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1. Formal Group Laws

In this document, a formal group law over a commutative ring R is always com-
mutative and one-dimensional. Specifically, it is a power series F (x, y) ∈ R[[x, y]]
satisfying the following axioms:

• F (x, 0) = x = F (0, x),
• F (x, y) = F (y, x), and
• F (x, F (y, z)) = F (F (x, y), z).

Sometimes we denote F (x, y) by x+F y. For a non-negative integer n, the n-series
of F is defined inductively by [0]Fx = 0, and [n+ 1]Fx = x+F [n]Fx.

(1) Show that for any formal group law F (x, y) ∈ R[[x, y]], x has a formal
inverse. In other words, there is a power series i(x) ∈ R[[x]] such that
F (x, i(x)) = 0. As a consequence, we can define [−n]Fx = i([n]Fx).

(2) Check that the following define formal group laws:
(a) F (x, y) = x+ y + uxy, where u is any unit in R. Also show that this

is isomorphic to the multiplicative formal group law over R.
(b) F (x, y) = x+y

1+xy . Hint: Note that if x = tanh(u) and y = tanh(v), then

F (x, y) = tanh(x+ y).
(3) Suppose F,H are formal group laws over a complete local ring R, and we’re

given a morphism f : F → H, i.e. f(x) ∈ R[[x]] such that

f(F (x, y)) = H(f(x), f(y)).

Now let C be the category of complete local R-algebras and continuous
maps between them; for T ∈ C, denote by Spf(T ) : C → Set the functor
S 7→ HomC(T, S).
(a) Show that a formal group law F equips Spf R[[x]] with an abelian

group structure. In other words, F determines a multiplication map
Spf R[[x]]×Spf R[[x]]→ Spf R[[x]] and a unit map Spf R→ Spf R[[x]],
making the usual diagrams commute. Denote the corresponding for-
mal group by GF .

(b) Show that a morphism f : F → H as above corresponds exactly to a
formal group homomorphism GF → GH .

(4) Determine the p-series [p]Gm(x) of the formal multiplicative group Gm, and
the height of Gm.

(5) Using the p-series, show that if k is a field of characteristic p, there is no
non-zero homomorphism from Ga to Gm over k.
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(6) Let g(x) ∈ R[[x]] be a power series of the form g(x) = x+
∑
i>1 bix

i.

(a) Show that there is a power series g−1(x) ∈ R[[x]] such that g(g−1(x)) =
x = g−1(g(x)).

(b) Show that Fg(x, y) = g−1(g(x) + g(y)) is a formal group law.
(c) If R = Z[e]/e2 and g(x) = x+ exn, what is Fg?

(7) Let R = Q, and let gn(x) = x + p−1xp
n

+ p−2xp
2n

+ · · · , and consider
Fn := Fgn defined as in the previous exercise.
(a) Assume you know that Fn is a formal group law defined ver Z. (Can

you prove that? – use Hazewinkel’s functional equation lemma.) Cal-
culate that [p]Fn

≡ xp
n

mod p. Conclude that the reductions Γn of
Fn mod p for different n are all non-isomorphic.

(b) Prove that φ(x) = ax, for a ∈ F̄p is an endomorphism of Γn over F̄p if
and only if a ∈ Fpn .

(c) Prove that the endomorphism ring of Γn over Fp is the Zp-algebra
generated by S(x) = xp.

(d) Prove that the endomorphism ring of Γn over F̄p is the W(Fpn)-algebra
generated by S(x).

(8) Let F be a formal group law over a torsion-free ring R. Show that the
formal expression

f(x) =

∫ x

0

dt
∂F
∂y (t, 0)

∈ RQ[[x]]

satisfies the identity

f(F (x, y)) = f(x) + f(y),

so f is an isomorphism from F to Ga over RQ. In particular, any formal
group law over a Q-algebra is isomorphic to Ga. The power series f(x) is
called the logarithm of F and denoted logF (x).

