivial.
An arithmetic count of these lines would correspond to the computation of an Euler class
of the vector bundle whose fiber over [W] in GW(1, n) is (W⇤ ^ W

⇤)2n-2

/S

2n-2

, where
W denotes a linear subspace of dimension 2 of an n + 1 dimensional vector space, S

2n-2

denotes the symmetric group on 2n- 2 objects, and the action of S
2n-2

on (W⇤ ^W

⇤)2n-2

is by permutation.

Question 22. (1) Is this vector bundle relatively orientable for certain n?
(2) If so, what is the Euler class?
(3) Can you give an enumerative interpretation of the local indices?
(4) If so, what is the resulting theorem?

Question 23. Can this be generalized to other counts of subspaces meeting a configuration over
k? For example, can the count of balanced subspaces of [Wen18, Section 9.2] be generalized to
where the subspaces are not defined over the ground field? Similarly, if we only require that the
two quadrics of [Wen18, Example 9.4] are permuted by Gal(k/k) instead of being individually
defined over k, could we obtain a more general result?

5.2. Bitangents to a smooth plane quartic. A bitangent to a curve in projective space is
a line which is tangent to the curve at 2 points, counted with multiplicity. It is a classical
theorem that there are 28 bitangents to a smooth degree 4 curve in P2 over C. This is
closely related to the 27 lines on a complex smooth cubic surface. Namely, let S ⇢ P3

C

be a smooth cubic surface, and let p be a point of S not on any line. Projection ⇡
p

from p

defines a rational map ⇡
p

: P3

k

99K P2

k

, and a map ⇡Bl

p

: Bl
p

S ! P2, which expresses S as a
degree 2 cover of P2 branched over a quartic curve C. The images of the 27 lines on S and
the exceptional divisor of the blow up give the 28 bitangents of C.

Question 24. Is there an arithmetic count of the bitangents to a smooth plane quartic?
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One idea along these lines is as follows: perhaps a good local contribution for a bi-
tangent line L is related to the two points of contact with the curve. If these points are
defined over k(L)[

p
D], then hDi in GW(K(L)) may be useful. Consider the involution

I which appears in the arithmetic count of the lines on a cubic surface described above.
Do the images of these fixed points have an independent interpretation as points on the
bitangent, for example as points of contact with C?

5.3. Eisenbud–Khimshaishvili–Levine form is A1-local degree over extensions of k.
The main result of [KW16] identifies the A1-local degree deg

0

f at 0 of a function f :
An

k

! An

k

with an isolated zero at the origin with the bilinear form !

EKL appearing in
the Eisenbud–Levine–Khimshiashvili signature formula

deg
0

f = !EKL

.

Question 25. Can this be generalized to equate the local degree deg
p

f with !EKL when the
residue field of p is not k?
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