(9) Suppose F is a formal group law over a torsion-free ring R. Show that
the logarithm logF (x) is the unique power series satisfying logF [p]F (x) =
p logF x.

(10) Let F be a formal group law over a torsion-free ring. Then its logarithm
logF (x) can be obtained as

logF (x) = lim
n→∞

p−n[pn]F (x).

(11) Let F be a formal group law over R, and suppose the integer n is invertible
in R. Show that the map [n] : F → F is an isomorphism.

(12) Suppose k is a perfect field of characteristic p, and suppose A is a complete
local ring with maximal ideal m. The (p-typical) Witt vectors W(k) is a
complete local ring with the following universal property: for any map of
fields i : k → A/m, there is a unique continuous map W(k) → A which
reduces to i modulo the maximal ideals. Show that this implies that the
Lubin-Tate ring E(k,Γ) classifying deformations of a formal group law Γ
over k is a W(k)-algebra.

(13) Try to prove directly that Zp[ζ], where ζ is a primitive (pn − 1)-st root of
unity, satisfies the above universal property to be the Witt vectors of Fpn .

(14) Let C be the elliptic curve over F9 defined by the equation y2 = x3 − x.
(a) Show that the formal group law FC of C has height 2, i.e. C is super-

singular.
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(b) Let C̃ be the elliptic curve over W(F9)[[u1]] defined by the equation

y2 = 4x3 + u1x
2 + 2x. Show that the formal group law FC̃ of C̃ is a

universal deformation of the formal group law FC of C.
(c) Suppose (x, y) → (λ2x, λ3y) defines an automorphism of C for some

λ ∈ F×9 . Show that λ has order 4, and conclude that (F×9 )2 is a
subgroup of the automorphism group of C, and hence of the formal
group law FC .

(d) For λ ∈ (F×9 )2, compute the induced action on W(F9)[[u1]].
(e) At the prime 2 instead of the 3, do a similar exercise for y2 + y = x3

over F4 and y2 + u1xy + y = x3 over W(F4)[[u1]].

2. Cohomology Theories and Formal Group Laws

Let S be the category of topological spaces, assumed to be compactly
generated and weak Hausdorff. The assumption implies the existence of
internal homs, aka mapping spaces. We study spaces up to homotopy,
and in particular, any space is homotopy equivalent to a CW complex.
Since things can be homotopic in multiple ways, and there are homotopies
between homotopies etc, the correct way to encode all this is using model
categories or infinity categories. Moreover, we really use the notion of a
weak equivalence, i.e. an isomorphism on homotopy groups.

Denoting by S∗ the category of pointed spaces, a (generalized, reduced)
cohomology theory is a functor Sop∗ → Abgr to graded abelian groups,
which is homotopy invariant, stable, exact, and additive. Examples include
ordinary (singular) cohomology with arbitrary coefficients, complex and
real K-theory, complex cobordism. Note that ordinary cohomology with
commutative ring coefficients, as well as the other mentioned cohomology
theories are multiplicative, i.e. the corresponding functors land in graded
commutative rings.

(15) Write out what the axioms of a generalized cohomology theory mean.

Cohomology theories and natural transformations (aka cohomology op-
erations) form a stable additive category. The category Sp of spectra is a
refinement of this, which allows for many natural constructions to be pos-
sible (eg. taking fibers or cofibers, localizations, etc.). At the end, spectra
form a stable symmetric monoidal model category or ∞-category, whose
tensor product is called the smash product (denoted ∧), and the unit is the
sphere spectrum S0.

Suggested references: Adams’s “Stable Homotopy and Generalized Ho-
mology” combined with the first sections of Bousfield-Friedlander’s “Homo-
topy theory of Γ-spaces, spectra, and bisimplicial sets”, or at the other end
of the spectrum, Lurie’s “Higher Algebra”, with lots of options inbetween,
a notable example being the appendix of Hill-Hopkins-Ravenel’s “On the
nonexistence of elements of Kervaire invariant one.”

In the most naive definitions, a spectrum E is a sequence {En, σn}n∈Z of
pointed spaces En along with structure maps σn : ΣEn = En∧S1 → En+1.
A spectrum E defines a homology and cohomology theory for (pointed)
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spaces X:

EnX = lim
k→∞

πn+k(X ∧ Ek), En(X) = lim
k→∞

[ΣkX,En+k].

(These are really the reduced cohomology theories; The unreduced versions
are the values on X+, the space X with a disjoint base point.)

For any pointed space X, its suspension spectrum Σ∞X consists of ΣnX,
with identities as the structure maps. The sphere spectrum S0 is Σ∞(∗+);
the homotopy groups of a spectrum E are defined as

πnE = lim
k→∞

πn+kEk.

Formal group laws in homotopy theory appear when studying complex
orientable cohomology theories.

Suppose ξ → X is a (complex) vector bundle; its Thom space is de-
fined as the quotient Thξ = D(ξ)/S(ξ) of the unit disc bundle modulo the
unit sphere bundle in ξ. This construction is natural (for maps of vector
bundles), and the projection defines a map p : Thξ → X.

(16) What is the Thom space of a trivial vector bundle?

A multiplicative cohomology theory E is complex oriented if for any
complex vector bundle ξ → X of (complex) rank n, there is a class uξ ∈
E2n(Thξ) such that:
• For each point x ∈ X, the composite

E2n(Thξ)→ E2n(Thξ|x) ∼= E2n(S2n) ∼= E0(S0)

sends uξ to 1;
• For any map f : Y → X, we have uf∗ξ = f∗uξ; and
• If η is another complex vector bundle on X, then uξ⊕η = uξuη.

(17) Show that p∗(−)uξ determines an isomorphism Ek(X) → Ek+2n(Thξ).
This is called a Thom isomorphism.

(18) The classifying space for complex line bundles is CP∞ ∼= BU(1). Let
γ be the tautological line bundle on CP∞. Show that the zero section
CP∞ → Thγ is a homotopy equivalence.

(19) Let i : S2 ∼= CP 1 → CP∞ be the map classifying the tautological line
bundle on CP 1. Show that a complex orientation for E gives a “first Chern”
class cE1 ∈ E2(CP∞), such that i∗(cE1 ) = 1 ∈ E0 ∼= E2(S2) = E2(CP 1).

(20) Prove the splitting principle, i.e. show that for any vector bundle ξ → X,
there is a space Y and a map f : Y → X, such that f∗ξ is a sum of line
bundles.

(21) Conclude that a complex oriented cohomology theory has a natural theory
of Chern classes for complex vector bundles, so that if fL : X → CP∞

classifies a line bundle L on X, then cE1 (L) = f∗L(cE1 ), and moreover, if
ξ ' L1⊕ · · ·⊕Ln, then ck(ξ) is the k-th symmetric elementary function on
cE1 (L1), . . . cE1 (Ln).

We denote by cE(ξ) the “total Chern class” 1 + cE1 (ξ) + cE2 (ξ) + · · · ∈
E∗(X); then cE(ξ1 ⊕ ξ2) = cE(ξ1)cE(ξ2).
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Formal group laws appear when we address the question of what is the
Chern class of a tensor product of bundles, or specifically for line bundles.

There is a multiplication map CP∞ × CP∞ µ−→ CP∞, such that if L1, L2

are line bundles over X, then the composite

X
L1×L2−−−−→ CP∞ × CP∞ µ−→ CP∞

classifies the tensor L1 ⊗ L2. So, to understand what cE1 (L1 ⊗ L2) is, we
must understand what E∗µ is.

(22) Show that if E is complex oriented, there is an isomorphism E∗(CP∞) ∼=
E∗[[xE ]]. You will need to understand the cell structure of CP∞ and use
the Atiyah-Hirzebruch spectral sequence. Then conclude that E∗(CP∞ ×
CP∞) ∼= E∗[[xE , yE ]].

(23) For an oriented spectrum E, let FE(x, y) ∈ E∗(CP∞ × CP∞) ∼= E∗[[x, y]]
be µ∗(x). Show that this is a formal group law.

The complex cobordism spectrum MU consists of the spaces MU2n =
MU(n) = Thξn, where ξn is the tautological rank n-bundle on BU(n),
and MU2n+1 = ΣMU2n. The structure maps are constructed from the
inclusions BU(n)→ BU(n+ 1).

(24) Show that MU is complex orientable.

In fact, MU is the universal oriented cohomology theory; orientations
on a ring spectrum E correspond to ring maps MU → E. In line with the
above correspondence between orientations and formal group laws, Quillen
showed that MU carries the universal formal group law, and so MU∗ is the
Lazard ring.

(25) Show that the complex K-theory spectrum is complex orientable.

3. Landweber exactness

A number of cohomology theories can be constructed fromMU , using the
following criterion due to Landweber. For each prime p and non-negative
integer n, let vn be the coefficient of xp

n

in [p]FMU
, where v0 is understood

to be p. Suppose R is an MU∗-module. Suppose for each p, n, the map
vn : R/(p, v1, . . . , vn−1)→ R/(p, v1, . . . , vn−1) is injective, i.e. (p, v1, . . . ) is
a regular sequence. Then the functor

X 7→MU∗(X)⊗MU∗ R

is a homology theory. Note, this does not require that R be a flat MU∗-
module, but rather is related to a flatness condition on the moduli stack of
formal groups.

(26) Show that the map MU∗ → Z classifying the additive formal group law sat-
isfies he Landweber exactness criterion. (The homology theory one obtains
this way is ordinary homology with integer coefficients.)

(27) Show that the map MU∗ → Z[u±1] classifying the multiplicative formal
group law group F (x, y) = x + y + uxy satisfies the Landweber exactness
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criterion. (The homology theory one obtains this way is the one represented
by the complex K-theory spectrum.)

(28) Let k be a perfect field of characteristic p, and Γ a formal group law over
k. Show that the map MU∗ → E(k,Γ)[u±1] classifying the universal de-
formation of Γ makes E(k,Γ)[u±1] into an MU∗-algebra which satisfies
Landweber’s criterion.

(29) Let C be an elliptic curve over R. Its formal group is classified by a map
MU∗ → R[u±1]. Under what conditions on C does this satisfy the Landwe-
ber criterion?

4. Group actions

Another way to get new cohomologies from old is in the presence of group
actions. For a finite group G, a spectrum with a G-action is best defined
in the ∞-categorical land: it corresponds to a functor (of ∞-categories)
X : BG → Sp, where BG the category with one object and whose en-
domorphisms are G. Then there are associated spectra XhG (homotopy
fixed points), XhG (homotopy orbits), and XtG (Tate spectrum), sitting in
a cofiber sequence

XhG → XhG → XtG.

Moreover, there are spectral sequences

Hs(G, πtX)⇒ πt+sXhG

Hs(G, πtX)⇒ πt−sXhG,

Ĥs(G, πtX)⇒ πt−sXtG,

compatible with the cofiber sequence above.
(30) The group C2 acts on the complex K-theory spectrum by complex conjuga-

tion, with homotopy fixed points being KO, the spectrum classifying real
K-theory. Compute the associated homotopy fixed point spectral sequence,
and then also the Tate and homotopy orbit spectral sequences.

(31) Fixing a perfect field k and formal group law Γ over k, let G be a finite
group of automorphisms of Γ over k. Then G acts on the spectrum E(k,Γ)
from (28) above. In specific examples, can you compute anything about
this action?

(32) In the world of ∞-categories, we can also take homotopy fixed points of
groups acting on categories. Let Vect be the category of finite dimensional
vector spaces over some field; then Vect has an action by C2 given by
V 7→ V ∨. Show that the homotopy fixed points VecthC2 is the category of
non-degenerate symmetric bilinear forms.
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